THE THREE-SEPARATED-ARC PROPERTY OF THE MODULAR FUNGTION

FREDERICK BAGEMIHL

Let D be the open unit disk and Γ be the unit circle in the complex plane, and denote the Riemann sphere by Ω. If $f(z)$ is a function defined on D with values belonging to Ω, if $\zeta \in \Gamma$, and if Λ is an arc at ζ, then $C_{4}(f, \zeta)$ denotes the cluster set of f at ζ along Λ. If there exist three mutually exclusive arcs $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ at ζ such that

$$
C_{\Lambda_{1}}(f, \zeta) \cap C_{\Lambda_{2}}(f, \zeta) \cap C_{\Lambda_{3}}(f, \zeta)=\emptyset,
$$

then f is said to have the three-separated-arc property at ζ.
The following theorem answers a question raised by Belna [1, p. 220] concerning the modular function $\mu(z)$ that maps D onto the universal covering surface W of the extended w-plane punctured at the points $w=0,1, \infty$.

Theorem. The modular function $\mu(z)$ has the three-separated-arc property at every point of Γ.

Proof. For convenience and clarity, we refer the reader to the Figure, which represents the w-plane. The shaded lower half is the lower half-plane, the unshaded upper half is the upper half-plane. We consider three graphs, $g_{1}, g_{2}, g_{3} ; g_{1}$ is represented by the lightest lines, g_{2} by the heavier lines, and g_{3} by the heaviest lines.

For $j=1,2,3$, let G_{j} denote the set of points on W that overlie the set g_{j}, and let γ_{j} be the preimage of G_{j} under the mapping $\mu(z)$. One readily infers from the Figure that if $\zeta \in \Gamma$, then there are in D three mutually exclusive arcs $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ at ζ such that $\Lambda_{j} \subset \gamma_{j}(j=1,2,3)$. The cluster set $C_{\Lambda_{j}}(\mu, \zeta)$ is clearly a subset of $g_{j}(j=1,2,3)$. Since it is evident that $g_{1} \cap g_{2} \cap g_{3}=\emptyset$, the theorem is proved.

Figure

Reference

[1] C. L. Belna, Intersections of arc-cluster sets for meromorphic functions, Nagoya Math. J. 40 (1970), 213-220.

University of Wisconsin-Milwaukee

