H. Sato Nagoya Math. J. Vol. 62 (1976), 97-124

ON BOUNDARIES OF SCHOTTKY SPACES

HIROKI SATO

0. Introduction.

Let S be a compact Riemann surface and let S_n be the surface obtained from S in the course of a pinching deformation. We denote by Γ_n the quasi-Fuchsian group representing S_n in the Teichmüller space $T(\Gamma)$, where Γ is a Fuchsian group with $U/\Gamma = S(U)$: the upper half plane). Then in the previous paper [7] we showed that the limit of the sequence of Γ_n is a cusp on the boundary $\partial T(\Gamma)$. In this paper we will consider the case of Schottky space \mathfrak{S} . Let G_n be a Schottky group with $\Omega(G_n)/G_n = S_n$. Then the purpose of this paper is to show what the limit of G_n is.

We will begin with defining the boundary of the Schottky space. Usually the boundary is considered in C^{3g-3} , the complex (3g - 3)-dimensional space. However, in our approach, it is more convenient to do it in \hat{C}^{3g} . This will be illustrated by some examples.

First we treat the hyperelliptic case. Let G be a Schottky group such that $\Omega(G)/G$ is a hyperelliptic surface whose branch points are a_1 , $a_2, \dots, a_{2g-2}, 0, 1, a_{2g-1}, \infty; a_j \in \mathbf{R}$ $(j = 1, \dots, 2g - 1)$ and whose branch cuts are $(a_1, a_2), \dots, (a_{2g-3}, a_{2g-2}), (0, 1), (a_{2g-1}, \infty)$ on \mathbf{R} . We consider the deformatiom obtained by moving a_{2g-1} to ∞ increasingly along the real axis and keeping other branch points and cuts fixed. Then under the deformation there exist sequences of Schottky groups G_n tending to a point on $\partial_3 \mathfrak{S}$ (Theorem 1) and a point on $\partial_2 \mathfrak{S} \cup \partial_3 \mathfrak{S}$ (Theorem 2) (see §1 for the notations). Next let G be a Schottky group such that $\Omega(G)/G$ is a compact Riemann surface of genus $g \geq 2$. Let S_n be a compact Riemann surface obtained from S in the course of pinching deformation. We denote by G_n a Schottky group with $\Omega(G_n)/G_n = S_n$. Then we show that the limit of subsequence of G_n may be either a cusp (Theorems 3

Received December 3, 1975.

Revised February 9, 1976.

and 4), a point on $\partial_3 \mathfrak{S}$ (Theorem 3) or a "node" (Theorem 6). Observe a big difference from the case of Teichmüller space.

In §1 we will state two definitions of a Schottky space and the definition of a normalized Schottky space. Then we define the boundary of a Schottky space and show by some examples that it is inconvenient to use a normalized Schottky space. In §2 we will show that under the above deformation there exists a sequence of Schottky groups tending to a point on $\partial_3 \mathfrak{S}$ in the hyperelliptic case. We note that Lemmas 3 and 4 would be interesting and the technique of the proofs would be useful for studying relations between locations of branch points and cuts on a hyperelliptic surface and multipliers of generators of Schottky group which represents the surface. In §3 we will show that when we perform a pinching deformation for a compact Riemann surface S, subsequences of Schottky groups G_n , representing the obtained surfaces, may tend to either a cusp, a "node" or a point on $\partial_3 \mathfrak{S}$.

The author is indebted to Professor Lipman Bers for pointing out some errors in the original version of this paper and the author wishes to express his deep gratitude to professors K. Oikawa, T. Akaza, T. Kuroda and K. Matsumoto for their encouragement and advices.

1. Definition of boundaries of Schottky spaces.

In this section we will state two definitions of a Schottky space and the definition of a normalized Schottky space. Then we will define the boundary of a Schottky space and will show by some examples that it is difficult to define the boundary of a normalized Schottky space.

1-1. Definition of a Schottky space. Let $C_1, C'_1, \dots, C_g, C'_g$ be a set of $2g, g \ge 2$, mutually disjoint Jordan curves (we call them defining curves) on the Riemann sphere which complize the boundary of a 2g-ply connected region D. Suppose there are g Möbius transformations A_1 , \dots, A_g which have the property that A_j maps C_j onto C'_j and $A_j(D) \cap$ $D = \phi, 1 \le j \le g$. Then the g necessarily loxodromic transformations A_j generate a Schottky group of genus g with D as a fundamental region.

The first definition of a Schottky space is due to Marden [5]. Given $g \ge 2$, consider the compact manifold P_s^g , where P_3 denotes complex projective 3-space, with the natural topology. We represent points of this

space by g-tuples of 2×2 complex matrices (A_1, \dots, A_q) (with the natural equivalence relation). Let X be the variety determined by the equation $\prod \det A_j = 0$ and set $V = P_g^q - X$. Fix a Schottky group G of genus g and a set of free generators A_1, \dots, A_q . This set of generators determines the point $(A_1, \dots, A_q) \in V$. To any homomorphism $\theta: G \to H$, where H is a group of Möbius transformations, we will associate the point $(\theta(A_1), \dots, \theta(A_q)) \in V$. For simplicity we will use the notation (H, θ) for this point. Conversely, a point $(B_1, \dots, B_q) \in V$ can be expressed as (H, θ) , where H is the group generated by B_1, \dots, B_q and θ is the homomorphism determined by $\theta(A_j) = B_j$. The topology of V corresponds to the "pointwise convergence" topology in the group H. Namely $(H_n, \theta_n) \to (H, \theta)$ in V if and only if $\theta_n(A_j) \to \theta(A_j)$ for each $j, 1 \leq j \leq g$. Define the Schottky space \mathfrak{S}_1 as follows.

 $\mathfrak{S}_1 = \{(H, \theta) \in V : H \text{ is a Schottky group and } \theta \text{ is an isomorphism}\}.$

Remark. Let \hat{G} be another Schottky group and $\hat{A}_1, \dots, \hat{A}_q$ be generators of \hat{G} . Let $\hat{\mathfrak{S}}_1$ be the Schottky space constructed as above with respect to \hat{G} and $\hat{A}_1, \dots, \hat{A}_q$. Then it is easily seen that \mathfrak{S}_1 and $\hat{\mathfrak{S}}_1$ are essentially the same and that their boundaries defined later coinside. Since we study boundary of Schottky space in this paper, we may ignore the letters G, A_1, \dots, A_q for the definition of the first Schottky space.

The second definition of a Schottky spaces is as follows. Let H be any Schottky group. We denote by λ_j , p_j and q_j the multiplier, the repelling and the attracting fixed points of B_j , respectively, where B_1 , \cdots , B_g are generators of H and $1 < |\lambda_j| < +\infty$. Thus H determines 3g-tuples of complex numbers

$$(m{\lambda}_1, p_1, q_1, m{\lambda}_2, \cdots, m{\lambda}_g, p_g, q_g) \in \hat{m{C}}^{3g}$$
 .

For simplicity we denote by τ such 3g-tuples. Conversely a point τ with $\lambda_j \neq \infty$ $(1 \leq j \leq g)$ determines a point $(B_1, \dots, B_g) \in V$. We define the second Schottky space \mathfrak{S}_2 with the natural equivalence relation as follows.

 $\mathfrak{S}_{2} = \{ \tau \in \hat{m{C}}^{3g} \colon \tau \, \, ext{determines a Schottky group} \} \, .$

Then it is easily seen that \mathfrak{S}_1 and \mathfrak{S}_2 are equivalent. Thus we may denote by \mathfrak{S} instead of \mathfrak{S}_1 and \mathfrak{S}_2 . We note that the dimension of \mathfrak{S} is 3g.

If in the first definition of \mathfrak{S} we regard as the same point in \mathfrak{S}_1 , the points (B_1, \dots, B_q) and $(TB_1T^{-1}, \dots, TB_qT^{-1})$ with $T \in SL'(2, \mathbb{C})$, then we have a normalized Schottky space $[\mathfrak{S}_1]$ instead of a Schottky space \mathfrak{S}_1 . Similarly if in \mathfrak{S}_2 , we regard as the same point $(\lambda_1, p_1, q_1, \dots, \lambda_q, p_q,$ $q_q)$ and $(\hat{\lambda}_1, \hat{p}_1, \hat{q}_1, \dots, \hat{\lambda}_q, \hat{p}_q, \hat{q}_q)$, we have a normalized Schottky space $[\mathfrak{S}_2]$, where $\hat{\lambda}_j, \hat{p}_j$ and \hat{q}_j are the multiplier, the repelling and the attracting fixed points of $TBT^{-1}, 1 \leq j \leq g$, respectively. Then it is easily seen that $[\mathfrak{S}_1]$ and $[\mathfrak{S}_2]$ are equivalent and so we denote them by $[\mathfrak{S}]$. We note that the dimension of $[\mathfrak{S}]$ is 3g - 3 and $[\mathfrak{S}]$ is usually called a Schottky space.

1-2. Definition of the boundary of the Schottky space.

We consider the boundary of a Schottky space. We will use the notation $\partial \mathfrak{S}_1$ for the relative boundary of \mathfrak{S}_1 in V, that is, for each $(H, \theta) \in \partial \mathfrak{S}_1$, there is a sequence of points $(H_n, \theta_n) \in \mathfrak{S}_1$ converging to (H, θ) . A point $(H, \theta) \in \partial \mathfrak{S}_1$ will be called a boundary group of G. A point $(H, \theta) \in \partial \mathfrak{S}_1$ will be called a cusp if there is a loxodoromic element $A \in G$ such that $\theta(A)$ is parabolic. Then Chuckrow [3] showed that $\partial \mathfrak{S}_1$ consists of cusps and non-Kleinian groups.

We consider the boundary of \mathfrak{S}_2 in \hat{C}^{3g} . We classify the boundary of $\partial \mathfrak{S}_2$ into the following three cases as limits of point sequences of Schottky groups $G_n = \{A_{1n}, \dots, A_{gn}\}$ (or τ_n).

(1) We call the first boundary point the following $\tau_0 \in \hat{C}^{3g}$. For $\tau_0 \in \partial \mathbb{S}_2$, g Möbius transformations A_{j0} are determined as the limit of A_{jn} $(1 \leq j \leq g)$. We denote by $\partial_1 \mathbb{S}_2$ the set of all such points τ_0 . In this case $\partial \mathbb{S}_1 = \partial_1 \mathbb{S}_2$.

(2) We call the second boundary point the following $\tau_0 \in \hat{C}^{3g}$, that is, $\tau_0 = (\lambda_{10}, p_{10}, q_{10}, \dots, \lambda_{g0}, p_{g0}, q_{g0})$ with $\lambda_{j0} = \lim_{n \to \infty} \lambda_{jn}, p_{j0} = \lim_{n \to \infty} p_{jn}$ and $q_{j0} = \lim_{n \to \infty} q_{jn} (1 \le j \le g)$ such that at least one of $\lambda_{j0} (1 \le j \le g)$ is infinite and all p_{i0} and $q_{j0} (1 \le i, j \le g)$ are distinct. We denote by $\partial_2 \mathfrak{S}_2$ the set of all such points. Furthermore we call the point $\tau_0 \in \partial_2 \mathfrak{S}_2$ a "node" if each $\lambda_{j0} (\ne \infty), p_{j0}$ and q_{j0} determine a loxodromic transformation. We show an example of $\tau_0 \in \partial_2 \mathfrak{S}_2$ which is not a "node". Set

$$A_{1n}(z) = \frac{(n+4)i}{n}z$$
 and $A_{2n}(z) = \frac{(n+2)z + (n+4+(3/n))}{nz + (n+2)}$

٠

We denote by G_n the Schottky group generated by A_{1n} and A_{2n} . Then

$$\tau_n = ((n+4)i/n, 0, \infty, \lambda_{2n}, -\sqrt{(n+1)(n+3)}/n, \sqrt{(n+1)(n+3)}/n)$$

and

$$au_0 = \lim_{n \to \infty} au_n = (i, 0, \infty, \infty, -1, 1)$$

Thus $\lambda_{20} = \infty$ and $A_{10} = \lim_{n \to \infty} A_{1n}$ is an elliptic transformation.

(3) We define the third boundary by setting $\partial \mathfrak{S}_2 - \partial_1 \mathfrak{S}_2 - \partial_2 \mathfrak{S}_2$, and denote it by $\partial_3 \mathfrak{S}_2$. We give an example of a point $\tau_0 \in \partial_3 \mathfrak{S}_2$. Set

$$A_{1n}(z) = \frac{(n+7)i}{n}z$$
 and $A_{2n}(z) = \frac{(2n+2)z + (3-4n^2)/2n}{2nz - (2n-2)}$.

Then the group generated by A_{1n} and A_{2n} is a Schottky group. Then

$$au_n = ((n+7)i/n, 0, \infty, \lambda_{2n}, (2n-\sqrt{3})/2n, (2n+\sqrt{3})/2n)$$

and

$$au_0 = \lim_{n \to \infty} au_n = (i, 0, \infty, 7 + 4\sqrt{3}, 1, 1)$$

Thus $A_{10} = \lim_{n \to \infty} A_{1n}$ is an elliptic transformation and $\tau_0 \in \partial_3 \mathfrak{S}_2$.

We write $\partial \mathfrak{S}, \partial_1 \mathfrak{S}, \partial_2 \mathfrak{S}$ and $\partial_3 \mathfrak{S}$ instead of $\partial \mathfrak{S}_2, \partial_1 \mathfrak{S}_2, \partial_2 \mathfrak{S}_2$ and $\partial_3 \mathfrak{S}_2$, respectively.

Now we present an example showing that the normalized Schottky space [S] is not convenient for our study.

Examples. Let

$$A_r(z) = rac{z+1-r^2}{z+1}$$
 , $0 < r < 1$

and

$$B_r(z)=\frac{7z-29}{z-4}.$$

Let G_r be the Schottky group generated by A_r and B_r , that is, $G_r = \{A_r, B_r\}$ and

$$au_r = ((2 - r^2 + 2\sqrt{1 - r^2})/r^2, -\sqrt{1 - r^2}, \sqrt{1 - r^2}, (7 + 3\sqrt{5})/2, (11 - \sqrt{5})/2, (11 + \sqrt{5})/2).$$

Set

HIROKI SATO

$$T_r(z) = rac{z + \sqrt{1 - r^2}}{z - \sqrt{1 - r^2}} \,,$$

 $\hat{A_r}(z) = T_r A_r T_r^{-1}(z) = rac{2 - r^2 + 2\sqrt{1 - r^2}}{r^2} z$

and

$$\hat{B}_r(z) = T_r B_r T_r^{-1}(z) = rac{(-r^2-28+3\sqrt{1-r^2})z+(11\sqrt{1-r^2}+30-r^2)}{(11\sqrt{1-r^2}-30+r^2)z+(3\sqrt{1-r^2}+28+r^2)} \,.$$

Let \hat{G}_r be the Schottky group generated by \hat{A}_r and \hat{B}_r , that is, $\hat{G}_r = \{\hat{A}_r, \hat{B}_r\}$ and

$$\hat{ au}_r = ((2-r^2+2\sqrt{1-r^2})/r^2,0,\infty,(7+3\sqrt{5})/2,\hat{p}_2,\hat{q}_2)\;.$$

For each real number $r, 0 < r < 1, G_r$ and \hat{G}_r determine the same point in [S]. It is easily seen that

$$A_{1}(z) = \lim_{r \to 1} A_{r}(z) = \frac{z}{(z+1)}$$

is parabolic and

$$B_1(z) = \lim_{r \to 1} B_r(z) = (7z - 29)/(z - 4)$$

is loxodromic. And

$$au_0 = \lim_{r \to 1} au_r = (1, 0, 0, (7 + 3\sqrt{5})/2, p_2, q_2) \; .$$

Hence the group generated by $A_1(z)$ and $B_1(z)$ is a cusp on $\partial_1 \mathfrak{S}$. On the other hand

$$\hat{A}_1(z) = \lim_{r \to 1} \hat{A}_r(z) = z$$

is the identity and

$$\hat{B}_1(z) = \lim_{r \to 1} \hat{B}_r(z) = (-29z + 29)/(-29z + 29)$$
,

and

$$\hat{\tau}_0 = \lim_{r \to 1} \hat{\tau}_r = (1, 0, \infty, (7 + 3\sqrt{5})/2, 1, 1)$$

Hence $\hat{\tau}_0$ is in X and on $\partial_3 \mathfrak{S}$.

Furthermore

SCHOTTKY SPACES

$$A_0(z) = \lim_{r \to 0} A_r(z) = (z+1)/(z+1)$$

and

$$B_{\scriptscriptstyle 0}(z) = \lim_{r o 0} B_r(z) = (7z - 29)/(z - 4) \; .$$

Hence

$$au_{0} = \lim_{r \to 0} au_{r} = (\infty, -1, 1, (7 + 3\sqrt{5})/2, p_{2}, q_{2})$$

is in X and on $\partial_2 \mathfrak{S}$. On the other hand

$$\hat{A}_0(z) = \lim_{r \to 0} \hat{A}_r(z) = \infty$$

and

$$\hat{B}_0(z) = \lim_{r \to 0} \hat{B}_r(z) = (-25z + 41)/(-19z + 31)$$
.

Hence

$$\hat{ au}_{_{0}} = \lim_{_{r
ightarrow 0}} \hat{ au}_{_{r}} = (\infty, 0, \infty, (7 + 3\sqrt{5})/2, p_{_{2}}, q_{_{2}})$$

is on $\partial_2 \mathfrak{S}$.

 G_r and \hat{G}_r represent the same point of the normalized Schottky space [S]. However, they behave differently as $r \to 0$ or $r \to 1$. This shows that the Schottky space \mathfrak{S} is more convenient than the normalized space [S].

2. The hyperelliptic case.

In this section we will discuss the case where G is a Schottky group such that $\Omega(G)/G$ is a hyperelliptic surface, where $\Omega(G)$ denotes the region of discontinuity of G, and we will consider limits of the Schottky groups obtained under the following deformation.

2-1. Let S be a normalized hyperelliptic surface which has branch points $a_1, \dots, a_{2g-2}, 0, 1, a_{2g-1}, \infty$ and has branch cuts $(a_1, a_2), (a_3, a_4), \dots, (a_{2g-3}, a_{2g-2}), (0, 1)$ and (a_{2g-1}, ∞) on the real axis, where $a_1 < a_2 < \dots < a_{2g-2} < 0 < 1 < a_{2g-1}, |a_{2g-1}| > |a_1|, a_j \in \mathbb{R}$ $(j = 1, \dots, 2g - 1)$ (cf, see Fig. 1 in the previous paper [7]). Take g simple loops $\alpha_1, \dots, \alpha_g$ being disjoint each other on S as follows. Each α_j $(2 \leq j \leq g)$ surrounds the cut (a_{2j-3}, a_{2j-2}) and not other cuts in its interior and α_1 surrounds the cut (a_{2g-1}, ∞) and not other cuts in its interior. Now we consider the deformation under which the branch points $a_1, \dots, a_{2g-2}, 0, 1, \infty$ and the cuts $(a_1, a_2), \dots, (a_{2g-3}, a_{2g-2}), (0, 1)$ are fixed, and the point a_{2g-1} increasingly tends to ∞ along the real axis.

Let G be a Schottky group of genus g such that $\Omega(G)/G$ is the above hyperelliptic surface S and S_n be the hyperelliptic surface which has branch points $a_1, a_2, \dots, a_{2g-2}, 0, 1, a_{2g-1}, \infty$ and has cuts $(a_1, a_2), \dots, (a_{2g-3}, a_{2g-2}), (0, 1), (a_{2g-1}^{(n)}, \infty)$ on the real axis, where $a_{2g-1} < a_{2g-1}^{(n)}$. Now we may take α_1 as the circle about 0 of the radius r with $|a_1| < r < a_{2g-1}$. On the other sheet we denote by α'_1 the circle which has the same projection as α_1 . Let D_1 be the ring domain containing ∞ bounded by α_1 and α'_1 on S. Furthermore we write α_1 and α'_1 for the corresponding loops on S_n . Let D_{1n} be the ring domain containing ∞ bounded by α_1 and α'_1 on S_n . To the loops $\alpha_1, \dots, \alpha_g$ on S we assign Möbius tranformations A_1, \dots, A_g , respectively.

We consider the conformal mapping of the Grötzsch extremal region to the concentric annulus (cf. see Fig. 4 in [7]). We map D_1 and D_{1n} to annuli $K_1: \{\rho_1 \leq |z| \leq 1\}$ and $K_{1n}: \{\rho_{1n} \leq |z| \leq 1\}$ by conformal mappings Φ and Φ_n , respectively. Then

$$\Phi((1/r)a_{2g-1}) = 1/\sqrt{\rho_1}$$

and

$$\Phi_n((1/r)a_{2g-1}^{(n)}) = 1/\sqrt{\rho_{1n}}$$
.

We define a q.c. mapping $f_n: S \to S_n$ as follows. Let \tilde{f}_n be an arbitrary quasi-comformal mapping of K_1 onto K_{1n} such that $\Phi_n^{-1}\tilde{f}_n\Phi = \mathrm{id.}$ on ∂D_1 . We define f_n by setting

$$f_n = egin{cases} \Phi_n^{-1} \widetilde{f}_n \Phi & ext{ on } D_1 \ ext{identity} & ext{ on } S - D_1 \end{cases}$$

LEMMA 1. (Sato [7]).

$$\lim_{n o\infty}
ho_{1n}=0 \quad if \,\,and \,\,only\,\,if \,\,\,\lim_{n o\infty}a_{2g-1}^{(n)}=\infty\,\,.$$

LEMMA 2. For f_n defined above, there uniquely exists a q.c. mapping F_n which satisfies the following conditions:

- (1) With respect to $G_n = F_n G F_n^{-1}, F_n(\Omega(G))/G_n = S_n$
- (2) With respect to π_n , the natural projection from $\Omega(G_n)$ onto S_n ,

 $\begin{aligned} \pi_n F_n &= f_n \pi \text{ and} \\ (3) \quad F_n(0) &= 0, F_n(1) = 1 \text{ and } F_n(\infty) = \infty, \\ \text{where } \pi \text{ expresses the natural projection from } \Omega(G) \text{ onto } S. \end{aligned}$

Proof. We can prove the lemma by the same method as in the proof of Lemma 2 in [7], hence we omit the proof here.

Let A_1 be an element of G with the following property: If a path $\widehat{zz'}$ is a lift of α_1 , then $z' = A_1(z)$. Set $A_{1n} = F_n A_1 F_n^{-1}$. We denote by λ_{1n} the multiplier of A_{1n} . Then by a similar method to the proof of Lemma 3 in [7] we have the following lemma, but for the completeness here we give a proof.

LEMMA 3. If
$$\lim_{n\to\infty} a_{2g-1}^{(n)} = \infty$$
, then $\lim_{n\to\infty} \log |\lambda_{1n}| = 0$.

Proof. Let p_{1n} and q_{1n} be the fixed points of A_{1n} and we may assume that $p_{1n} = 0$ and $q_{1n} = \infty$. We denote by Γ_{1n} the set of all simple closed rectifiable curves γ separating 0 and ∞ and denote by M_{1n} the extremal length modulo $\{A_{1n}\}$ (the quantity introduced by Bers [2]), that is,

$$M_{1n} = \sup_{\sigma} rac{\left(\inf_{r \in r} \int_{r \in r} \sigma(z) \left| dz \right|
ight)^2}{ \iint_{F_n(\widehat{\mathcal{C}})/\{A_{1n}\}} \sigma(z)^2 dx dy}$$

where $\sigma(z)$ is a non-negative measurable function which satisfies the identity

$$\sigma(A_{1n}(z)) |dA_{1n}(z)| = \sigma(z) |dz|.$$

We call the function $\sigma(z)$ an admissible function. Then (Bers [2])

$$M_{1n} = \frac{2\pi}{\log|\lambda_{1n}|} \,. \tag{1}$$

We denote by ℓ_n the lift of the branch cut $(a_{2g-1}^{(m)}, \infty)$ which joins p_{1n} and q_{1n} , and denote by E_{1n} the lift of the ring domain D_{1n} such that $\ell_n \in E_{1n}$. We denote by $\tilde{\Gamma}_{1n}$ the set of all rectifiable curves joining the boundary |z| = 1 and another boundary $|z| = \rho_{1n}$ in the annulus K_{1n} and denote by \tilde{M}_{1n} the extremal length of $\tilde{\Gamma}_{1n}$ in K_{1n} . It is known that

$$\dot{M}_{1n} = -\log \rho_{1n}/(2\pi)$$
 (2)

HIROKI SATO

For each curve $\gamma \in \Gamma_{1n}$, there exists a curve $\tilde{\gamma}^*$ in E_{1n} being a lift of $\tilde{\gamma} \in \tilde{\Gamma}_{1n}$ such that $\tilde{\gamma}^*$ is a part of γ . It is not difficult to prove that

$$M_{1n} \ge \tilde{M}_{1n} . \tag{3}$$

By Lemma 1, if $\lim_{n\to\infty} a_{2g-1}^{(n)} = \infty$, then $\lim_{n\to\infty} \rho_{1n} = 0$. Hence from (1), (2) and (3), we have the desired result. Our proof is now complete.

For each $j = 2, 3, \dots, g$, let A_j be an element of G with the following property: If a path $\widehat{z_j} z'_j$ be a lift of α_j , then $z'_j = A_j(z_j)$. We consider the variations of A_2, \dots, A_q under the above deformation. Let $\alpha'_2, \dots, \alpha'_q$ be the loops on the other sheet which have the same projections as $\alpha_2, \dots, \alpha_q$, respectively. Let D_j $(j = 2, \dots, g)$ be the ring domain containing the cut (a_{2j-3}, a_{2j-2}) bounded by α_j and α'_j . Map the ring domain D_j to the annulus $K_j: \{\rho_j < |z| < 1\}$ by a conformal mapping g_j . Let f_n be the q.c. mapping constructed above. We set $\alpha_{jn} = f_n(\alpha_j), \alpha'_{jn} = f_n(\alpha'_j)$ and $D_{jn} = f_n(D_j)$. Let g_{jn} be a conformal mapping from D_{jn} to the annulus $K_{jn}: \{\rho_{jn} < |z| < 1\}$.

Let $\tilde{\Gamma}_j$ be the set of curves joining the boundary |z| = 1 of K_j and another boundary $|z| = \rho_j$ in K_j . Let $\tilde{\Gamma}_{jn}$ be the set of all curves joining the boundary |z| = 1 of K_{jn} and another boundary $|z| = \rho_{jn}$ in K_{jn} . We denote by \tilde{M}_j and \tilde{M}_{jn} the extremal length of $\tilde{\Gamma}_j$ in K_j and of $\tilde{\Gamma}_{jn}$ in K_{jn} , respectively. Then $f_{jn} = g_{jn}f_ng_j^{-1}$: $K_j \to K_{jn}$ is conformal, hence

$${ ilde M}_{jn}={ ilde M}_j=rac{-\log
ho_j}{2\pi}\;.$$

Set $A_{jn} = F_n A_j F_n^{-1}$ $(j = 2, \dots, g)$. We denote by λ_{jn} the multiplier of A_{jn} . We denote by M_{jn} the extremal length modulo $\{A_{jn}\}$ by the same method as in the proof of Lemma 3. Then

$$M_{jn} = rac{2\pi}{\log |\lambda_{jn}|}$$
 , $|\lambda_{jn}| > 1$.

By the same way as in the proof of Lemma 3, we have

$$rac{2\pi}{\log|\lambda_{jn}|} \geqq rac{-\log
ho_j}{2\pi} \ .$$

Hence

$$\log|\lambda_{jn}| \leq \frac{4\pi^2}{-\log \rho_j} \; .$$

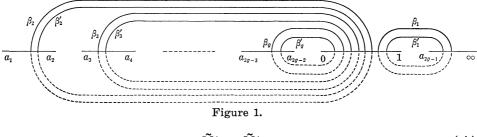
SCHOTTKY SPACES

2-2. Next we consider the " β "-cycles on S. Let β_1, \dots, β_g be a basis of " β "-cycles as in the Figure 1 below, that is, β_j are mutually disjoint and $\alpha_j \times \beta_k = \delta_{jk}$ (Kronecker's δ) and β'_j is a loop which bounds a ring domain D_j^* together with β_j for each $j = 1, \dots, g$. Furthermore we assume that β_j and β'_j ($2 \leq j \leq g$) are contained in $S - D_1$. We set $\beta_{jn} = f_n(\beta_j), \beta'_{jn} = f_n(\beta'_j)$ and $D_{jn}^* = f_n(D_j^*)$ $(j = 1, \dots, g)$.

We fix $j, 2 \leq j \leq g$. We assume that $A_{jn}(z) = \lambda_{jn}z$. Let C_{jn} and C'_{jn} be defining curves of G_n such that $A_{jn}(C_{jn}) = C'_{jn}$ and one of the lifts of D_j^* lies between C_{jn} and C'_{jn} . Then C_{jn} and C'_{jn} both separate 0 and ∞ . We denote by ω_{jn} the ring domain bounded by C_{jn} and C'_{jn} . We denote by Γ_{jn}^* the set of all curves γ_{θ} $(0 \leq \theta \leq 2\pi)$ which are the intersections of ω_{jn} and rays emanating from the origin, where each $\gamma_{\theta} \in \Gamma_{jn}^*$ consists of finitely many line segments and $\arg z = \theta$ for each $z \in \gamma_{\theta}$. We denote by M_{jn}^* the extremal length of Γ_{jn}^* in ω_{jn} , that is,

$$M_{j\,n}^* = \sup_{\sigma} rac{\left(\inf_{r} \int_{r} \sigma(z) \left| dz
ight|
ight)^2}{ \iint_{{}_{wjn}} \sigma(z)^2 dx dy} \; ,$$

where $\sigma(z)$ is a non-negative measurable function. Then one of the lifts of the curves β_j is in ω_{jn} , and it is a closed curve which separates 0 and ∞ . We denote the curve by β_j^* . Similarly we denote by $\beta_j^{*'}$ the closed curve separating 0 and ∞ which is a lift of β'_j in ω_{jn} . By conformal mappings g_j^* and g_{jn}^* , we map D_j^* and D_{jn}^* to the annuli $K_j^*: \{\rho_j^* < |z| < 1\}$ and $K_{jn}^*: \{\rho_{jn}^* < |z| < 1\}$, respectively. Let $\tilde{\Gamma}_j^*$ and $\tilde{\Gamma}_{jn}^*$ be the sets of curves joining |z| = 1 and $|z| = \rho_j^*$, and |z| = 1 and $|z| = \rho_{jn}^*$, respectively. We denote by \tilde{M}_j^* and \tilde{M}_{jn}^* the extremal length of $\tilde{\Gamma}_j^*$ in K_j^* and of $\tilde{\Gamma}_{jn}^*$ in K_{jn}^* , respectively. Then by the conformal invariance of the extremal length we have



Furthermore by the same method as in the proof of Lemma 3, we have

$$\tilde{M}_{jn}^* \leq M_{jn}^* \,. \tag{5}$$

We easily see that

$$\tilde{M}_j^* = \frac{-\log \rho_j^*}{2\pi} \,. \tag{6}$$

Next we show that

$$M_{jn}^* \leq \frac{\log |\lambda_{jn}|}{2\pi} \,. \tag{7}$$

Set $m(\sigma) = \inf_{\tau_{\theta}} \int_{\tau_{\theta}} \sigma(z) |dz|$. Then for any function $\sigma(z)$ and for each $\gamma_{\theta} \in \Gamma_{jn}^{*}$,

$$m(\sigma) \leq \int_{r_{\theta}} \sigma(re^{i\theta}) dr$$
, where $z = re^{i\theta}$.

Hence

$$\int_{0}^{2\pi} m(\sigma) d\theta \leq \int_{0}^{2\pi} \int_{\tau_{\theta}} \sigma(re^{i\theta}) dr d\theta \; .$$

By using the Schwarz inequality, we have

$$egin{aligned} &4\pi^2 m(\sigma)^2 &\leq \int_0^{2\pi} \int_{r_ heta} \sigma(z)^2 r dr d heta \int_0^{2\pi} \int_{r_ heta} (1/r) dr d heta \ &= \iint_{\omega_{fn}} \sigma(z)^2 dx dy \int_0^{2\pi} \int_{r_ heta} (1/r) dr d heta \ . \end{aligned}$$

Hence

$$rac{4\pi^2 m(\sigma)^2}{\displaystyle \iint_{_{wj_n}} \sigma(z)^2 dx dy} \leqq \int_{_0}^{_{2\pi}} \int_{_{T_ heta}} rac{1}{r} dr d heta \; .$$

On the other hand let $\tilde{\omega}_{jn}$ be the image region of ω_{jn} under the logarithmic function $\zeta = \log z, \zeta = \xi + i\eta$ (see Fig. 2).

SCHOTTKY SPACES

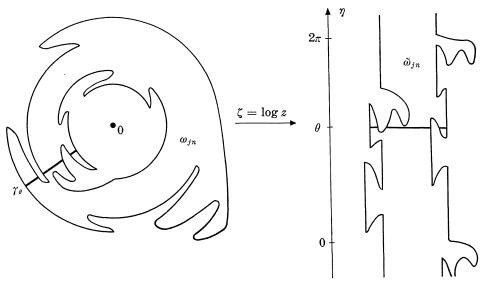


Figure 2.

Then $\int_{\tau_{\theta}} (1/r) dr$ expresses the total length of line segments in $\tilde{\omega}_{jn} \cap \{\zeta \mid \text{Im } \zeta = \theta\}$. Hence

$$\int_{0}^{2\pi}\int_{r_{\theta}}\left(1/r\right)drd\theta$$

is the area of $\tilde{\omega}_{jn}$. Since

$$\int_{0}^{2\pi}\int_{r_{ heta}}(1/r)drd heta=2\pi\log|\lambda_{jn}|\;,$$

we have

$$rac{m(\sigma)^2}{\displaystyle \iint_{{}^{w_{j_n}}} \sigma(z)^2 dx dy} \leqq rac{\log |\lambda_{j_n}|}{2\pi} \; \cdot$$

By the arbitrariness of σ , we have (7). By (4), (5), (6) and (7) we have

$$rac{\log |\lambda_{jn}|}{2\pi} \geqq rac{-\log
ho_j^*}{2\pi}$$
 ,

hence

 $|\lambda_{jn}| \geq 1/
ho_j^*$.

Thus we have the following

LEMMA 4. Under the same deformation as in Lemma 3,

$$\frac{1}{\rho_j^*} \leq |\lambda_{jn}| \leq \exp\left(\frac{4\pi^2}{-\log \rho_j}\right) \qquad (2 \leq j \leq g) \;.$$

Remark. It would be interesting to compare this with a result of Abikoff [1].

2-3. Now we have

THEOREM 1. Let G be introduced at the beginning of 2-1. Let $G_n = \{A_{1n}, \dots, A_{gn}\}$ be the Schottky group constructed in Lemma 2. Then

(1) if $G_0 \in \partial_1 \mathfrak{S}$ is the limit of $T_{n_j} G_{n_j} T_{n_j}^{-1}$, whose $\{n_j\} \subset \{n\}$ and T_{n_j} are Möbius transformations, then G_0 is a cusp.

(2) There exists a subsequence $\{n_j\} \subset \{n\}$ and Möbius transformations T_{n_j} such that the limit G_0 of the sequence $T_{n_j}G_{n_j}T_{n_j}^{-1}$ is on $\partial_3 \mathfrak{S} \cap X$.

Proof. (1) If the limit G_0 is a point on $\partial_1 \mathfrak{S}$, then by Lemma 3, $A_{10} = \lim_{n_j \to \infty} T_{1n_j} A_{1n_j} T_{1n_j}^{-1}$ is parabolic, elliptic or the identity and by Lemma 4, $A_{j0} = \lim_{n_j \to \infty} T_{jn_j} A_{jn_j} T_{jn_j}^{-1}$ is loxodromic for each $j, 2 \leq j \leq g$. Hence by Chuckrow [3], A_{10} must be parabolic. Thus G_0 is a cusp on $\partial_1 \mathfrak{S}$.

(2) We denote by p_{jn} and q_{jn} the repelling and the attracting fixed points of A_{jn} $(j = 1, \dots, g)$. Let T_n be the Möbius transformation such that $T_n(p_{1n}) = 0$, $T_n(q_{1n}) = \infty$ and $T_n(p_{2n}) = 1$. Then

$$\lim_{n \to \infty} \hat{A}_{1n} = \lim_{n \to \infty} T_n A_{1n} T_n^{-1} = \mathrm{id.}$$
 or elliptic

since $\hat{p}_{1n} = 0$, $\hat{q}_{1n} = \infty$ and $\lim_{n \to \infty} |\lambda_{1n}| = 1$, where \hat{p}_{1n} and \hat{q}_{1n} are the repelling and the attracting fixed points of \hat{A}_{1n} , respectively.

If $\hat{p}_{20} \neq \hat{q}_{20}$, then by Lemma 4, $\hat{A}_{20} = \lim_{n \to \infty} T_n A_{2n} T_n^{-1}$ is loxodromic, where $\hat{p}_{20} = \lim_{n \to \infty} \hat{p}_{2n}$ and $\hat{q}_{20} = \lim_{n \to \infty} \hat{q}_{2n}$ and \hat{p}_{2n} and \hat{q}_{2n} are the repelling and the attracting fixed points of $T_n A_{2n} T_n^{-1}$. But by Lemma 4 and its corollary in Chuckrow [3] this case does not occur. Hence $\hat{p}_{20} =$ $\hat{q}_{20} = 1$. Set

$$\hat{A}_{2n} = egin{pmatrix} \hat{a}_{2n} & b_{2n} \ \hat{c}_{2n} & d_{2n} \end{pmatrix}$$
 , $\hat{a}_{2n} \hat{d}_{2n} - \hat{b}_{2n} \hat{c}_{2n} = 1$.

.

Then by Lemma 4,

$$\hat{c}_{2n} = rac{\lambda_{2n}^{1/2} - \lambda_{2n}^{-1/2}}{\hat{p}_{2n} - \hat{q}_{2n}} o \infty \ (n o \infty) \ .$$

Since

$$egin{aligned} \hat{a}_{2n} &= \hat{c}_{2n} \hat{q}_{2n} - \lambda_{2n}^{-1/2} \ \hat{b}_{2n} &= - \hat{c}_{2n} \hat{p}_{2n} \hat{q}_{2n} \end{aligned}$$

and

$$\hat{d}_{2n} = -\hat{c}_{2n}\hat{p}_{2n} - \lambda_{2n}^{-1/2}$$
 ,

we have that

$$\lim_{n\to\infty}\hat{A}_{2n}(z)=(z-1)/(z-1)$$

Hence $\hat{G}_0 = \lim_{n \to \infty} \hat{G}_n$ is in X. Furthermore let $\tau_n \in \mathfrak{S}$ be the associated element with G_n . Then

$$au_0 = \lim_{n \to \infty} au_n = (1, 0, \infty, \lambda_{20}, 1, 1, \cdots, \lambda_{g0}, p_{g0}, q_{g0}) \;.$$

Hence $\tau_0 \in \partial_3 \mathfrak{S}$. Our proof is now complete.

2-4. Next we consider " β "-cycles. Let β_1, \dots, β_g be a basis of " β "-cycles on S. We denote by $\tilde{\beta}_j$ the symmetric loop of β_j with respect to the real axis $(j = 1, \dots, g)$. We denote by \tilde{D}_j^* $(1 \leq j \leq g)$ the ring domain bounded by β_j and $\tilde{\beta}_j$. Let G^* be a Schottky group generated by Möbius transformations B_1, \dots, B_g assigned to the loops β_1, \dots, β_g , respectively, in a similar sense for " α "-cycles. Let S_n be the Riemann surface constructed in front of Lemma 1 and let f_n be the same q.c. mapping from S to S_n defined there. Then by the same method as in Lemma 2, we have

LEMMA 5. There exists a unique q.c. mapping F_n^* which satisfies the following conditions:

(1) With respect to $G_n^* = F_n^* G^* F_n^{*-1}, F_n^* (\Omega(G^*)) / G_n^* = S_n$,

(2) with respect to the natural projection $\pi_n^*: \Omega(G_n^*) \to S_n, \pi_n^*F_n^* = f_n\pi^*$ and

(3) $F_n^*(0) = 0, F_n^*(1) = 1$ and $F_n^*(\infty) = \infty$, where $\pi^* \colon \Omega(G^*) \to S$ is the natural projection.

HIROKI SATO

If we set $B_{jn} = F_n^* B_j F_n^{*-1}$ $(1 \le j \le g)$, then $G_n^* = \{B_{1n}, \dots, B_{gn}\}$. We denote by λ_{jn}^* the multiplier of B_{jn} . We set $\beta_{jn} = f_n(\beta_j)$ and $\tilde{\beta}_{jn} = f_n(\tilde{\beta}_j)$ $(2 \le j \le g)$. Let b_1 be the intersection point of β_1 and the segment (0, 1). Let β_{1n} be a simple closed curve through the points b_1 and $2c_n$ which does not intersect with β_{jn} $(2 \le j \le g)$.

Let $\tilde{\alpha}_j$ $(j = 2, \dots, g)$ be mutually disjoint simple loops homotopic to α_j in $S - D_1$ so that each of $\tilde{\alpha}_j$ bounds a ring domain D_j^* together with α_j , and let $\tilde{\alpha}_1$ be a simple loop homotopic to α_1 so that $\tilde{\alpha}_1$ is disjoint from $\tilde{\alpha}_j$ $(2 \leq j \leq g)$ and bounds a ring domain D_1^* together with α_1 . Then \tilde{D}_j and \tilde{D}_j^* are conformally mapped to the annuli $\tilde{K}_j: \{\tilde{\rho}_j < |z| < 1\}$ and $\tilde{K}_j^*: \{\tilde{\rho}_j^* < |z| < 1\}$, respectively. Then by using similar method to the proofs of Lemma 3 and Lemma 4, we have the following lemmas.

LEMMA 6. Under the above deformation,

$$rac{1}{ ilde
ho_j} \leq |\lambda_{jn}^st| \leq \exp\left(rac{4\pi^2}{-\log ilde
ho_j^st}
ight)$$

for $j = 2, 3, \dots, g$.

LEMMA 7. If

$$\lim_{n o\infty}a_{2q-1}=\infty$$
 , then $\lim_{n o\infty}\lambda_{1n}^*=\infty$.

By using Lemma 6 and Lemma 7 we obtain the following theorem. Here we shall omit the proof.

THEOREM 2. Let G_n^* be the Schottky groups constructed above. Then the limit $G_0^* \in \partial \mathbb{S}$ of the sequence $T_{n_j}G_{n_j}^*T_{n_j}^{-1}$, whose $\{n_j\} \subset \{n\}$ and T_{n_j} are Möbius transformations, is always on $\partial_2 \mathbb{S} \cup \partial_3 \mathbb{S}$ but not on $\partial_1 \mathbb{S}$.

Remark. It is not known whether there exists a subsequence $T_{n_j}G_{n_j}^*T_{n_j}^{-1}$ tending to a "node" or not.

3. The general case.

In this section let S be a compact Riemann surface of genus g and let G be a Schottky group with $\Omega(G)/G = S$. Fix the Schottky group G. Here we study limits of subsequence of Schottky groups G_n with $\Omega(G_n)/G_n = S_n$, where S_n is the Riemann surfaces obtained from S in the course of the following pinching deformation.

3-1. Let $\alpha_1, \dots, \alpha_g$ be a basis of " α "-cycles on S and D_1, \dots, D_g be mutually disjoint ring domains such that each D_j contains α_j $(j = 1, \dots, g)$. We will construct the Riemann surface S_n from S as follows. Let \hat{f}_n be a q.c. mapping with a finite maximal dilatation $D(\hat{f}_n) \leq K$ on S, where K is a fixed positive constant not depending on n. For j = 1, \dots, g , we set $\hat{\alpha}_{jn} = \hat{f}_n(\alpha_j), \hat{D}_{jn} = \hat{f}_n(D_j)$ and $\hat{f}_n(S) = \hat{S}_n$. Map \hat{D}_{1n} to the annulus $\hat{K}_{1n}: \{\hat{\rho}_{1n} < |z| < 1\}$ by a conformal mapping \hat{g}_{1n} such that the image of $\hat{\alpha}_{1n}$ is homotopic to the circle $|z| = \sqrt{\hat{\rho}_{1n}}$ in \hat{K}_{1n} . Let K_{1n} be the annulus $\{\rho_{1n} < |z| < 1\}$ and let \hat{f}_n be an arbitrary q.c. mapping from \hat{K}_{1n} to K_{1n} . Now we let S_n be the Riemann surface obtained by joining $\hat{S}_n - \hat{D}_{1n}$ and K_{1n} so that each point $p \in \partial(\hat{S}_n - \hat{D}_{1n})$ is identified with $\hat{f}_n \hat{g}_{1n}(p) \in K_{1n}$

We define a q.c. mapping $\hat{f}_n: \hat{S}_n \to S_n$ by setting that $\hat{f}_n = \tilde{f}_n \hat{g}_{1n}$ on \hat{D}_{1n} and \hat{f}_n is a conformal mapping in $\hat{S}_n - \hat{D}_{1n}$ with the given boundary correspondence. We set $\alpha_{jn} = \hat{f}_n(\hat{\alpha}_{jn})$ and $D_{jn} = \hat{f}_n(\hat{D}_{jn})$. And set $f_n = \hat{f}_n \hat{f}_n$. Then f_n is a q.c. mapping from S to S_n and has a maximal dilatation $D(f_n) \leq K$ on $S - D_1$. We call the above deformation a pinching deformation for α_1 on S if ρ_{1n} tends to zero for $n \to \infty$. We note that by Bers [2], $\lim_{n\to\infty} L(\rho_{1n}) = 0$ in this case, where $L(\rho_{1n})$ is the least length of the loops homotopic to α_{1n} in D_{1n} .

We denote by G a Schottky group generated by Möbius transformations A_1, \dots, A_g assigned to the loops $\alpha_1, \dots, \alpha_g$, respectively, in a similar sense in 2-1. We obtain a similar result to Lemma 2. The obtained q.c. mapping is denoted by F_n . Set $G_n = F_n G F_n^{-1}$ and $A_{jn} =$ $F_n A_j F_n^{-1}$ $(j = 1, \dots, g)$. Then $G_n = \{A_{1n}, \dots, A_{gn}\}$. We denote by λ_{jn} $(j = 1, \dots, g)$ the multipliers of A_{jn} . Then we have the following lemma by the same method as in the proof of Lemma 3.

LEMMA 3'. Under the above pinching deformation for α_1 ,

$$\lim_{n\to\infty}\log|\lambda_{1n}|=0.$$

Next we take a basis β_1, \dots, β_q of " β "-cycles and choose the loops $\beta'_1, \dots, \beta'_q$ as in §2. We denote by D_j^* the ring domain bounded by β_j and β'_j . By conformal mappings D_j and D_j^* are mapped to the annuli $K_j: \{\rho_j < |z| < 1\}$ and $K_j^*: \{\rho_j^* < |z| < 1\}$, respectively. Then by slightly modyfying the proof of Lemma 4 in §2, we have the following important lemma.

HIROKI SATO

LEMMA 4'. Under the above pinching deformation for α_1 ,

$$\left(rac{1}{
ho_{j}^{st}}
ight)^{\!\!\!1/K} \leq |\lambda_{jn}| \leq \exp\left(rac{4\pi^{2}K}{-\log
ho_{j}}
ight)$$

for $j = 2, \dots, g$.

3-2. Then we have the following main theorems. Theorem 3 is proved by the same method as in the proof of Theorem 1.

THEOREM 3. Let G_n be the Schottky groups constructed above. Then

(1) if $G_0 \in \partial_1 S$ is the limit of $T_{n_j} G_{n_j} T_{n_j}^{-1}$, whose $\{n_j\} \subset \{n\}$ and T_{n_j} are Möbius transformations, then G_0 is a cusp.

(2) There exist a subsequence $\{n_j\} \subset \{n\}$ and Möbius transformations T_{n_j} such that the limit G_0 of the sequence $T_{n_j}G_{n_j}T_{n_j}^{-1}$ is on $\partial_3 \mathfrak{S} \cap X$.

THEOREM 4. Set $A_{jn} = \begin{pmatrix} a_{jn} & b_{jn} \\ c_{jn} & d_{jn} \end{pmatrix}$, $a_{jn}d_{jn} - b_{jn}c_{jn} = 1$ $(1 \leq j \leq g)$. By taking T_n suitably, consider the sequence normalized so that $c_{1n} = 4$, $A_{1n}(0) = 0$ and $A_{2n}(2) = 2$. Furthermore suppose that the following conditions are satisfied. (1) $c_{jn} \neq 0$, $j = 1, \dots, g$ and $n = 1, 2, \dots$, and (2) There exist defining curves C_{jn} and C'_{jn} of A_{jn} $(j = 1, \dots, g)$, respectively such that C_{jn} and C'_{jn} are the isometric circles I_{jn} of A_{jn} and I_{jn}^{-1} of A_{jn}^{-1} , respectively, and C_{jn} and C'_{jn} $(2 \leq j \leq g)$ are all outside the disk $\{|z| \leq 1\}$ and $\pi_n^{-1}(D_{1n}) \cap \omega_n \subset \{|z| \leq 1\}$, where ω_n is the 2g-ply connected region bounded by $C_{1n}, C'_{1n}, \dots, C'_{gn}$. Then the limit G_0 of an infinite subsequence $\{G_{nj}\}$ with $\{n_j\} \subset \{n\}$ is always a cusp.

Remark. As is seen from the proof, it seems that the assumptions of Theorem 4 would be weakend considerably, although the present one is sufficient for our purpose. It is not known whether Theorem 4 is true or not in the hyperelliptic case.

Proof. First we prove the theorem for the case of genus g = 2. Let A_{1n} and A_{2n} be generators of G_n . By the assumption, $A_{1n}(0) = 0$, $A_{2n}(2) = 2$ and $c_{1n} = 4$. We denote by p_{jn} and q_{jn} the repelling and the attracting fixed points of A_{jn} (j = 1, 2). We assume that $q_{1n} = 0$ and $q_{2n} = 2$.

Suppose r_{2n} , the radius of the isometric circle I_{2n} of A_{2n} , tends to zero. Since $1 < \lim_{n \to \infty} |\lambda_{2n}| < +\infty$ by Lemma 4 and

$$c_{2n} = rac{\lambda_{2n}^{1/2} - \lambda_{2n}^{-1/2}}{p_{2n} - q_{2n}}$$

we have $\lim_{n\to\infty} p_{2n} = 2$. We note that by the assumption the 4-ply connected region bounded by $I_{1n}, I_{1n}^{-1}, I_{2n}$ and I_{2n}^{-1} is a fundamental region for G_n . Let γ_{2n} be the circle of radius $|1/c_{2n}| + |(a_{2n} + d_{2n})/c_{2n}|$ centered at a_{2n}/c_{2n} , and let γ_{1n} be the unit circle. Then for large n, γ_{1n} surrounds I_{1n} and I_{1n}^{-1} and is disjoint from γ_{2n} . Let $\gamma_1^{(n)}$ and $\gamma_2^{(n)}$ be the inverse image of γ_{1n} and γ_{2n} under the mapping F_n , respectively. Then $\gamma_1^{(n)}$ and $\gamma_2^{(n)}$ are disjoint simple closed curves containing the points 0, p_1 and the points 2, p_2 in their interiors, respectively, where p_1 and p_2 are the repelling fixed points of A_1 and A_2 (defined in 3-1), respectively. Let $R_3^{(n)}$ be the doubly connected region bounded by $\gamma_1^{(n)}$ and $\gamma_2^{(n)}$ and let R_{3n} be the doubly connected region bounded by $\gamma_1^{(n)}$ and $\gamma_2^{(n)}$. We denote by $M(R_3^{(n)})$ and $M(R_{3n})$ the moduli of $R_3^{(n)}$ and R_{3n} , respectively. It is known that there exists a constant M such that $M(R_3^{(n)}) \leq M, n = 1, 2, \cdots$. By the well-known property of modulus,

$$M(R_3^{(n)})^K \geq M(R_{3n})$$
 ,

since F_n is the q.c. mapping with maximal dilatation $D(F_n) \leq K$ on $R_3^{(n)}$. On the other hand it is easily seen that

$$\lim_{n\to\infty}M(R_{3n})=\infty.$$

Hence

$$\infty = \lim_{n \to \infty} M(R_{3n}) \leq \lim_{n \to \infty} M(R_3^{(n)})^K \leq M^K = ext{a finite constant.}$$

This contradiction shows that $\lim_{n\to\infty} r_{2n} \neq 0$.

Since $r_{20} = \lim_{n \to \infty} r_{2n} \neq 0$, $q_{20} = \lim_{n \to \infty} q_{2n} = 2$ and $|\lambda_{20}| = \lim_{n \to \infty} |\lambda_{2n}| > 1$, we have $p_{20} = \lim_{n \to \infty} p_{2n} \neq 2$, that is, $A_{20} = \lim_{n \to \infty} A_{2n}$ is a loxodromic transformation.

We show that $A_{10} = \lim_{n \to \infty} A_{1n}$ is a parabolic transformation. Suppose that $\lim_{n \to \infty} p_{1n} = p_{10} \neq 0$. Since $c_{1n} = 4$, $q_{1n} = 0$ and $c_{1n} = (\lambda_{1n}^{1/2} - \lambda_{1n}^{-1/2})/(p_{1n} - q_{1n})$, we have

$$4 = (\lambda_{10}^{1/2} - \lambda_{10}^{-1/2})/p_{10} .$$

Then $\lambda_{10} \neq 1$ and so by $|\lambda_{10}| = 1$ we have $\lambda_{10} = e^{i\theta}$ ($\theta \neq 0$). Thus $A_{10} = \lim_{n \to \infty} A_{1n}$ is an elliptic transformation. This does not occur by Chuckrow

[3], since A_{20} is a loxodromic transformation. Hence $p_{10} = 0$, so $\lambda_{10} = 1$. Thus A_{10} is a parabolic transformation. Thus $G_0 = \{A_{10}, A_{20}\}$ is a cusp.

Next we prove the theorem for the case of genus $g \ge 3$. Let p_{jn} and q_{jn} be the fixed points of A_{jn} $(1 \le j \le g)$. Suppose that $\lim_{n\to\infty} p_{kn}$ $= \lim_{n\to\infty} q_{kn}$ for some $k, 2 \le k \le g$. We denote by I_{jn} and I_{jn}^{-1} the isometric circles of A_{jn} and $A_{jn}^{-1} (1 \le j \le g)$, respectively. The radius r_{kn} of I_{kn} becomes 0 as n to ∞ . By the assumption, I_{jn} and $I_{jn}^{-1} (2 \le j \le g)$ are mutually disjoint. Let γ_{jn} be mutually disjoint simple closed curves surrounding I_{jn} and I_{jn}^{-1} which lie outside the disk $\{|z| \le 1\}, 2 \le j \le g$. We may take $\{\gamma_{kn}\}$ as a sequence of simple closed curves as follows: (1) each γ_{kn} surrounds I_{kn} and I_{kn}^{-1} , (2) γ_{kn} does not intersect with I_{jn} and $I_{jn}^{-1} (j \ne k, 1 \le j \le g)$ and (3) γ_{kn} tends to the point $\lim_{n\to\infty} p_{kn}$ for $n \to \infty$. Let γ_{1n} be the unit circle. Then by the assumption I_{1n} and I_{1n}^{-1} are contained in the interior of γ_{1n} and $\omega_n \cap \pi_n^{-1}(D_{1n}) \subset$ (the interior of γ_{1n}) for large n.

Now we consider the g-ply connected region ω'_n bounded by γ_{jn} $(1 \leq j \leq g)$. By using the well-known theorem of the theory of conformal mappings, ω'_n is conformally mapped to the following circular slit annulus, that is, γ_{1n} to the circle $|z| = R_{1n}, \gamma_{kn}$ to the circle $|z| = R_{kn}$ and γ_{jn} $(2 \leq j \leq g, j \neq k)$ to the circular arc slits on $|z| = R_{jn}$, where $R_{kn} < R_{jn} < R_{1n}$ $(2 \leq j \leq g, j \neq k)$. Set $\gamma_j^{(n)} = F_n^{-1}(\gamma_{jn}), 1 \leq j \leq g$. We denote by $\omega'^{(n)}$ the g-ply connected region bounded by these g curves. Then $\omega'^{(n)}$ is conformally mapped to the circular slit annulus like above. Thus for the image $|z| = R_1^{(n)}$ of $\gamma_1^{(n)}$ and the image $|z| = R_k^{(n)}$ of $\gamma_k^{(n)}$,

$$(R_{1n}^{(n)}/R_k^{(n)})^K \ge R_{1n}/R_{kn}$$
 ,

since F_n is the q.c. mapping with maximal dilatation $D(f_n) \leq K$ on $\omega'^{(n)}$. But by the above construction

$$\lim_{n\to\infty}R_{1n}/R_{kn}=\infty.$$

On the other hand $\lim_{n\to\infty} R_1^{(n)}/R_k^{(n)}$ is finite. For, $\gamma_j^{(n)} (1 \le j \le g)$ contains a curve $C_j^{(n)}$ joining the fixed points of A_j in its interior for each n and j. Let $\omega^{*(n)}$ be the g-ply connected region with $C_j^{(n)}$ as the boundaries. If $\omega^{*(n)}$ is mapped to the circular slit annulus, we denote by $R_1^{*(n)}/R_k^{*(n)}$ the ratio of the inner and outer radii of $\omega^{*(n)}$, where $R_j^{*(n)}$ (j = 1, k)has similar meanings to the above. Then for each n,

$$R_1^{st(n)}/R_k^{st(n)} \geqq R_1^{(n)}/R_k^{(n)}$$
 .

It is known that there exists a constant M_{1k} such that $R_1^{*(n)}/R_k^{*(n)} \leq M_{1k}$, $n = 1, 2, \cdots$. Thus for all large n we have

$$M_{1k} \geq R_1^{(n)}/R_k^{(n)}$$
.

This contradiction shows that $\lim_{n\to\infty} p_{kn} \neq \lim_{n\to\infty} q_{kn} (2 \leq k \leq g)$. Thus by Lemma 4', $\lambda_{j0} = \lim_{n\to\infty} \lambda_{jn}$, $p_{j0} = \lim_{n\to\infty} p_{jn}$ and $q_{j0} = \lim_{n\to\infty} q_{jn}$ determine loxodromic transformations A_{j0} , $2 \leq j \leq g$. As in the case g = 2, $A_{10} = \lim_{n\to\infty} A_{jn}$ is parabolic. In this case the fixed points of A_{j0} , $1 \leq j \leq g$, are all distinct by Marden [5], since A_{j0} are all Möbius transformations. Hence $G_0 = \{A_{10}, \dots, A_{g0}\}$ is a cusp. Our proof is now complete.

3-3. To illustlate our result we shall present an example of the sequence $\{A_{jn}\}$ which satisfies the assumptions in Theorem 4. For brevity we consider the case of genus g = 2.

 \mathbf{Set}

$$A_{1n}(z) = rac{((1/n) + \sqrt{1 + (1/n^2)})z}{4z - ((1/n) - \sqrt{1 + (1/n^2)})}$$

and

$$A_{2n}(z) = rac{(17/2)z - 13}{4z - 6}$$

Let $G_n = \{A_{1n}, A_{2n}\}$. Then G_n is a Schottky group and

$$\tau_n = (1 + (2/n^2) + (2/n)\sqrt{1 + (1/n^2)}, 0, 1/(2n), 4, 13/8, 2)$$

We have

$$egin{aligned} A_{10}(z) &= \lim_{n o \infty} A_{1n}(z) = rac{z}{4z \, + \, 1} \ , \ A_{20}(z) &= \lim_{n o \infty} A_{2n}(z) = rac{(17/2)z - 13}{4z - 6} \end{aligned}$$

and

$$au_{0} = \lim_{n o \infty} au_{n} = (1, 0, 0, 4, 13/8, 2) \; .$$

Then it is easily seen that A_{1n} and A_{2n} satisfy the assumptions in Theorem 4.

HIROKI SATO

With respect to this example, let us construct explicitly S, S_n, D_1 , $D_{1n}, \alpha_1, \alpha_{1n}, F_n$ and f_n , which we constructed at the beginning of 3-1. We define S and S_n by setting $S = \Omega(G_1)/G_1$ and $S_n = \Omega(G_n)/G_n$. We have the isometric circles $I_{1n}, I_{1n}^{-1}, I_{2n}$ and I_{2n}^{-1} of $A_{1n}, A_{1n}^{-1}, A_{2n}$ and A_{2n}^{-1} , respectively, as follows:

$$egin{aligned} &I_{1n}\colon |z-(1/4)((1/n)-\sqrt{1+(1/n^2)})|=1/4\ ,\ &I_{1n}^{-1}\colon |z-(1/4)((1/n)+\sqrt{1+(1/n^2)})|=1/4\ ,\ &I_{2n}\colon |z-(3/2)|=1/4 \end{aligned}$$

and

$$I_{2n}^{-1}$$
: $|z - (17/8)| = 1/4$.

Let ω_n be the 4-ply connected region bounded by the above 4 isometric circles. Let $\tilde{\alpha}_{1n}$ be the closed interval

$$[(1/4)((1/n) - \sqrt{1 + (1/n^2)} + 1), (1/4)((1/n) + \sqrt{1 + (1/n^2)} + 1)].$$

Let δ_{1n} and δ'_{1n} be the segment joining $(1/4)((1/n) - \sqrt{1 + (1/n^2)} + i)$ to $(1/4)((1/n) + \sqrt{1 + (1/n^2)} + i)$ and the segment joining $(1/4)((1/n) - \sqrt{1 + (1/n^2)} - i)$ to $(1/4)((1/n) + \sqrt{1 + (1/n^2)} - i)$, respectively. We denote by E_{1n} the simply connected region bounded by δ_{1n} , δ'_{1n} , I_{1n} and I_{1n}^{-1} . Set $E_{2n} = \{|z| \ge 1\} \cap \omega_n$. Then $E_{2n} = E_{21}$ for each n. Set $E_{3n} = \omega_n - E_{1n} \cup E_{2n}$. Then we define D_1, D_{1n}, α_1 and α_{1n} by setting $D_1 = \pi(E_{11})$, $D_{1n} = \pi_n(E_{1n}), \alpha_1 = \pi(\tilde{\alpha}_{11})$ and $\alpha_{1n} = \pi_n(\tilde{\alpha}_{1n})$, where π and π_n are the natural projections from $\Omega(G_1)$ onto S and from $\Omega(G_n)$ onto S_n , respectively. Furthermore we define q.c. mappings F_n and f_n as follows.

First we define a q.c. mapping F_n from ω_1 to ω_n as follows. Let F_n be the identity mapping in E_{21} . If we set z = x + iy, then we define F_n in $E_{11} \cap \omega_1$ by setting

$$F_n(z) = \frac{\sqrt{1+(1/n^2)} - \sqrt{1-16y^2}}{\sqrt{2} - \sqrt{1-16y^2}} (x - (1/4)) + 1/(4n) + iy .$$

Furthermore it is easily seen that there exists a q.c. mapping F_n from E_{31} to E_{3n} with the following boundary correspondences, which has a maximal dilatation $D(F_n) \leq K$ for a fixed positive constant not depending on $n: F_n = \text{id. on } |z| = 1$,

$${F}_n(z) = z - rac{1+\sqrt{2} - \sqrt{1+(1/n^2)}}{4} + rac{1}{4n} \quad ext{on} \quad I_{11}^{-1} \cap \, \overline{\partial E}_{31} \; ,$$

SCHOTTKY SPACES

$$egin{aligned} F_n(z) &= z - rac{1 - \sqrt{2} + \sqrt{1 + (1/n^2)}}{4} + rac{1}{4n} & ext{on} \quad I_{11} \cap \partial \overline{E_{31}} \ F_n(z) &= rac{\sqrt{1 + (1/n^2)}}{\sqrt{2}} \Big(x - rac{1}{4} \Big) + rac{1}{4n} + rac{1}{4} i & ext{on} \quad \delta_{11} \end{aligned}$$

and

$${F}_n(z) = rac{\sqrt{1+(1/n^2)}}{\sqrt{2}} \Bigl(x-rac{1}{4}\Bigr) + rac{1}{4n} - rac{1}{4}i \hspace{0.3cm} ext{on} \hspace{0.3cm} \delta_{11}' \,.$$

Then we extend the mapping F_n to the whole $\Omega(G)$ by using the identity $F_n G F_n^{-1} = G_n$, and denote by the same letter F_n the extended mapping. We define f_n as the projection of F_n , that is, f_n satisfies the identity $f_n \pi = \pi_n F_n$.

It is easily seen that the modulus of the ring domain D_{1n} tends to ∞ as n to ∞ , i.e., $\lim_{n\to\infty} \rho_{1n} = 0$ for the annulus $K_{1n}: \{\rho_{1n} < |z| < 1\}$ conformally equivalent to D_{1n} .

3-4. Let β_1, \dots, β_g be a basis of " β "-cycles on S. Let G^* be a Schottky group generated by Möbius transformations B_1, \dots, B_g assigned to β_1, \dots, β_g , respectively, in a similar sense for " α "-cycles. Similarly to Lemma 5, there exists a q.c. mapping F_n^* . And set $G_n^* = F_n^*G^*F_n^{*-1}$. If we set $B_{jn} = F_n^*B_jF_n^{*-1}$ $(j = 1, \dots, g)$, then $G_n^* = \{B_{1n}, \dots, B_{gn}\}$. We denote by λ_{jn}^* the multiplier of B_{jn} . By the same method as before, we have the following lemmas. Here $\tilde{\rho}_j$ and $\tilde{\rho}_j^*$ have similar meanings in §2.

LEMMA 6'. Under the pinching deformation for α_1 ,

for $j = 2, \dots, g$.

LEMMA 7'. Under the pinching deformation for α_1 ,

$$\lim_{n\to\infty}|\lambda_{1n}^*|=\infty.$$

3-5. Then we have the following main theorems.

THEOREM 5. Let G_n^* be the Schottky groups constructed above. Then the limit $G_0^* \in \partial S$ of the sequence $T_{n_j}G_{n_j}^*T_{n_j}^{-1}$, whose $\{n_j\} \subset \{n\}$ and T_{n_i} are Möbius transformations, is always on $\partial_2 \mathfrak{S} \cup \partial_3 \mathfrak{S}$ but not on $\partial_1 \mathfrak{S}$.

We can prove it by using Lemma 7'.

We consider the sequence $T_n G_n^* T_n^{-1}$ such that $T_n B_{1n} T_n^{-1}(-1) = -1$, $T_n B_{1n} T_n^{-1}(1) = 1$ and $T_n B_{2n} T_n^{-1}(0) = 0$. For brevity we write G_n^* and B_{kn} instead of $T_n G_n^* T_n^{-1}$ and $T_n B_{kn} T_n^{-1}$ $(1 \le k \le g)$, respectively. By using Lemma 7', we note that the radii of the isometric circles of B_{1n} tend to zero for $n \to \infty$. Then we have

THEOREM 6. Set $R_1 = \{|z+1| \leq \varepsilon\}$ and $R'_1 = \{|z-1| \leq \varepsilon\}$ for a fixed small positive number ε . If for large n, there exist the mutually disjoint isometric circles I^*_{jn} and $I^{*-1}_{jn}(j = 1, \dots, g)$ of B_{jn} and B^{-1}_{jn} , respectively such that I^*_{jn} and $I^{*-1}_{jn}(j = 2, \dots, g)$ are outside $R_1 \cup R'_1$ and $\pi_n^{*-1}(D_{1n}) \cap \omega_n^* \subset R_1 \cup R'_1$, where ω_n^* is the 2g-ply connected region bounded by the above 2g isometric circles and π_n^* is the natural projection from $\Omega(G^*_n)$ to S_n , then the limit G^*_0 of the sequence G^*_n is always on $\partial_2 \mathfrak{S}$ and a "node".

Proof. First we prove the theorem for the case of genus g = 2. Let the fixed points of B_{2n} be 0 and q_{2n}^* . Suppose that $\lim_{n\to\infty} q_{2n}^* = 0$. Then $\lim_{n\to\infty} c_{2n} = \infty$, so the isometric circles I_{2n}^* and I_{2n}^{*-1} of B_{2n} and B_{2n}^{-1} , respectively, are contained in the disk

$$R_{2n} = \{|z| \leq \delta_n, \delta_n o 0\}$$

for large *n*, where $B_{2n} = \begin{pmatrix} a_{2n} & b_{2n} \\ c_{2n} & d_{2n} \end{pmatrix}$, $a_{2n}d_{2n} - b_{2n}c_{2n} = 1$. By Lemma 7', the radii of the isometric circles I_{1n}^* and I_{1n}^{*-1} of B_{1n} and B_{1n}^{-1} , respectively, are small for large *n*. Hence for large *n*, I_{1n}^* and I_{1n}^{*-1} are contained in R_1 and R'_1 , respectively. By the assumption, the 4-ply connected region bounded by the above four isometric circles is a fundamental region for G_n^* . Set

$$R_{\epsilon} = \{1 - \varepsilon < |z| < 1 + \varepsilon\} \cap \{\operatorname{Im} z < \varepsilon\}$$

and let ∂R_{ϵ} be the boundary of R_{ϵ} . For large $n, R_{\epsilon} \supset I_{1n}^{*} \cup I_{1n}^{*-1}, R_{\epsilon} \supset \omega_{n}$ $\cap \pi_{n}^{*-1}(D_{1n})$ and the complement of R_{ϵ} contains R_{2n} . Set $R_{\epsilon}^{(n)} = F_{n}^{*-1}(R_{\epsilon})$ and $R_{2n}^{(n)} = F_{n}^{*-1}(R_{2n})$. We denote by (R_{2n}, R_{ϵ}) and $(R_{2n}^{(n)}, R_{\epsilon}^{(n)})$ the ring domains bounded by ∂R_{2n} and ∂R_{ϵ} , and bounded by $\partial R_{\epsilon}^{(n)}$ and $\partial R_{2n}^{(n)}$, respectively. Let M_{n}^{*} and $M^{(n)*}$ be the moduli of (R_{2n}, R_{ϵ}) and $(R_{2n}^{(n)}, R_{\epsilon}^{(n)})$, respectively. By the well-known fact on modulus property,

$$M_n^* \leq (M^{(n)*})^K$$

It is known that there exists a finite positive constant M^* such that $M^{(n)_*} \leq M^*, n = 1, 2, \cdots$. Hence

$$M_n^* \leq (M^*)^K$$
.

On the other hand $\lim_{n\to\infty} M_n^* = \infty$. This contradiction shows that $\lim_{n\to\infty} q_{2n}^* \neq 0$. Hence by Lemma 6', $B_{20} = \lim_{n\to\infty} B_{2n}$ is a loxodromic transformation. Thus by Lemma 7', $\tau_0^* = \lim_{n\to\infty} \tau_n^*$ is on $\partial_2 \mathfrak{S}$, where τ_n^* is the point associated with G_n^* . It is easily seen that τ_0^* is a "node", since the fixed points of B_{20} are outside of $R_1 \cup R_1'$.

Next we prove the theorem for the case of genus $g \ge 3$. Suppose that $\lim_{n\to\infty} p_{kn}^* = \lim_{n\to\infty} q_{kn}^*$ for some $k, 2 \leq k \leq g$. Let γ_{kn} be a simple closed curve having the following properties: (1) γ_{kn} contains the isometric circles I_{kn}^* of B_{kn} and I_{kn}^{*-1} of B_{kn}^{-1} in its interior, (2) $\gamma_{kn+1} \subset \gamma_{kn}$ $(n = 1, 2, \dots)$, (3) γ_{kn} converges to the point $\lim_{n \to \infty} p_{kn}^*$ for $n \to \infty$ and (4) γ_{kn} does not intersect with and not contain the isometric circles I_{in}^* of B_{jn} and I_{jn}^{*-1} of B_{jn}^{-1} $(1 \leq j \leq g, j \neq k)$ in its interior. We denote by $\gamma_{jn} \ (1 \leq j \leq g, j \neq k)$ mutually disjoint simple closed curves which do not intersect with γ_{kn} such that each $\gamma_{jn} (2 \leq j \leq g, j \neq k)$ contains the isometric circles of B_{jn} and B_{jn}^{-1} in its interior and γ_{1n} contains R_1 and R'_1 in its interior and is apart from γ_{kn} with a constant distance not depending on n. We denote by ω_n^* the g-ply connected region bounded by $\gamma_{jn} (1 \leq j \leq g)$. For ω_n^*, γ_{kn} and γ_{1n} , we use the same argument as in the proof of Theorem 4. Then we arrive at the same contradiction. Hence for $2 \leq j \leq g$, $\lim_{n \to \infty} p_{jn}^* \neq \lim_{n \to \infty} q_{jn}^*$. Then by Lemma 6', $\lambda_{j0}^* =$ $\lim_{n\to\infty} \lambda_{j_n}^*, p_{j_0}^* = \lim_{n\to\infty} p_{j_n}^* \text{ and } q_{j_0}^* = \lim_{n\to\infty} q_{j_n}^* \text{ determine loxodromic trans-}$ formations $(2 \leq j \leq g)$, where p_{jn}^* and q_{jn}^* are the fixed points of B_{jn} .

In this case $\tau_0^* = \lim_{n\to\infty} \tau_n^* \in \partial_2 \mathfrak{S}$, where τ_n^* is the point associated with G_n^* . For the proof, let $G'_n^* = \{B_{2n}, \dots, B_{gn}\}$. Then by Chuckrow [3], G'_n^* is a Schottky group for each *n*. Then since $B_{j0} = \lim_{n\to\infty} B_{jn}$ $(2 \leq j \leq g)$ are loxodromic transformations by the above, the fixed points of B_{j0} are all distinct by Marden [5]. Furthermore $\lim_{n\to\infty} \lambda_{in}^* = \infty$ by Lemma 7', so $\tau_0^* = \lim_{n\to\infty} \tau_n^*$ is a "node". Our proof is now complete.

3-6. To illustlate our result we shall present an example of the sequence $\{B_{jn}\}$ which satisfies the assumption in Theorem 6. For brevity we consider the case of genus g = 2.

 \mathbf{Set}

$$B_{1n}(z) = \frac{\sqrt{n^2 + 1}z + n}{nz + \sqrt{n^2 + 1}}$$

and

$$B_{2n}(z) = rac{(\sqrt{37}+6)z}{4z+\sqrt{37}-6} \; .$$

Let $G_n^* = \{B_{1n}, B_{2n}\}$. Then G_n^* is a Schottky group and

$$\tau_n^* = (2n^2 + 1 + 2n\sqrt{n^2 + 1}, -1, 1, 73 + 12\sqrt{37}, 0, 3)$$

Thus

$$\tau_0^* = \lim_{n \to \infty} \tau_n^* = (\infty, -1, 1, 73 + 12\sqrt{37}, 0, 3)$$

Hence τ_0^* is a "node". Furthermore G_n^* satisfies the assumption in Theorem 6.

With respect to this example, let us construct explicitly S, S_n, D_1, D_{1n} , F_n^* and f_n , which we constructed previously. We define S and S_n by setting $S = \Omega(G_1^*)/G_1^*$ and $S_n = \Omega(G_n^*)/G_n^*$. We have the following isometric circles:

$$egin{aligned} I^*_{1n}\colon |z+(\sqrt{n^2+1}/n)| &= 1/n \ ,\ I^{*-1}_{1n}\colon |z-(\sqrt{n^2+1}/n)| &= 1/n \ ,\ I^*_{2n}\colon |z+(\sqrt{37}-6)/4| &= 1/4 \end{aligned}$$

and

$$I_{2n}^{*-1}$$
: $|z - (\sqrt{37} + 6)/4| = 1/4$.

Let ω_n^* be the 4-ply connected region bounded by $I_{1n}^*, I_{1n}^{*-1}, I_{2n}^*$ and I_{2n}^{*-1} . Give some fixed small positive number ε . We fix an integer n_0 as $\varepsilon/2 > 2/n_0$. We set

$$\begin{array}{l} E_{1n_0} \colon [\{1/n_0 < |z + (\sqrt{n_0^2 + 1}/n_0)|\} \cap \{|z + 1| < \varepsilon/2\}] \\ \cup \ [\{1/n_0 < |z - (\sqrt{n_0^2 + 1}/n_0)|\} \cap \{|z - 1| < \varepsilon/2\}] \end{array}$$

and

$$egin{array}{l} E_{1n}\colon [\{1/n\leq |z+(\sqrt{n^2+1}/n)|\}\cap \{|z+1|\leq arepsilon/2\}]\ \cup \; [\{1/n\leq |z-(\sqrt{n^2+1}/n)|\}\cap \{|z-1|\leq arepsilon/2\}] \end{array}$$

for $n > n_0$. We define D_{1n} by setting $D_{1n} = \pi_n^*(E_{1n})$, where π_n^* is the natural projection from $\Omega(G_n^*)$ onto S_n .

Next we define \hat{F}_n^* as follows. Let \hat{F}_n^* be the identity in the set

$$[\{|z-1| \geq arepsilon/2\} \,\cup\, \{|z+1| \geq arepsilon/2\}] \,\cap\, \omega^*_{n_0} \;.$$

It is easily seen that there exists a q.c. mapping \hat{F}_n^* in E_{1n_0} with the following boundary correspondences: $\hat{F}_n^* = \text{id.}$ on $|z - 1| = \varepsilon/2$, $\hat{F}_n^* = \text{id.}$ on $|z + 1| = \varepsilon/2$,

$$\hat{F}_n^*(z) = (n_0/n)z + (1/n)(\sqrt{n_0^2 + 1} - \sqrt{n^2 + 1})$$
 on $I_{1n_0}^*$

and

$$\hat{F}_n^*(z) = (n_0/n)z - (1/n)(\sqrt{n_0^2+1} - \sqrt{n^2+1}) \quad ext{on} \quad I_{1n_0}^{*-1} \ .$$

Then we extend the q.c. mapping \hat{F}_n^* to the whole $\Omega(G_{n_0}^*)$ by using the identity $\hat{F}_n^* G_{n_0}^* \hat{F}_n^{*-1} = G_n^*$, and denote by the same letter \hat{F}_n^* the extended mapping. It is easily seen that the modulus of the ring domain D_{1n} tends to ∞ as n to ∞ , i.e., $\lim_{n\to\infty} \rho_{1n} = 0$ for the annulus $K_{1n}: \{\rho_{1n} < |z| < 1\}$ conformally equivalent to D_{1n} . Furthermore we define a q.c. mapping $\hat{F}_{n_0}^*: \omega_1^* \to \omega_{n_0}^*$ as follows. It is easily seen that there exists a q.c. mapping $\hat{F}_{n_0}^*: \omega_1^* \to \omega_{n_0}^*$ as follows. It is easily seen that there exists a q.c. mapping $\hat{F}_{n_0}^*=$ id. on $I_{21}^{*-1}, \hat{F}_{n_0}^*(z) = z/n_0 + (\sqrt{2} - \sqrt{n_0^2 + 1})/n_0$ on I_{11}^* and $\hat{F}_{n_0}^*(z) = (z/n_0) - (\sqrt{2} - \sqrt{n_0^2 + 1})/n_0$ on I_{11}^{*-1} . Then we extend the q.c. mapping to the whole $\Omega(G_1^*)$ by using the identity $G_{n_0}^* = \hat{F}_{n_0}^* G_1^* \hat{F}_{n_0}^{*-1}$, and denote by the same letter $\hat{F}_{n_0}^*$ the extended q.c. mapping. If we set $F_n^* = \hat{F}_n^* \hat{F}_{n_0}^*$, then F_n^* is the desired q.c. mapping.

If we denote by π^* the natural projection from $\Omega(G_1^*)$ onto S, then we define f_n as the projection of F_n^* , that is, $f_n\pi^* = \pi_n^*F_n^*$ is satisfied. We define D_1 by setting $\pi^*F_{n_0}^{*-1}(E_{1n_0}) = D_1$.

Remark. As we see from the proof of Theorem 6, it seems that the assumption in Theorem 6 is weakend considerably, although the present one is sufficient for our purpose.

Conclusion. Give a compact Riemann surface S of genus $g (g \ge 2)$. Fix a Schottky group G such that $\Omega(G)/G = S$. When we perform the pinching deformation for S, the limit of a sequence of Schottky groups representing the resulting surface S_n may be either (1) a cusp, (2) a "node" or (3) a point on $\partial_3 \mathfrak{S}$.

Remark. For the Teichmüller space $T(\Gamma)$, on performing the pinching deformation, the group we get as the limit of quasi-Fuchsian groups Γ_n is always a cusp (cf. Bers [2] and Sato [7]), where Γ is a fixed Fuchsian group with $U/\Gamma = S$ (U: the upper half plane) and $\Omega(\Gamma_n)/\Gamma_n = S_n$.

REFERENCES

- [1] W. Abikoff, Two theorems on totally degenerate Kleinian groups, (to appear).
- [2] L. Bers, On boundaries of Teichmüller spaces and on Kleinian groups: I, Ann. of Math. 91 (1970), 570-600.
- [3] V. Chuchrow, On Schottky groups with applications to Kleinian groups, Ann. of Math. 88 (1968), 47-61.
- [4] I. Kra, On spaces of Kleinian groups, Comment. Math. Helv. 47 (1972), 53-69.
- [5] A. Marden, Schottky groups and circles, Contributions to Analysis: A collected papers dedicated to Lipmann Bers, (1974), 273-278.
- [6] B. Maskit, On boundaries of Teichmüller spaces and on Kleinian groups: II, Ann. of Math. 91 (1970), 607-639.
- [7] H. Sato, Cusps on boundaries of Teichmüller spaces, Nagoya Math. J. 60, (to appear).

Department of Mathematics Shizuoka University