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ON NILPOTENT FACTORS OF CONGRUENT IDEAL CLASS

GROUPS OF GALOIS EXTENSIONS

YOSHIOMI FURUTA

Introduction.

Let K be a Galois extension of an algebraic number field k of finite

degree with Galois group g. Then g acts on a congruent ideal class

group 2) of K as a group of automorphisms, when the class field M

over K corresponding to © is normal over K. Let 7β be the augmenta-

tion ideal of the group ring ZQ over the ring of integers Z, namely IQ

be the ideal of Zg generated by σ — 1, σ running over all elements of

g. Then 7g2) is the group of all elements a"'1 where α and σ belong to

2) and g respectively. Put 7j+12) = 78(7j2)) for i = 0,1,2, •. Then we

have the sequence 2) z> 7g2) 3 1\ 2) D « and call it the lower central

series for 2) wife respect to g.

Denote by UL̂ /A o r simply by 2f(ί) the class field over K correspond-

ing to 7*2) and denote by G(KU+1) /K{i)) the Galois group of Ka+1) over

Ka\ Then for ΐ = 1 the field K{1) is called the central class field of K

in M with respect to k, and some structure of G(Kω/K) has been studied

in [5] and [6], when M is the absolute class field of K.

The purpose of the present paper is to investigate the structure of

the lower central series for 2) or the structure of the Galois groups

G(Ka+1)/Ka)) for i = 0,1,2, . . . .

When K is a quadratic extension of the rational number field, the

explicit criteria for the divisibility of the class number by power of 2

has been studied by various authors. Especially P. Barrucand and H.

Cohn [2] and H. Hasse [9] gave new criteria resently, and G. Gras [7]

and [8] studied the structure of ^-class groups of ideals for cyclic ex-

tensions of degree a prime £. The foundation of the argument was a

generalization of the ambigous class. This can be considered as a study
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of the "upper" central series for © in the above sense when © is the
absolute ideal class group of a cyclic extension K over k of a prime
degree.

In the present paper, we shall see that the investigation of the
"lower" central series make simplify the argument and possible to gen-
eralize it to the case of non-cyclic Galois extensions. In § 1 we treat
the lower central series for the ideal class group of cyclic extensions and
it is reduced to the structure in the genus group. In the case of cyclic
extensions our argument is quite simple, but it is not so in the case of
non-cyclic extensions though the result is close to that of cyclic case
(Remark to Theorem 5). This is caused by the fact that the augmenta-
tion ideal Jg operates on S as a homomorphism and the homomorphism
theorem can be used in the case of cyclic extensions, but this does not
hold in the case of non-cyclic extensions. Our main purpose in §2 be-
low is to reduce the structure of G(Ka+1)/Ka)) to the structure in the
central class group G(Kω/K) which coincides with the genus group in
the case of cyclic extensions. First of all in § 2 we recall the structure
of G(Kω/K) in general case. Namely, the argument of the genus field
and central class field for the absolute class field, which has been treated
in our previous papers [4], [5] and [6], is generalized to that for any
class fields. In §3 we study on cohomological expressions of central
class groups (Theorem 1 and 2), and in §4 we express G(K(ί+1) / Ka)) by
cohomology groups attached to K/k (Theorem 3 and 4). Then in §5 we
have the main result (Theorem 5).

§ 1 . The case of cyclic extensions.

Let k be an algebraic number field of finite degree and K be a
cyclic extension of finite degree with Galois group g generated by σ.
Moreover let M be a class field over K corresponding to the congruent
ideal class group S). We assume that M is normal over k and we de-
fine an endomorphism ψι on 2) by p*(α) = a(σ~iμ for any α of S and i =
1,2, - . Then we see /j® = y>*(S)). Let Ka) be the class field over K
corresponding to p'(S)) and denote by G(K(i+1)/K(i)) the Galois group of
Ka+l) over K(ί\ Then we have

G(Ka+1)/Ka)) g*

Let φι be the homomorphism of S)/p(S)) to p*(S))/p*+1(S)) induced from φ*
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and denote by N(ί) the kernel of φ1. Then the kernel of φι is equal to

and we have

( 1 ) G(Ku+1)/Ka)) ^

When M is the absolute class field, Kω is the genus field of K with

respect to k and the structure of the group G(Kω/K), which is iso-

morphic to S)/p(S)), is known largelyυ. We are able to study the struc-

ture of G(Ka+1) IK(i)) more explicitly by means of this way, for which

we will treat in other paper. In the following sections we shall study

to obtain a corresponding formula to (1) in the case where K is not

necessarily cyclic over k.

§ 2 The genus group and the central class group.

For any algebraic number field K we denote by Jκ and Kx the idele

group of K and the multiplicative group of non-zero elements of K which

is embedded in Jκ in usual way. For an extension L of K of finite

degree we denote by NL/K the norm from L to K and by (L: K) the ex-

tension degree. When L is normal over K, we denote by G(L/K) the

Galois group of L over K.

Let M 3 K Z) k be a sequence of extensions of algebraic number fields

of finite degree. Denote by K%/k the maximal extension of K which is

contained in M and is obtained from K by composing an abelian exten-

sion over k. K%/k is called the genus field of K in M with respect to

k. When M is the absolute class field K of K, Kt/ is called2) simply the

genus field of K with respect to k.

PROPOSITION 13). Let notation be as above. Then K%/k is normal

over K and we have

IKΛ — Nκ/kJκ

Γl kxNM/kJM/kJM

Proof. Let Mo and Ko be the maximal abelian extensions over k

contained in M and K respectively. Then K%/k = KMQ and the transfer

theorem of class field theory implies G{K%/kjK) ^ G(M0/K0) ^ kxNKo/kJKo

/kxNMQ/kJMo ^ kxNκ/kJκ/kxNM/kJM ^ Nκ/kJκ/(Nκ/kJκ Π kxNM/kJM).

1) Cf. Furuta [4].
2) Cf. Frohlich [3].
3) Cf. Furuta [4].
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Let M z> K ZD k be as above and p be an any prime of M. For the

prime of K or M which is divisible by p, we use the same letter p for

the sake of simplicity.

We call M an EL-genus extension4* of K with respect to k if M^ is

obtained from Kp by composing an abelian extension over kp for every

prime p.

We call L a central extension of K with respect to k, if L is an

extension of K which is normal over k and G(L/K) is contained in the

center of G(L/k).

Now for a sequence M z> K D k, we denote by KM/k the maximal

extension of K which is EL-genus and central with respect to k and is

contained in M. When M is the absolute class field K of K,KΈ/k is

called the central class field5) of K with respect to k.

PROPOSITION 2 (Masuda [11]). Notation being as above, we have

G(KM/k/K) s Nκ/kJκ/(Nκ/kK* NM/kJM) .

Combining with Proposition 1 we have6) the following

PROPOSITION 3. Notation being as above,

G(KM/k/κ*/k) s (fcx n Nκ/kjκ)/(Nκ/kκχ-(k* n v ^ ) )

When M is abelian over K, we have further the following

PROPOSITION 4. Lei 2£ be an extension of k and M be an abelian

extension of K. Let L be a sub field of M and assume that L contains

K^/k. Then we have

Gil ID ^ fcx ΓΊ NL/kJL
M/kl - Nκ/k(κ- n NL/Kjκ)(k* n NM/kjM) '

Proof. Proposition 2 implies

G(LM/k/L) s NL/kJL/NL/k(L*NM/LJM) .

Moreover by the translation theorem in class field theory,

NL,*(L*NM/LJM) = Nκ/k(NL/κ(L*.NM/LJM))

4) Cf. Masuda [11], in which this is called an EL-abelian extension.
5) Cf. Furuta [5]. In the case where M = K, M itself is already EL-genus, be-

cause K is unramified extension over k.
6) Cf. Furuta [5, p. 151].
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= Nκ/k(KxNM/κJM fl NL/KJL) .

Hence we have

( 2) NL/k(L*NM/LJM) = Nκ/k(Rx Π NL/κJL) NM/kJM .

On the other hand L contains K%/k — KM0, where Mo is the maximal

abelian extension of k contained in M. Hence L%,k = LMQ = L, and

Proposition 1 implies

( 3) NL/kJL = NL/kJL Π k*NM/kJM = (fc* Π NL/kJL).NM/kJM .

Thus we have

G(L /L) ^ (fcx ΓΊ NL/kJL) NM/kJM

Let us consider the special case where M is the absolute class field

of K, which we denote by K. Let Uκ be the unit idele group of K

whose real infinite components are the group of all non-zero real num-

bers or of all positive real numbers according as we treat K in wide

sense7) or in narrow sense.

PROPOSITION 5. Let K be a Galois extension of k and L be a sub-

field of the absolute class field K of K. Assume that L contains the

genus field K* of K with respect to k and L is normal over k. Put

G = GiLjk) and H = G(L/K). Then we have

G(L~ IL) — LJkrL

κ,uι - Nκ/k(KX n NL/KJLXEIC n Nκ/kuκ)'

where Ek stands for the global unit group of K which is embedded in

Jk in usual way.

Proof. We have K*NM/KJM - K><NΈ/KJΈ = K*UK and NL/kJL 3

Nκ/kUκ, since L is unramified over K. Hence the formulas (2) and (3)

in the proof of Proposition 4 are replaced by

NL/k(L*NM/LJM) = Nκ/k(K*Uκ Π NL/KJL)

= Nκ/k(Kx Π NL/κJL)-NKfkUκ

7) This means that all infinite primes are not ramified too.



18 YOSHIOMIFURUTA

and

NL/kJL = NL/kJL ΓΊ k*NΈ/kJπ = NL/kJL Π kχ.Nκ/k(K*NΈ/κJκ)

= ^ , » J L Π k-Nκ/k(K-Uκ) = (fc* Π NL/kJL) Nκ/kUκ .

Thus the formula (4) is also replaced by

G(L- IL) ^ (fcx nNL/kJL).Nκ/kUκ
κ/kl Nκ/k(Kx Π NL/κJL) Nκ/kUκ

- i w x * n NL/κjL)(k* n iv^t/*)

and the proposition follows.

§3. Cohomological expression of G(LM/k/L).

Let K be a Galois extension of k and M be an abelian extension of

K. Let further L be a subfield of M. Assume that L contains the genus

field K%/k and L is normal over k. Put G = G(L/k), H = G(L/K) and

We consider a natural exact sequence

0 > L* - U / L -±+ CL > 0 .

Then we have the following commutative diagram, where the rows are

exact and the columns are corestrictions

> H-KH, JL) -^> H~\H, CL) i H\H, Lx) - X H\H, JL) >

1 , 1 , 1 , 1
> H-KG, JL) - U H'\G, CL) — • H\G, L*) - U flθ(G, J z )

Let / be a natural homomorphism of H%G,LX) to ίί°(G,

Now we put

= (fex n NL/kjL)/Nκ/k(κχ n N L / J Γ J L ) ,

= i v w ( x x n NL/κjLχkχ n NM/JM)/NK/M
X n iv i / j r/j .

Then by Proposition 4 we have

( 6 ) Gtf

For any finite group G and any G-module A we denote by Λ0 the standard



IDEAL CLASS GROUPS 19

isomorphism of H°(G,A) to AG/NGA, where AG is the subgroup of A

consisting of all G-invariant elements and NG is the trace map. Then

by fc0 we have

Nκ/k(Kx Π NL/κJL)/Nκ/k(NL/κL*) s CorH,G (Ker PH

and moreover

X = ((&x ΓΊ NL/kJL)/NL/kL*)/(Nκ/k(Kx Π NL/κJL)/Nκ/k(NL/κLx))

-\G, CL) = m-KG, CL)/CorHtG δ*HH~\H, CL)

, CJ/31 Cor*.* ff-W, CL)

^ H-KG,CL)/UCorH,βH-KH,CL)

Since Ker 3* = fH~ι(G, JL), we have

/g\ X ^ H ~ \ G , CL)

H , G H-KH, CL) + pR-KG, JL) '

Next, we translate Y on the same stage for X. Consider the fol-

lowing commutative diagram whose rows and columns are exact by the

natural homomorphisms:

0 0 0

I ί ί
0 > L*/(Lx Π NUILJM) > JJNM/LJM • JJL*NM/LJM • 0

i , ί , ί'
0 • Lx • JL i > JL\L* > 0

ί' . I ί1
0 „ L x n NM/LJM — ^ NMILJM > L*NM/LJM/Lx > 0 .

i i ί
0 0 0

Then we have the following commutative cohomology exact sequence.



20 YOSHIOMI FURUTA

ί 1 t
G, JLIL«NM/LJM) — > H\G, L*/(L* Π NM/LJM)) > H\G, JL/NM/LJM)

f" , ί ί
-\G,JL/L*) > H°(G,Lχ) > H°(G,JL)

H°(G,L* Π NM/LJM) - ^ H\GfNM/LJM)

i i

This implies that

(k* n NMllίju)iNLlk{L* n NM/LJM)

= « L * n NMILjMr n NM/!ejM)/NL/k(L* n NMILJM)

S Keri*, = $tH-\G,L*NM/LJM/L*) .

Moreover since ((L* Π NM/LJM)β Π Nκ/k(K* Π NL/KJL)) /NL/k(L* Γ\ NM/LJM)
= Ker (/o^*) by (7), we have ((fc* Π NM/JM) n iVir/*(Xx Π NL/KJL))J
NL/k(L* Π N ^ Λ ) = δ*MH-KG,L*NM/LJM/L«) Π Ker (/o/).
Now by (5) and (7) we have

Γ S (foφ*WMH-\G,L*NM/LJMIL*))

= {f °δ* °λ*)H-\G,L*N M/LJ MIL*)

+ CorH,G (Im <%))/CorH>β (Im «jy

(d*(Im A*) + δ C , G H~\H, CL))/δ*

I m ^ + C o r g , G H~KH, CL) + K e r δ*

Since Ker δ* = jΉ~ι(G, JL), it follows from (6), (8) and (9) the following

THEOREM 1. Let K be a Galois extension of k and M be an abelian
extension over K. Let L be a subfield of M which contains the genus
field K%/k of K in M with respect to k. Assume that L is normal over
k and put G = G(LJk) and H = G(LJK). Denote by LM/Je the maximal
extension of L which is EL-genus and central with respect to k. Then
we have

Git ID ~ H~1(G' CL)

λW-\G,D(MIL)) + CorH,aH-KH,CL) + fH-\G,JL)
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where D(M/L) is the ίdele class group in L corresponding to M by class

field theory; λ* and f are induced respectively by the injection map λ

of D(M/L) to CL and the natural homomorphίsm j of J L to CL.

COROLLARY. Let K be a Galois extension of k and L be a subfield

of the absolute class field K of K. Assume that L contains the genus

field of K with respect to k and L is normal over k. Assume further

that any unit of k which is everywhere locally norm from K is a norm

of an element of K. Put G == G(L/k), H = G(L/K) and let Gv be the

decomposition group of any one of the prime divisors pv in L, pv run-

ning over all finite and infinite primes of k ramified in L (ι> = 1, ,i).

Then

C(f_ / L ) » H-KG, CL)
κ/k/ ~ CorHtG H-\H, CL) + Σt-i CoτGv)G H-\GV, CL)

H~\G,Z)

~ COYH,GH-%H,Z) + ΣLi CorGv,GH-%G»,Z)

Proof. By the assumption for the units of k, Proposition 5 implies

G(Lκ/k/L) ^ X, where X is as in (5). Then the corollary follows from

(8), since it is well known that H~\G,CL) ^ H~\G,Z) and fH-\G,JL)

THEOREM 2. Let K be a Galois extension of k with Galois group g

and let M be an abelian extension over K. Denote by D(M/K) the idele

class group in K corresponding to M by class field theory. Then we

have

/7f* ϊ — H ' K Q , CK)

(&9 D{MjK)) + Σί-i Corgυ,g H-\qv, Cκ)

where gv is the decomposition group of any one of the prime divisors

of pv in K, pv running over all finite and infinite primes of k ramified

in K.

Proof. We note that the right hand sides of Proposition 3 and

Proposition 4 are coincide, when L = K. Theorem 1 was obtained by

transforming the right hand side of Proposition 4. Therefore G(KM/k/

K%/k) is isomorphic to the right hand side of Theorem 1 by putting L — K.

Since it is well known that j*H-\§,Jκ) ^ ΣLi C o r ^ i ϊ - 1 ^ , ^ ) , the theo-

rem is proved.



22 YOSHIOMIFURUTA

Now for a while let G be any finite group, H be a subgroup of G
and A be any G-module. Denote by IG the augmentation ideal of the
group ring ZG. Denote further by NH the trace map, namely NH(ά) =
Σσesσa for an element a of A. Then iV^ is an endomorphism of A.
Denote by OH(A) the kernel of NH. Then we have the isomorphism
AΓ-1 : ff-W, A) s Oσ(A)//*(A), and CorHfGH~KH9 A) s (O^U) + /G(A))//G(A).
Hence ff-KG, Aί/Cor^ H-^H, A) ^ (^(^/((^(A) + 7G(A)). Now assume
that H is normal in G. Then we see NHOG(A) = OG/H(NHA) and
2VH/G(A) = J^A^A) = Iβ/H(NBA). Hence iϊ^CG, A)/CoriΓ,βJff-

1(iϊ, A) s
OO(NHA)/IG/S(NBA)=*H-1(G/H,NSA). Let iV^ be the homomorphism
induced from NH of OG(A)/Iβ(A) to OO/H(NHA)/IO/H(NHA). Then we
have

PROPOSITION 6. Lβί G be a finite group, H be a normal subgroup
of G and A be a G-module. Then we have the following exact sequence:

H-\H, A) ^ ^ 4 H~\G, A) ^ > H-\G/H, NHA) > 0 .

Now we come back to the investigation of the structure of G(LM/K/L).
Notation being as before, we have the following isomorphism by Theo-
rem 1 and Proposition 6.

(10) G(L ID ~ — NHH~\G, CL)
M/kl - NHλ*H-\G,D(M/L)) + NHfH-\G,JL) *

We consider the following commutative diagram.

OG,H(NHD(M/L)) *:}

— > IG/H{NHD{M/L)) — * «

where / and Λ" are induced from the injections of the numerators re-
spectively and )fH is induced from also the injection map λH: NHD(M/L)
—> NHCL. Then the following proposition follows immediately from (10),
the above diagram and Proposition 6.

PROPOSITION 7. Notation being as in Theorem 1 and as above, we

have
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H-\G/H,NHCL)

, NHD(M/L)) + NHfH~\G, JL) '

§ 4 . Cohomological expression of G(Ka+1)/Ka))

Let K be a Galois extension of k with Galois group q and I be a

class field over K corresponding to an idele class group D(M/K). De-

noting by Cκ the idele class group of K as before, put © = CK/D(M/K).

Assume that8 ) M is an EL-genus extension of K with respect to k and

normal over k. Then ® is a g-module in natural way. Let S)( ί ),i = 1,

2, , be the lower central series for S) with respect to g in the sense

of Introduction and let K{£/k be the extension of K corresponding to S)(i).

Then D(K$/k/K) = {IIJK K*.NM/XJM)/K* and K$/k = KM/k. We call the

field K$/k the i-th central class field of K in M with respect to k. When

M is equal to the absolute class field, we call K$/k simply the i-th cen-

tral class field of K with respect to k and denote it by Ka\

Now since S)(ί) = JJS) by definition, we have for i ;> 1

For the sake of simplicity, denote by Ca) the idele class group of K{S/k

and put Hi = G(K$/k/K). Then D(K$/k/K) = N^ i C
( ί ) and we have the

following exact sequence in natural way:

0 > Z)(ilf/2O - ^ D(K$/k/K) - ί U S)(ί) > 0 .

This implies the following cohomology exact sequence:

> H-%, D(MIK)) —i ίί-^g, iV^.C^) ^ 4 ff-^g,

δ# 4 i"n

> ίίo(g, Z)(AfIK)) % A

Hence we have

[ i ϊ ~ 1 ( g ' N

On the other hand if we put L = K$/k in Proposition 7, then LM/k =.

XS/ft̂  ^ n d we have the opposite inequality to (11). Therefore in the

above cohomology exact sequence μίj is surjective and we have the

8) Since we treat only EL-genus extensions contained in M, we add this assump-
tion for the sake of simplicity. Cf. also the footnote 5).
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following

THEOREM 3. Let K be a Galois extension of k with Galois group g

and let M be an EL-genus extension over K with respect to k, abelian

over K and normal over k. Then for i^>l we have

where λ* is induced from the injection map λ of the idele class group

D(M/K) to D(K$/k/K).

We proceed our discussion to express the right hand side of Theo-

rem 3 by (—2)-cohomology groups. Notation being as above, put Da) =

D(K$/k/K) and consider the following natural commutative sequence:

0 Da) {i-χ)ID{i)D{i-χ)ID 0 (exact)

0 • D(M/K) -?tV 0«-i> J ^ > D«-ιηD(MIK) > 0 (exact) .

Then we have the following commutative diagram:

H~2(g, D«-"/D«>) - ί > H'l($,

- ίί-2(g, D«-"ID(M/K)) ^U H-»(g,

(12) fid.

> H~2(Q} D ( ί - 1 J

We have

(13)

In fact the left hand side of (13) is isomorphic to

g-'(8, •P(*-1))/;tξ-1ff-
1(8, D(M/K))

jid.

H-»(g, D

(exact)

(exact)

and Theorem 3 implies H~KQ, Da~»)/λUH-\Q, D(.M/K)) s G(K$/h/K<&7?).

Moreover put M' = χ « t . Then Kp% = ZJί;*", ̂ S?7* = M' and D(M'/K)

= DH\ Hence Theorem 3 implies jff-'fe, D«-l))/yfiH-Ha, Dw) s

K^>). Thus (13) is proved.

LEMMA. Lei ί/z-e following diagram of modules is commutative:
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h U-l Mo Ml

B_2 Ii\ B_x ±}>B,J\Bι (exact)

Suppose that λ_2 and λλ implies A_2 = B_2 and Ax ^ Bx respectively.

Then A0/λQB0 is a group extension of foAJλ^QBQ with kernel A^jλ.-β^.

Proof. It is obvious that A0/λ0B0 is a group extension of AJ

(λQBQ +/_1A_1) with kernel (Z0BQ + f^A^jλJB^. Furthermore we have

_ιA_ι

λjB, + /..A.i (Λ Bo + f-A-dlf-Λ-ι fAP

and

+ f-rA^ f-A-i _ f-A-x - f-Λ-i
Π f_A-ι ΛoBo Π Ker/0

since ^_!β_! D λ_λg_2B_2 = f_2A_2 = Ker/. j .

Now the following theorem follows immediately from (12), (13), lemma

and Theorem 3.

THEOREM 4. Lei K be a Galois extension of k with Galois group g

and let M be an abelian extension of K which is normal over k and EL-

genus over K with respect to k. Then for i^>l we have

M/ k) =

where μ\_λ is induced from the natural homomorphism μ^ of

D(K$7P/K)/D{M/K) to

§ 5 . Reduction formula for

Let Notation and assumption be as in Theorem 4 and for the sake

of simplicity put # ( i ) = K$/k and D{i) = D(K%kjK). Especially Km = K,

K(ί) = KMlk and Dw = Cκ.

For i ^ 1, Theorem 4 shows that GiKa+l) j Ka)) is isomorphic to a

homomorphic image of H~2(g, G(K{ί)IKa~l))). We study the homomorphism

explicitly. Put g0 = g/[β,β], where [g,g] is the commutator subgroup of
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g. Let a = Σr-e9o ? ® α* e g0 ® Da-O/Da\ where τ e g, α, e £>(ί-υ and the bar

means the class in obvious manner. Then since D{i-χ)/D(ί) is g-invariant,

the isomorphism

(14) θt g0 ® D«-»ID™ -> #-2(g, D«-»/D(ί>)

is defined by W = 2 f e f l f l a f *[r] mod. coboundary, where the standard

expression of (—2)-cocycles follows Babakhanian [1, §21].

We have now the composition of the homomorphisms

where <5* is the same as in (12). Then for a as above we have9)

βi(α) = ic Y f Σ C r - 1 - D o , ) * [
(15) \^"eβo /

= Σ (τ"1 - l)αf mod.
τ€g0

It follows from Theorem 4 that G(Kiί+1)/Ka)) s Da)/D(i+1) s

fί-2(g, D«-ιηD™)lttH-%9 D^/DiM/K)). This implies that Θ, is surjective

and we have10)

KerΘ, = θΐ'μlH-X&D^/DiM/K))

( 1 6 ) = f Σ * ® 5,1 α, = Σ 5,, B, € ί)"-", Σ (/>̂  - 1)&, €
Ueg0 per pβs

Denote by g$r) the tensor product of r-copies of g0. Moreover denote

by D<r)(ΰ,M,K(i)/K), for i ^ 0 and r ^ 1, the subgroup of <&r) ® Da)IDa+l)

which consists of

w h e r e α(τ ( 1 ) , , r ( r ) ) = Σ _ _ &(ft> ' *>Pr) a n d h(ρl9 , pr) i s t h e c lass of

i = l, ,r

Dw/Dii+1) represented by h(pιt •• ,ior) of D ( i ) which satisfies

(17) ^ Σ 6 a (ft - 1) (ft- - D6(ft, , ft.) 6.

For i = 0, put Dir)(Q,M,K) = D<r)(QrM,Km/K).

Then we have the following main theorem.

9) We use the additive expression for the product in
10) Cf. Babakhanian [1, §21.2].
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THEOREM 5. Let K be a Galois extension of k with Galois group

g and let M be an abelian extension of K which is normal over k and

EL-genus with respect to k. Then notation being as above we have

Proof. By (16) and the definition of D{r)(s,M,KU)/K), we have

K e r θ , = D(1)(g, M, U L " - " / © and further

(18) G(Ka+1)/Ka)) = ZQ^U L^

For i ^ 0 and r ;> 1 put θ^r) = lβ(r_i, ® Θ*, which is a surjective homo-

morphism from ^ ®Da~l) jDa) = ^ r" 1 )(x)g0®D ( i- 1 )/D ( ί ) to g^-1} ® Da)/Da+1).

Then it is easy to see that 0£r)Z)(r)(g, M, Ka~l)IK) — ZP-^ίg, M,.

and Ker Θ|r) = g*'-1* (x) Ker θt c D(r)(g, Λf, Ka~1}/K). Hence βi r ) implies

Now by applying this reduction formula to (18) repeatedly, the theorem

is proved.

Remark. If K is cyclic over k and the Galois group is generated

by σ, then KM/k = X*/4 and g^ ® Cκ/D(KM/k/K) s Cκ/D(K*/k/K). More-

over easily D(i)(g, M, Z) = {α mod. D(K%/k/K)\a e Cκ, a{σ~1)l e D(M/K)}.

Therefore Theorem 5 coincides with (1) in § 1, when K is cyclic over k.
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