J. HanoNagoya Math. J.Vol. 61 (1976), 197-202

A GEOMETRICAL CHARACTERIZATION OF A CLASS OF HOLOMORPHIC VECTOR BUNDLES OVER A COMPLEX TORUS

JUN-ICHI HANO*)

This note is to be a supplement of the preceeding paper in the journal by Matsushima, settling a question raised by him. In his paper he associates a holomorphic vector bundle over a complex torus to a holomorphic representation of what he calls Heisenberg group. We shall show that a simple holomorphic vector bundle is determined in this manner if and only if the associated projective bundle admits an integrable holomorphic connection. A theorem by Morikawa ([3], Theorem 1) is the motivation of this problem and is somewhat strengthened by our result.

Let V be a complex vector space of dimension n and let L be a lattice in V. The quotient group V/L=E is a complex torus. It is known ([2], § 3) that a holomorphic vector bundle F of rank m over E is determined by a $GL(m, \mathbb{C})$ -valued theta factor J, namely by a holomorphic map

$$J: L \times V \rightarrow GL(m, \mathbf{C})$$

satisfying the following equality:

(1)
$$J(\alpha + \beta, u) = J(\alpha, \beta + u)J(\beta, u)$$
 for $\alpha, \beta \in L$ and $u \in V$.

We denote by F_J the holomorphic vector bundle over E determined by a theta factor J.

A résumé of Matsushima's construction of holomorphic vector bundles over E is in order. Let H be a hermitian form on $V \times V$. Let G_H be a nilpotent Lie group whose underlying manifold is $V \times C^*$ and whose multiplication is defined by

Received November 25, 1975.

^{*)} Partially supported by N.S.F. Grant GP-34710.

$$(u,c)\cdot(v,d)=\Big(u+v,e\Big[rac{1}{2i}H(u,v)\Big]cd\Big) \qquad ext{for } (u,c),(v,d)\in V imes C^*\;,$$

where $e[x] = \exp 2\pi ix$.

We denote by $G_H(L)$ the subgroup $L \times C^*$ in G_H , which is a complex Lie group. The right action of the complex Lie group $G_H(L)$ on the complex manifold $V \times C^*$ is holomorphic. Thus $V \times C^*$ is a holomorphic principal bundle over E with structure group $L \times C^* = G_H(L)$.

If a holomorphic representation $\rho: G_H(L) \to GL(m, C)$ is given, a holomorphic vector bundle F_H , ρ is determined as the quotient space $V \times C^* \times C^m/\{G_H(L), \rho\}$. Lemma 3.1 in [2] shows that a theta factor J_ρ associated to the holomorphic vector bundle F_H , ρ is given by

$$(2) \quad J_{\rho}(\alpha,u) = \rho \left(-\alpha, e \left[\frac{1}{2i} (H(u,\alpha) + H(\alpha,\alpha)) \right] \right) \quad \text{for } \alpha \in L, \ u \in V \ .$$

THEOREM. Suppose that the associated projective bundle of a holomorphic vector bundle F over a complex torus E admits an integrable holomorphic connection, or equivalently admits a system of transition functions which are constant. Then, we can choose a hermitian form H_1 on $V \times V$ whose imaginary part assumes rational values on $L \times L$, and a holomorphic representation ρ of $G_{H_1}(L)$ so that F is isomorphic to F_{H_1} , ρ .

Proof. (a) It is well known (Atiyah [1], Proposition 14) that the associated projective bundle P(F) of a holomorphic vector bundle F admits an integrable holomorphic connection if and only if P(F) arises from a homomorphism h of the fundamental group L of torus E into PGL(m, C). A necessary and sufficient condition for the projective bundle P(F) to have an integrable holomorphic connection is that one can choose a theta factor J of F such that

$$(3) J(\alpha, u) = J(\alpha, 0)\mu(\alpha, u)$$

with scalar function $\mu(\alpha, u)$ for each $\alpha \in L$.

Indeed, this condition is sufficient. Suppose that P(E) admits an integrable holomorphic connection. Then P(E) arises from a homomorphism $h: L \to PGL(m, C)$. Let us denote by $\tilde{J}(\alpha, u)$ the image of a theta factor $J(\alpha, u)$ under the natural homomorphism of GL(m, C) onto PGL(m, C). Since the PGL(m, C)-valued factor \tilde{J} and the homomorphism h define the same bundle P(F),

$$h(\alpha) = \tilde{\varphi}(u + \alpha)\tilde{J}(\alpha, u)\tilde{\varphi}(u)^{-1}$$

with a $PGL(m, \mathbb{C})$ -valued holomorphic function $\tilde{\varphi}$ on V. Since V is simply connected, we can lift $\tilde{\varphi}$ to a holomorphic map $\varphi \colon V \to SL(m, \mathbb{C})$ so that $\varphi(u)$ is lying above $\tilde{\varphi}(u)$. Then, $J'(\alpha, u) = \varphi(u + \alpha)J(\alpha, u)\varphi(u)^{-1}$ is a theta factor with required property.

- (b) Let us assume that a holomorphic vector bundle F satisfies the condition in the theorem and that a theta factor J of F is chosen so that the condition (3) is satisfied. From the condition (1) on J, it follows that the scalar function μ determined by (3) satisfies the following equalities:
 - (i) $\mu(\alpha, \beta)\mu(\alpha + \beta, u) = \mu(\alpha, \beta + u)\mu(\beta, u)$, for $\alpha, \beta \in L$, $u \in V$;
 - (ii) $\mu(\alpha, 0) = \mu(0, u) = 1$, for $\alpha \in L$, $u \in V$;
 - (iii) $\mu(\alpha, -\alpha) = \mu(-\alpha, \alpha), \alpha \in L$.

We define a multiplication \times on $L \times C^*$ in terms of μ and make $L \times C^*$ a complex Lie group $G_{\mu}(L)$:

$$(\alpha, c) \times (\beta, d) = (\alpha + \beta, \mu(\beta, \alpha)cd)$$
 for $(\alpha, c), (\beta, d) \in L \times C^*$.

The associative law is verified by (i). The identity is (0,1), because of (ii) and the inverse of (α, c) is $(-\alpha, \mu(-\alpha, \alpha)^{-1}c)$.

Define a map

$$f: G_n(L) \to GL(m, \mathbb{C})$$

by $f(\alpha,c)=J(\alpha,0)^{-1}c$. Then, f is a holomorphic representation. In fact,

$$f((\alpha,c)\times(\beta,d))=J(\alpha+\beta,0)^{-1}\mu(\beta,\alpha)cd$$
.

Since $J(\alpha + \beta, 0) = J(\beta, \alpha)J(\alpha, 0) = J(\beta, 0)J(\alpha, 0)\mu(\beta, \alpha)$ by (1) and (3),

$$f((\alpha, c) \times (\beta, d)) = J(\alpha, 0)^{-1}J(\beta, 0)^{-1}cd$$

= $f(\alpha, c)f(\beta, d)$.

(c) The map $L \times V \to C^*$ given by $(\alpha, u) \to \det J(\alpha, u)$ is a C^* -valued theta factor corresponding to the line bundle det F, which is equivalent to a normalized theta factor ([4], p. 111). We choose a C^* -valued holomorphic function φ on V, a hermitian form H on $V \times V$ whose imaginary part assumes integral values on $L \times L$ and a semi-character $\chi: L \to C^*$ such that

$$\det J(\alpha, u) = \varphi(u + \alpha)\chi(\alpha)e\left[\frac{1}{2i}H(u, \alpha) + \frac{1}{4i}H(\alpha, \alpha)\right]\varphi(u)^{-1}.$$

On the other hand from (3),

$$\det J(\alpha, u) = \det J(\alpha, 0) \mu^m(\alpha, u)$$
.

Thus,

$$\det J(\alpha,0) = \varphi(\alpha)\varphi(0)^{-1}\chi(\alpha)e\left[\frac{1}{4i}H(\alpha,\alpha)\right]$$

and

$$\mu^m(\alpha, u) = \varphi(u + \alpha)\varphi(\alpha)^{-1}e\left[\frac{1}{2i}H(u, \alpha)\right]\varphi(u)^{-1}\varphi(0) .$$

Since φ is a nowhere vanishing holomorphic function on a simply connected space V, there is a nowhere vanishing holomorphic function ψ on V such that $\psi^m = \varphi$. For each α , an m^{th} root of unity ε_{α} is determined by

$$\mu(\alpha, u) = \epsilon_{\alpha} \psi(u + \alpha) \psi(\alpha)^{-1} e \left[\frac{1}{2mi} H(u, \alpha) \right] \psi(u)^{-1} \psi(0) .$$

Putting u=0, we see that $1=\mu(\alpha,0)=\varepsilon_{\alpha}$. Thus,

(5)
$$\mu(\alpha, u) = \frac{\psi(u + \alpha)}{\psi(\alpha)} e \left[\frac{1}{2mi} H(u, \alpha) \right] \frac{\psi(0)}{\psi(u)}.$$

(d) The above relation enables us to establish an isomorphism of $G_{H/m}(L)$ and $G_{\mu}(L)$. Put

$$\lambda(\alpha) = \psi(\alpha)/\psi(0) .$$

Then from (5),

(6)
$$\mu(\alpha,\beta) = \frac{\lambda(\alpha+\beta)}{\lambda(\alpha)\lambda(\beta)} e^{\left[\frac{1}{2mi}H(\beta,\alpha)\right]}.$$

Making use of the $\lambda(\alpha)$'s, we define a map

$$g: G_{H/m}(L) \to G_u(L)$$

by

$$g(\alpha, c) = (\alpha, \lambda(\alpha)c)$$
, $(\alpha, c) \in L \times C^*$.

We claim that g is an isomorphism. Obviously, g is 1:1 and onto.

$$g((\alpha, c) \cdot (\beta, d)) = g\left(\alpha + \beta, e\left[\frac{1}{2mi}H(\alpha, \beta)\right]cd\right)$$

$$= \left(\alpha + \beta, \lambda(\alpha + \beta)e\left[\frac{1}{2mi}H(\alpha, \beta)\right]cd\right)$$

$$= (\alpha + \beta, \lambda(\alpha)\lambda(\beta)\mu(\beta, \alpha)cd)$$

$$= g(\alpha, c) \times g(\beta, d),$$

on account of (6). Thus g is an isomorphism.

(e) From (4) and (7), $\rho = f \circ g$ is a holomorphic representation of $G_{H/m}(L)$ into GL(m, C) given by

$$\rho(\alpha, c) = J(\alpha, 0)^{-1} \lambda(\alpha) c.$$

The theta factor J' associated to the representation ρ in the formula (2) is

$$\begin{split} J'(\alpha,u) &= \rho \bigg(-\alpha, e \bigg[\frac{1}{2mi} (H(u,\alpha) + H(\alpha,\alpha)) \bigg] \bigg) \\ &= J(-\alpha,0)^{-1} \lambda (-\alpha) e \bigg[\frac{1}{2mi} (H(u,\alpha) + H(\alpha,\alpha)) \bigg] \; . \end{split}$$

Making use of the equalities

$$J(-\alpha,0)^{-1} = J(\alpha,0)\mu(0,-\alpha) ,$$

$$\mu(\alpha,-\alpha) = \lambda(\alpha)^{-1}\lambda(-\alpha)^{-1}e\left[-\frac{1}{2mi}H(\alpha,\alpha)\right]$$

and of the equality (5), we see that

$$J'(\alpha, u) = \psi(u + \alpha)^{-1}J(\alpha, u)\psi(u)$$
.

Thus, we have seen that the theta factors J and J' are equivalent and hence $F \cong F_{H/m}$, ρ , finishing the proof.

Remark. In order to prove the converse of the theorem, we assume that a holomorphic vector bundle F_{ρ} over E associated to a holomorphic representation ρ of $G_H(L)$ is simple. Then, the image of the central subgroup $\{0\} \times C^*$ is of scalar matrices and hence $\rho(0,c) = c^k$ for some integer k. The projective representation $\tilde{\rho}$ reduces to a projective representation of L. By Atiyah's proposition, $P(F_{\rho})$, which arises from $\tilde{\rho}$ of L, admits an integrable holomorphic connection.

BIBLIOGRAPHY

- [1] Atiyah, M. F., Complex analytic connections in fibre bundles, Trans. AMS. 85 (1957), 181-207.
- [2] Matsushima, Y., Heisenberg groups and holomorphic vector bundles over a complex torus, Nagoya Math. J. 61 (1976).
- [3] Morikawa, H., A note on holomorphic vector bundles over complex tori, Nagoya Math. J. 41 (1971), 101-106.
- [4] Weil, A., Introduction à l'étude des variétés kahleriennes, Paris, Hermann (1958).

Washington University