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HEISENBERG GROUPS AND HOLOMORPHIC VECTOR

BUNDLES OVER A COMPLEX TORUS

YOZO MATSUSHIMA

Let 7 be a complex vector space of dimension n, L a lattice of V
and E — V/L a complex torus. Let H be a Hermitian form on V. We
introduce a multiplication in L x C* by

(a, a)(β9 b) = (a + β, (exp πH(a, β))ab) ,

where a,βeL and a, b e C*. Then LxC* becomes a complex Lie group
GH(L) whose identity component is C*. We call GH(L) the Heisenberg
group associated with a Hermitian form H and a lattice L in V. In
general GH(L) is non-abelian. The group GH(L) acts on the complex
manifold 7 χ C * from the right by the rule

(u, a)(βy b) = (u + β, (exp πH(u, β))ab) ,

where ueV,βeL and α,δeC*. The action of GH(L) is holomorphic
and free and we can identify the quotient space with the complex torus
E. Thus V x C* is a principal fibre bundle over E with structure group
GH(L). If we vary the Hermitian form H, we obtain infinitely many
principal holomorphic bundle structures over E in this manner.

The purpose of this article is to study the class of holomorphic
vector bundles over E associated with holomorphic representations of the
Heisenberg groups GH(L).

If a representation of GH(L) is trivial on {0} x C*, the representa-
tion is nothing but a representation of the lattice L. The vector bundles
over E associated with representations of L have been studied in our
previous paper [2]. In this paper we shall show first that every holo-
morphic line bundle over E is always associated with a holomorphic
representation of degree 1 of the Heisenberg group GH(L) for a suitable
Hermitian form H. This result is nothing but an interpretation of the
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"normalized" theta factor associated with a line bundle. Then we show
that if the Heisenberg group GH(L) admits an irreducible holomorphic
representation which is not trivial on {0}xC*, the imaginary part A of
H, which is an alternating form on V, is rational valued on L. If A
is integral valued on L, the group GH{L) is abelian and so holomorphic
irreducible representations are of degree 1 and the associated bundles
are line bundles. However if A is not integral valued but rational
valued on L, there are holomorphic irreducible representations of GH(L)
of degree greater than one. In the sections 5 and 6 we classify the
holomorphic irreducible representations of the Heisenberg group GH(L)
assuming that the imaginary part A of H is rational valued on L. To
achieve this classification we introduce another multiplication on LxC*
by

(a, a)(β, 6) = (α + β, (exp πiA(a, β))ab) .

Then LxC* becomes also a complex Lie group GA(L) with respect to
this new multiplication. We call also GA(L) the Heisenberg group as-
sociated with A and L. It is easy to show that GH(L) and GA(L) are
isomorphic (see § 2) and consequently there is a one-to-one correspondence
between holomorphic representations of GH(L) and those of GA(L). We
classify holomorphic irreducible representations of GA{L) in the sections
5 and 6. Among the holomorphic irreducible representations of the
Heisenberg group GA(L) there is a distinguished representation DA which
we call the Schrodinger representation. The representation DH of GH(L)
which corresponds to DA is also called the Schrodinger representation
of GH(L). In the section 7 we shall show that a holomorphic vector
bundle over E associated with a holomorphic irreducible representation
of GH(L) is isomorphic to a holomorphic vector bundle associated with
a representation of GkH(L) of the form σ<8)DkH, where a is a 1-dimen-
sional representation of the lattice L,DkH is the Schrodinger represen-
tation of GkH{L) and k is a suitable integer.

In the section 8 we study some properties of the vector bundle F
associated with the Schrodinger representation DH. The vector bundle
F is simple and hence indecomposable. We study the mechanism to
construct the vector valued theta functions associated with F. It will be
shown for example, that if the Hermitian form H is positive (^0),
then the number of linearly independent theta functions is given by
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II efct, d)~ι ,

whereas the rank of the vector bundle F is

de Π (ei> d)~ι ,

where d is the smallest positive integer such that dA is integral valued

on L and el9 , e6 are non-zero elementary divisors of the integral alter-

nating form dA on L.

In the final section we study the properties of tensor products of

vector bundles associated with indecomposable holomorphic representa-

tions of GH(L) for variable H and we compute Chern classes. We shall

see that, if F1 and F2 are vector bundles associated with the Schrodinger

representations of GHl(L) and GHJJL)y then we have the splitting Fλ®F2

= F«I®DH Θ Θ FσsΘDlI, where H = Hι + H2, DH is the Schrodinger rep-

resentation of GH(L), σ19 , σs are 1-dimensional representations of L

and Fσ.ΘDH denotes the vector bundle associated with the representation

at(S)DH of GH{L).

The group GA{V) appeared already in a paper of Murakami [8] in

a similar context as ours and this article is also closely related with the

works of Morikawa [3] and Oda [5]. The author wishes to thank J.

Hano for his useful comments. J. Hano also proved recently that the

class of vector bundles studied by Morikawa and Oda is identical with

the one associated with irreducible representations of GH(L).

§ 1. The nilpotent Lie group GB.

Let V be a finite dimensional vector space over R and B a complex

valued bilinear form on V. We define a multiplication in the product

V x C* by

(1.1) (u, ά)(v, b) = ί u, v, ε\ —B(u,

where u,v eV and a, b e C* and

e(z) = exp 2πίz

for all zeC.

With respect to the multiplication (1.1) F x C * forms a Lie group
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which we shall denote by GB. The element (0,1) is the identity element
and the inverse of (u, a) is given by the formula

(1.2) (u, a)-1 = (-U, εί—Bin, u)\aA .

Let B = S + Ay where S(u, v) = —{B(u, v) + B(v, u)} is a symmetric

bilinear form and A(u, v) = — {B(u, v) — B(v, u)} is an alternating bilinear
Δ

form. From (1.1) we get the following commutation rule:

(1.3) (u, aXv, b) = (v, b)(u, α)(0, ε{A(u, v)}) .

The subset {0} x C* form a closed normal subgroup contained in the
center of GB and the quotient of GB by {0} x C* is an abelian Lie group
isomorphic to V. Hence GB is a connected nilpotent Lie group and GB

is not abelian unless A = 0.
We can also define a nilpotent Lie group GA by introducing another

multiplication in V X C* by

(1.4) (u, a)(y, b) = (u + v, ε\^-A{u, vήab^j .

We can prove easily the following lemma.

LEMMA 1.1. The map φ from GB onto GA given by

φ(u, a) = (u,εl ——B(u, u)\a\

is an isomorphism of GB onto GA.

§ 2. The Heisenberg group GH(L).

We now assume that V is a complex vector space of complex dimen-
sion n and let H be a Hermitian form on V. Let

H(u, v) = £(%, #) + ΐA(^, v) ,

for w ^ e F , where S(u,v) and A(%,v) are the real part and the imagi-
nary part of H(u,v). Then S is symmetric and A is alternating, both
are i?-bilinear on V. Let
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ί

and we define the nilpotent Lie group GB as in § 1 which we shall denote
by GH. Thus the multiplication in the group GH is defined by

(2.1) (u,ά)(v,b) = (u,v,ε\—H(u,v)\ab) ,
\ I2i J /

where u, v e V and a, b e C*.
Since H is Hermitian, the multiplication in GH is holomorphic in

the variable u, a and b and anti-holomorphic in the variable v. Hence
GH is not a complex Lie group.

The alternating part of B = — H is equal to the imaginary part A

of H and by Lemma 1.1. the map φ: GH —> GA defined by

(2.2) φ{u, a) = (V J - — # ( ^ , w))a\
\ I 4i J /

is an isomorphism of GH onto G .̂
Let L be a lattice of V and we define

GH(L) = LχC* .

Then GjϊίL) is a closed subgroup of GH and GH(L) is a complex Lie
group with the identity component isomorphic to C*.

Analogously

G (̂L) = L χ C *

is also a subgroup of GA and G (̂L) is also a complex Lie group. More-
over the isomorphism φ of GH onto G^ defined by (2.2) maps GH(L) onto
GJJJ) and induces an isomorphism of complex Lie group.

We call GH{L) (resp. GJJJ)) the Heisenberg group associated with
a Hermitian form H and a lattice L (resp. A and L).

§ 3. Principal bundle structures over a complex torus associated with Heisenberg

groups.

Since GH{L) is a subgroup of GH, it acts on GH = V X C* freely
by right multiplication
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(u,a)(β,b) =

where ueV,βeL and a, &eC*. This is a holomorphic and free action

of the complex Lie group GH{L) on the complex manifold 7 χ C * and

we can identify the quotient space canonically with the complex torus

E = V/L.

Thus L x C* is a holomorphic principal fibre bundle over the complex

torus E with the structure group GH(L).

A Gtf-theta factor 3 of rank m is a holomorphic map

J: GH(L) x V x C* -> GLm(C)

such that

for p,/ e G^(L) and g eV X C*f where we define Tγg — g γ~ι.

For instance a holomorphic representation p of the complex Lie group

GH(L) is a Gtf-theta factor.

Given a G#-theta factor J of rank m, we define a holomorphic free

action of GH(L) on the complex manifold V x C* X Cm by

where p 7 x C*, γ e GH{L) and f 6 Cm. The quotient space of V x C*

X Cm has a structure of a holomorphic vector bundle F? of rank m

over the complex torus E.

On the other hand, a ίfeeία factor J of rank m for the lattice L is

a map

J:L x 7-*GLm(C)

such that

1) J(#, 2ί)(α 6 L, ̂  e F) is holomorphic in u,

2) J(a + β, u) -= J(α, j8 + M)J(J8, U)

for a,βeL, and w e 7 .

We define also a holomorphic free action of the lattice L on V x Cm

by

(w, ξ)a = (u + a, J(a, u)ξ) ,
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where u e V, a e L and ξ e Cm.
The quotient of V X Cm is a holomorphic vector bundle Fj of rank

m over the complex torus E. It is well-known that every holomorphic
vector bundle over E is obtained in this way.

L E M M A 3 . 1 . Let J be a GH-theta factor of rank m. For aeL and

ueV let

J(a, u) = j[(-a, ^{~(H(u, a) + H(a, *))}), (u, 1)] .

Then J is a theta factor for the lattice L and the holomorphic vector
bundles Fj and Fj are isomorphic.

Proof. We can verify readily that J(a,u) is a theta factor for L.
We define a map ψ from V X Cw into V X C* X Cm by

for all ueV and ξ e Cm. We say that two points of V X C* x Cm are
equivalent if they belong to the same orbit of GH(L). Two points ψ(u,ξ)
and ψ(v9 η) are equivalent if and only if there exists {a, a) e GH(L) such
that

{(u, l)(α, α), J[(α, α)"1, (w, l)]f) = ((*, 1), 9) .

Since (u, l)(α, α) = (tί + α,e<—fiΓ(^,α)>α), we get
\ I2i J /

(3.1) v = u + a

and

(3.2) α"1 =

Then we get from (1.2) and (3.2), (a, a)-1 = (-α,ε |Λ(i ϊ(^α) + H(a,a))\\

and so

(3.3)

Thus if ψ(u,ξ) and ψ(v,η) are equivalent, then we have (3.1) and (3.3)
and this means that (u,ξ) a = (Ί>, J?), that is, (π, f) and (v9η) are equivalent
according to the action of L on 7 χ C * .
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Conversely let (u,ξ)a = (v, η), where aeL. Then defining a by (3.2),
we get ψ(u, ξ)(a, a) = ψ(v, ΎJ). Hence we have shown that ψ(u,ξ) and
ψ(y,η) are equivalent if and only if (u, ξ) and (v, η) are equivalent.
Therefore ψ defines an injective homomorphism ψ of Fj into Fj. The
homomorphism ψ is surjective. For, let ((u, a),ξ') be an arbitrary ele-
ment of V x C* X Cm. Then (0, or1) e GH(L) and (O, α), f 0(0, er1) is of
the form ((u, l),f) and hence the orbit of ((^,α),fθ contains an element
of the form ψ(u,ξ) and this proves that ψ is surjective.

As a special case of Lemma 3.1 we get the following Proposition
3.1.

PROPOSITION 3.1. Let p be a holomorphic representation of the
Heisenberg group GH{L). Then the holomorphic vector bundle Fp over
the complex torus E = V/L associated with p is isomorphic to the holo-
morphic vector bundle associated with the theta factor J for the lattice
L, where J is given by

(3.4) J{a, u) - ^(θ, e{±.H(u, a) + jMa,

where

(3.5) W(a) =

From the definition of ψ we get

for a,βeL.

THEOREM 3.1. Every holomorphic line bundle over E = V/L is as-
sociated with a holomorphic representation of degree 1 of the Heisenberg
group GH(L) for a suitable Hermίtian form H.

Proof. A line bundle over E is associated with a theta factor j of
rank 1 and we may assume that j is in the normalized form (see [6]):

where H is a Hermitian form on V such that the imaginary part A of
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H is integral valued on L and ψ is a semi-character of L, that is, ψ

is a map L-+C? = {z e C| |s| = 1} such that ψ(α + β) = ψ(αr)ψ(j8)e|-ίA(α, β)\

for a,βeL. We define ^: G#(L) -> C* by

(3.6) p{a,a) = ψ(-«)e{-iE(α,α)}α .

It is easily verified that p is a holomorphic representation of the
Heisenberg group GH(L) of degree 1. It follows from (3.4) and (3.5)
that the theta factor for L corresponding to p is precisely equal to j .
Then the line bundle is isomorphic to the line bundle associated with the
representation p of GH(L).

4 Holomorphic representations of GH(L) and GJJL).

Let H be a Hermitian form on V and A the imaginary part of H.
Then φ:GH->GA defined by (2.2) induces an isomorphism of GH(L) onto
GJJL), Hence there is a one-to-one correspondence between the set of
holomorphic representations of GA(L) and that of GH(L). If pA is a
holomorphic representation of GA{L), then pH — pA°ψ is the correspond-
ing holomorphic representation of GH{L) and we have

(4.1) pH(a, a) = pja, εί — —H(a, άλ aj .

For instance, if ψ :L —> C* is a semi-character of L (see the proof
of theorem 3.1), then pΛ(a,a) = ψ(—α) α defines a holomorphic represen-
tation of GA{L) and the corresponding representation pH of GH(L) is the
one given by (3.6) in the proof of Theorem 3.1.

We remark here that an irreducible holomorphic representation a of
the group C* is always of degree 1 and of the form

σ(a) = ak

for all &eC*, where k is an integer (cf. proof of Lemma 9.1 in §9).
Let p be a holomorphic irreducible representation of GA(L). Then,

since {0} x C* is in the center of GA{L), every ^(0, a) is represented by
a scalar operator by Schur's Lemma and hence

(4.2) p(0,a) = akΛ
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for every αeC*, where k is an integer and 1 is the identity operator.
We call a holomorphic representation p of GA{L) is homogeneous of order
k if the equation (4.2) holds for all αeC*. Every holomorphic irreduc-
ible representation of GA(L) is thus homogeneous.

PROPOSITION 4.1. Suppose that the Heisenberg group GA{L) has a
holomorphic homogeneous representation p of order k with k Φ 0. Then
the alternating form A is rational valued on the lattice L.

Proof. We have

{a, l)(/3,1) = (α + β, l)(θ, ε[AA(a, /3)})

and hence

p{a, Dp(β, 1) = p(a + β, l)β{-|A(α,

by (4.2). Then we get

det p(a, 1) det p(β9 l)(det p(a + β, I))"1 - ε^-A{a, β)} ,

where m is the degree of p. Since the left hand side is symmetric in
a and β and A is alternating, we should have ε{mkA{a, β)} = 1 for all
a,βeL. Then mkA(a,β) is an integer for every a and /3 in L and
mk Φ 0. Hence A is rational valued on L.

We assume henceforth that A is rational valued on L and we always
denote by d the smallest positive integer such that dA is integral valued
on L.

We denote by N the subgroup of L consisting of all aeL such that
A(a, β) is an integer for every β e L.

Then we have

dLczN

and hence L/N is a finite abelian group of exponent d. In particular,
iV is also a lattice of V. From the commutation rule (1.3) we get

(α, α)03, 6) = Q3, &)(«, α)(0, ε{A(a, β)}) .

It follows from this that (a, a) commutes with every (β,b) if and only
if aeN. Thus
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GA(N) = N X C*

is the center of GJJL).

It follows then that GA(L) is abelian if and only if N = L. Now

we have N == L if and only if A is integral valued on L. Thus we get

that the Heίsenberg group GA(L) and hence GH(L) is abelian if and only

if A is integral valued on the lattice L.

Let pA be a holomorphic homogeneous representation of GJJL) of

order k and pH the corresponding representation of GH(L). Then the

theta factor J corresponding to pH in Proposition 3.1 is of the form

J(a,u) = ε{—kH(u,a) + —kH(a,a))ε{—kH(a,a))pH(-a,l) .
I2i Ai J Ui J

However we have

^,1) = pA(— a, el— — H(a, a)\j

and so we obtain

(4.3) J( α , M) = ε{±-kH(u, a) + ±-kH(a, a))pA(-a, 1) .
I2ι 4̂  J

§5. Construction of irreducible representations of GA(L).

In the sections 5 and 6 we denote by A any i?-bilinear alternating

form on a complex vector space V of complex dimension n which is

rational valued on a lattice L of V. We do not assume that A is the

imaginary part of an Hermitian form H. We denote by d the smallest

positive integer such that dA is integral valued on the lattice L. There

exists a basis

{ω19 ,ωn,ωj, , ω'n}

of L such that dA(ωί9ωj) = dA{ωfi,ωf

3) = 0 and eZA(ĉ , ω̂  ) = e^yίi, / = 1,

• , w), where β1? , e,, e m , , en are integers such that ee+1 = . . . = en

= 0, e€ > 0 (1 ^ < ̂  4), e<|ei+1 (i = 1,2, . ., ί - 1).

These integers are called the elementary divisors of the integral

alternating form dA on the lattice L. We have then
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A(ωί9 ω'j) = dijβid'1 , A(ωίf ωj) = A{ωf

ίy ω'j) = 0 .

Since d is the smallest positive integer such that dA is integral valued

on L and eλ \ et for all indices i, d and e1 have to be relatively prime.

Let

(5.1) di = d{ei,d)-1, (i = 1,2, . . - , / ) ,

where (#*, d) denotes the greatest common divisor of e% and d. Then ^

is the smallest positive integer such that d^d'1 is an integer and we

have dt = d and di+1 \dt (i = 1,2, , £ — 1).

Let N be the subgroup of L consisting of all aeL such that A(a,β)

is an integer for every βeL. Then

{dιωl9 , d/ŷ , <»,+1, , cyn, dxω[, , d ^ , ΰ>̂ +1, , a/,]

is a basis of 2V.

Let Lx and Lί be the subgroups of L generated by {ωly , ωn} and

{ω[, , oQ respectively and let

N ι = L 1 Π N 9 N'2 = L 2 Π N .

Then N1 and iVa are the subgroups of N generated by

{d^19 , d/oi9 ω£+1, - - -, ωn} a n d { d ^ , , deω
f

e, ω'M> , ω'n}

respectively and we have

(5.2) L = Lι@L/

19 N = N1®Nί

and

Let

K = L/N, K^LJN^ K[ = UJN{.

Then K,Kλ and K[ are finite abelian groups and we have

κ = κιeκ{9 idsxί

Let

(5.3) m = dγdly - - ,de.

Then m is the order of Kλ and {dlf , d£) are the invariants of the
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finite abelian group Kx. We shall denote by C(K^ the vector space of

all complex valued functions on Kx. Then C{K^) is an m-dimensional

complex vector space. C(K^) is not only a vector space but also has an

algebra structure and C(K^) is called the group algebra of the finite

abelian group Kλ. We shall denote by R the regular representation of

Kγ. R is a representation of Kλ defined by

(5.4) (R(9)f)(h) = f{h + g)

for all g.heK, and feC(Kx).

For each λe L, we shall denote by λ the image of λ in K = L/N.

In particular if aeLx (af e LO, then a(a') belongs to K^KQ. We now

consider ε{A(a, a')}, where aeLγ and af e L[. We have ε{A(a, a')} = ε{A(β, β')}

w h e n e v e r a — ~β a n d a! = ~β'. F o r w e h a v e t h e n a — βeN a n d a! — β/ e N

a n d h e n c e A(a — β, a') a n d A(β, a! — β') a r e i n t e g e r s , w h e n c e

0) = e(A(β, βθ) .

Therefore we can define a pairing of abelian groups Kt and K[ by

(5.5) <flr,ff/> =

where g = a and g' — a1.

For any # e ίCj and ^ r e K[, (g, g'y is a d-th root of unity and we

have

<g + h, g'> = <g, g'Xh, g'> , (g, g' + h!> - <$, g'Xg, h!> .

Then χg,: ^ —> <#, flr') is a character of the abelian group Kλ. Moreover,

if gf φ h', we have χg, Φ χh/. For let gf = a', hf = f where or7, β' e L[. If

χp/ = χh,9 then we have A(a>af — β') e Z for all aeLx and hence a! — βf

e N{. Then we get af — ψ and gf = fc^ Since the order of Kί is equal

to the order of Kx we can identify K[ with the character group of K1

by the identification map g/ -+χg>. The group GA(L) is identified with

Lλ x L[ x C* with the multiplication

(5.6) (α, ^ , a)(β, β', 6) = (α + ]8, α7 + ^ , e | l (A(α, jSO - A(β,

Then Lx x {0} x {1} and {0} x Lί x {1} are subgroups isomorphic to Lλ and

L[ respectively and Lx x {0} x C* (resp. {0} x L[ x C*) is also a subgroup

isomorphic to the direct sum of Lx and C* (resp. LJ and C*).
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For each integer fe, let pA

k)(a9a'9a) be a linear transformation of

C(KX) such that

(5.7) (pA

kK«Xf(x'i

for all / e C(KX) and x e Kx, where ξ is an element of Lx such that I = x.

Notice that if ξ and η are in Lx and if f = η9 then ξ — η e N and hence

ε{A(S9oer)} = ε{A(η9a!)}. Hence the right hand side of (5.7) is independent

of the choice of ξ such that I = x. It is easy to verify that pA

k) is a

holomorphic representation of GA(L) and pψ is homogeneous of order k

in the sense defined in §4.

From (5.7) we get

^ , 0 , 1 ) = 1 , veNl9

(5.8) pi*)(0,i;/,l) = 1 , v'eN'19

^ ( 0 , 0 , a) = ak -1 , α e C * ,

where 1 denotes the identity operator of CCίQ.

THEOREM 5.1. Let mk be the order of the subgroup kKx of Kx and

ik the index of kKx in Kx. Then p^ splits into a sum of ik inequivalent

irreducible representations p{2\:

The degree of each irreducible representation pA

kft is mk. The rep-

resentation p^ is irreducible if and only if (fc, d) = 1.

Proof. From the commutation rule

(α, 0, l)(0, a', 1) = (0, a\ l)(α, 0, l)(0,0, ε{A(a, a')})

and from (5.5) and (5.8) we obtain

(5.9) tfKa, 0, lVi*>(0, a', 1) = <α, fe>?>(0, </, DtfKa, 0,1) .

It also follows from (5.7) that

(5.10)

for all / e C(ifi) and aeLλ. Since Kx is abelian, the regular repre-

sentation R decomposes into a sum of 1-dimensional representations and

each 1-dimensional representation is a character of Kx. We know that
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the regular representation contains every irreducible representation and

hence R contains every characters of Kλ. On the other hand we have

identified K[ with the character group of Kλ via the pairing (5.5). Hence

C(KJ is a direct sum of 1-dimensional subspaces Wg,(g' e K[) such that

that W5, consists of all φ e C(K^) with

for all αeLj . Then we get from (5.9) that

(5.11) p{

A

kKO,a'9l)Wg, = Wg,+ka,.

Let d , , Cίk be distinct cosets of K[ modulo kK[ and let

Ut= Σ Wg. (1 rg t ^ ik) .
g'ect

The dimension of Ut is equal to the order mk of kKί9 because Kx = K[.

Then Ut is an invariant subspace of C(K^). We show that Ut is irre-

ducible. Let U't(Φ {0}) be an invariant subspace of Ut. Then we have

pA

k)(a, 0, l)U't — U't for all aeLx and hence there exists a g' eCt such that

Wg, c Ό't. Then by (5.11) we get Wh. c U[ for all h'eCt. Thus ϋ[ = Ut

and ?7j is irreducible.

Let pA!M,a',a) be the restriction of pA

k)(a, a!, a) to Ut. Then ^ is

an irreducible representation of degree mk for each t = 1,2, ,ΐfc and

obviously p ^ decomposes into sum of these irreducible representations.

If p^t and p^ were equivalent, the restriction of these representations

to element of the form {a, 0,1) should yield the same set of characters

of Kλ and if t Φ s, this is not the case. Hence pA®t are inequivalent ir-

reducible representations.

The representation pA

k) is irreducible if and only if Kx — kKλ. Kλ is

a direct sum of cyclic groups of order dt generated by ω€ (i = 1,2, , £)
and we have kKλ = Kλ if and only if (fc, di) = 1 for ί = 1,2, , £. How-

ever d — dγ and d€ | d for i = 1,2, , ί. Hence we have ik, dt) = 1 for

all i if and only if (fc, d) = 1. This proves that ^ifc) is irreducible if and

only if k and d are relatively prime.

If follows from (5.8) that pA

k?t is homogenous of order k and

pftb, 0,1) = ^ ( 0 , x/, 1) = 1, x; e iV2, ^ e N[.

We now prove the following lemma:

LEMMA 5.1. Let p be an irreducible representation of GA(L) in a
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complex vector space U such that

p(v, 0,1) = ,9(0, i/, 1) = 1 for ve N19 v1 e N{

and

p(Q,O,ά) = akΛ for all α e C * .

Then p is equivalent to one of the irreducible representations ρA

k)

it.

Proof. By our condition on p, we can define a representation of Kx

by a->p(a, 0, lXαeLj). We have also

(5.12) p(a, 0,1)^(0, </, 1) = <s, fcs>(0, α', l>p( α , 0,1) .

There exists ueU(u Φ 0) and ^ e K ί such t h a t

p(a, 0,1) = <a, g'}u

for all α: e Lx. Let ^ , = p(0, β\ ΐ)u for all ~βf e K'λ. Then we obtain from

(5.12) that

p(a, 0, l)ur = <3, flr' + ΛjS7^ .

Let Ct be the coset of K[ modulo kK[ containing gf. Then there is an

obvious linear map T from Ut = 2] ^V o n t ° the subspace of ί7 spanned

by {uβ} such that Γop^ t(a9a
f,a) = ^(α,αr',α)oΓ and as ^ and p are both

irreducible, T is bijective. Thus ^ and p%t are equivalent.

§ 6. Classification of irreducible holomorphic representations of GJJL).

THEOREM 6.1. Every irreducible holomorphic representation of GA(L)

is equivalent to a representation of the form

where σ is a 1-dimensional representation of L, that is, σ is a 1-dimen-

sional representation of GA(L) such that σ(0, a) = 1 for all α e C * .

The following proof of Theorem 6.1 is due to J. Hano. The sub-

group N X C* is the center of GA{L) and hence

for all aeN, where p'(a) e C*. The map pf: N -> C* satisfies

p'(a)p'(β) = p'{a + β
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for a, βeN. We define a l?-bilinear from Ψ on V x V by

Σ *>;, Σ »*ω* + Σ vWO

Then Ψ is a satellite form of A, namely A(x, y) = ?PX#, j/) — SF(j/, #) and

letting ψo(a) = el—kW(a9a)\9aeN9 we obtain a semi-character ψ0 of JV

with respect kA which is integral valued on N X N. That is, ^ 0 is a
map from N to C? = {zeC||2| = 1} such that

From the definition of Ψy it is clear that

ΨoM = 1

if either ^eiVj or aeN[.
There exists a 1-dimensional representation σ7 of N such that

for all αeJV. We can extend σf to a 1-dimensional representation σ of
L. Then we have (σ"1 ® p)(a9ΐ) = σ\aYιp\a)Λ = ψo(α) l for all α:eiV
and hence (σ"1 ® p)(a, 1) = 1 for all aeN1 and a e N[. Then by Lemma
5.1, α " 1 ® ^ is equivalent to ^ for some t and hence p is equivalent to

§ 7. Vector bundles defined by irreducible holomorphic representations of the

group GH(L).

In this section we assume that A is the imaginary part of an
Ήermitian form H on V. Then there is a one-to-one correspondence
between the set of irreducible holomorphic representations pH of GH(L)
and the set of irreducible holomorphic representations ρΛ of GA(L) and
the one-to-one correspondence is given by (4.1), that is,

(7.1) pH(a, a', a) = pA(a, a', ε{-~H(a + a',a +

We denote by pS]t the irreducible holomorphic representation of GH(L)
which corresponds to the irreducible representation p{^t of GA{L) con-
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structed in § 5.

Consider now the Hermitian form kH. The imaginary part of kH

is kA and our decomposition L = Lι®L[ of L which is defined by A and

which is used to define the representations pA

k)

tt is also a decomposition

of L with respect to the alternating form kA (although the sublattice

N of L defined by A could be different from the one defined by kA).

Therefore we can define the irreducible holomorphic representations p(j/2it

of the group GkA(L) using the decomposition L — Lx®Lf

x and then the

irreducible holomorphic representations pk

j^t of the group GkH(L).

We prove the following lemma.

LEMMA 7.1. Let F be the vector bundle over the complex torus

E = V/L defined by an irreducible holomorphic representation p$t of

the group GH(L). Then F is isomorphic to a vector bundle Lμ®F',

where the vector bundle Fr is defined by the irreducible holomorphic

representation pk\ of the group GkH(L) and Lμ is a line bundle defined

by a 1-dimensional representation μ of L.

Proof. We have p<ft(0,0, a) = ak. 1 and p£A(0,0, a) = α 1. The theta

factors J and 3' associated with the representations p^t of GA(L) and

with the representation pk

x

A of GkA(L) are then given by (4.3) and we

have

(7.2) J(a + a', u) = εf—kH(u9 a + a') + —kH(a + a', a + a'))
I2i 4i J

and

(7.3) J'{a + al, u) = ef—kH(u, a + a') + —kH(a + a', a + a')}
I2i U )

PkK—a> —a', 1) for a e Lx and a! eL[ .

Let

τ(a,a',a) = p%t(a,a',l) a,

for a e Ll9 a! eL'19ae C*.
We show that r is a representation of GkA(L). We have

τ(a,a',a)τ(β,p,b)

= pA%((a,a',ΐ)(β,β',ΐ))ab
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+ β,a' + β',ε\^A{a + a',β +

= P^M + β>«' + β'> D β { | fcA(α + oc', β

On the other hand we have

(a, a', a)(β, β', b) = (a + β, a' + β', ε^kA(a + a', β + β')}ab\

in the group GkA(L). Hence we have τ((a, a', ά)(β, β', b)) = ρ(*>t(a + β, a' +

β', l)εf—JcA(a + a',β + β')]ab and we get τ(a, a', a)τ(β, β', b) = τ((a, a', a)

(β, β', &)). Clearly r is an irreducible holomorphic representation of GkA(L)

such that τ(0,0,α) = α l . Then, by Theorem 6.1, we see that τ is

equivalent to a representation μ (x) p^l, where μ is a 1-dimensional rep-

resentation of L. Since we have ^^(α, af, 1) = τ(a, a', 1), we see from

(7.2) and (7.3) that the factor J is equivalent to the factor μ®J'. Let

Lμ be the line bundle over E associated with the representation μ of L.

Then we have F = Lμ® F' and this proves Lemma 7.1.

THEOREM 7.1. Let p be an irreducible holomorphic representation

of GH(L) and Fp the holomorphic vector bundle over E — V jL defined

by p. Then there exist a 1-dίmensίonal representation σ of L such that

where k is the order of homogenuity of p in the sense of §4 and Lσ is

the line bundle defined by σ.

Proof. By Theorem 6.1, p is equivalent to a representation of

GH{L) of the form η® pπ]t and hence Fp is isomorphic to Lη®F, where

F is defined by p^t- By Lemma 7.1, we have F ^ Lμ<S)Fpω, whence

Fp ^ Lσ (x) F,co with σ=7] (x) μ .

COROLLARY 7.2. Let F be a holomorphic line bundle over E = V/L.

Then F = Lσ®Fpa), where σ is a 1-dimensional representation of L and

H is a Hermitian form on V whose imaginary part is integral valued

on L.
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§8. Properties of the holomorphic vector bundle defined by the Schrδdinger

representation of GH(L).

According to Theorem 7.1, the study of holomorphic vector bundles

associated with holomorphic irreducible representations of GH(L) for

varying H is reduced to the study of bundles associated with the irre-

ducible representation pgK In this and following section we shall denote

the representations pA

ι) and p{£ by DA and DH respectively and call DA

and DH the Schrδdinger representation of GA(L) and GH(L). The rep-

resentation DA is an irreducible holomorphic representation of GΛ(L) by

Theorem 5.1 and it is defined by

(8.1) (DA(a, a', a)f)(x) = a-ε{±A(a, of) + A(ξ, a')}f(x + a)

for every / in the group algebra C{KX), where ξ is any element in Lx

such that ξ = xeKt. For each geKt let fg be the function on Kx such

that

11 , x = g .

Then {fg} form a basis of C(K^ and we have

(8.2) Mx + h) = fg_h(x)

for any g,h,GKx.

The function x -> ε{A(£, (/)}fg(% + a) is equal to the function ε{A(/3 —

a,a')}fg-a where f = a; and ~β = g. Then we get from (8.1) and (8.2)

the following formula:

(8.3) DA(a, a', a)fg = α βj—|-A(cr,

where ]8 is any element in Lλ such that J8 = ^.

The theta factor J ^ associated with Z>ff is given by (4.3) and we

get

JH(a + a\u) = efiH(M,α + «0 + ^H(α + «',« +
l2^ 4i

and we obtain from (8.3):
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JH(a + a', u)fg

(8.4) = ε{^-H(u, a + oθ + ~H(a + a', a + a'))
I2z 4A )

-lA(α,αO - A(β,a')}fg+S ,

where g = ~β9 β e Lx and a e Lί9 a! e L[.

In particular we have

(8.5) JH(a, u)fg = e(ifΓ(w, α) + ifffe, α))/,+ β (α e Lx)

and

(8.6) J^(^, u)fg = e{±H(u, oί) + ~H{a\ a'))e{-A{β, a')}fg , {a' e LQ .

Let

(8.7) M = N, Θ Lί .

Then M is a lattice of V containing N = Nχ®NΊ and contained in L =

Lj 0 L[ and A is integral valued on M.

Let

(8.8) EM = 7/M .

Then £7^ is a complex torus and there is a homomorphism

φ\EM-±E = V/L

and the kernel of 9? is L/Λί which we identify canonically with Kx.

For each ^eϋCx let

(8.9) ψg(v + αθ = *{--|-A(x;, αθ - A(β, «θ} (^ - ft j8 e Lx)

for all 1̂  + α:7 e M with veNi and #' e L[. Then ψ^ is a semi-character

on the lattice M, i.e. we have

ψg(m + ra') =

for all m,m'el.
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Let

(8.10) jg(v + a',u) = ψg(v + a')ε^H(u,v + a!) + ^H{v + a',v + a')} .

Since \> = 0 (the zero element of KJ for v e Nlf we get from (8.4)

that

(8.11) JH(v + a', u)fg = jg(v + of, u)fg

for all g e Kί9v e N^a* e L[. Then we conclude that jQ is a theta factor

for the lattice M and that JH(v + a', u) is the diagonal matrix whose

diagonal entries are jg(v + a',u).

Let Lg (g e Kλ) be the line bundle over EM defined by the theta fac-

tor j g . Now JH(m,u)(meM) is a theta factor for the lattice M and

the vector bundle over EM defined by this factor is the pull back φ*FDH,

where FDH is the vector bundle over E associated with the Schrodinger

representation DH.

Then we have

(8.12) φ*FDs = Σ Lg.
geκι

If g φ h, then Lg and Lh are not isomorphic. For we have

(8.13) φ + a', u) = ε{-A(β - γ, a')}jh(v + a', u)

where ~β = g and γ = h, and the representation of M defined by v + a!

—> ε{—A(β — γ, a')} is not trivial except for the case /j = γ. Thus two

normalized factors j g and j h for the lattice M are distinct and hence Lg

and Lh are not isomorphic. However they are algebraical equivalent,

namely they have the same Chern class (see [6]).

Let now

Tg: EM —> EM

be the translation of the complex torus EM by an element geKλ{(zEM).

We show that

(8.14) T*Lh g* Lh_g ,

where T*Lh denotes the pull-back of Lh by Tg. The pull-back T*Lh is

defined by the factor
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where β = g. However

A + cθ = Mβ, v + of) + \-B{v + a', β)

and ε{A(β,v + a')} = ε{A{β,a')}. Hence ε{J,#(/3,v + a')\ = ε{A(β,a')}

εί~H(v + a',β)). We have also ε\—H{v + « ' ,$] = P(u + υ +

where Pin) = ε(—iϊ(^, fl)l. Thus
I2i J

and since P(^) is a non-vanishing holomorphic function on V,

P(u + v + a')IP(u) is a trivial factor. Thus T^LΛ is isomorphic to the

line bundle defined by the factor ε{A(β, a')} jh(v + a', u) which is equal

to j h _ g by (8.13). Thus T*Lh ^ Lh_g.

Summing up we obtain the following theorem.

THEOREM 8.1. Let FDH be the holomorphic vector bundle on the

complex torus E, associated with the Schrδdinger representation DH of

GH(L). There exist a complex torus EM and a homomorphism φ:EM-+

E of EM onto E whose kernel is Kλ and there are holomorphic line

bundles {Lg}geKl on EM such that Lg ψ Lh for g Φ h, T*Lh = Lh_g and

Σ
κ

Remark. Theorem 8.1 shows that FDH is the direct images φ*Lg of

any one of line bundles Lg on EM.

We consider now the vector bundle EndCF^). Then there exists an

exact sequence

0 — / — End (FDH) -> Q -> 0 ,

where / is the trivial line bundle and Q is the quotient bundle. The

homomorphism / -» End (FDH) is defined by associating to each complex

number c the multiplication of each fibre of FDH by c. We get then a

homomorphism of cohomologies
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W(E, Θ) -> ί P ( # , End (FDH))

induced by / —> FDH.

We have the following theorem due to Oda [5].

THEOREM 8.2 (Oda). Let F be a holomorphic vector bundle on a

complex torus X. Then the following two statements are equivalent.

(1) There exist a complex torus Y and a homomorphism φ of Y

onto X and a line bundle L on Y such that

T*L φ. L for all g e ker (φ) and φ*L = F .

(2) The homomorphism W(X, Θ) -> H*(X, End (F)) induced by I ->

End (F) is an isomorphism for all j .

Applying the theorem of Oda for the vector bundle FDjr9 we get

from Theorem 8.1 the following corollary.

COROLLARY 8.2. We have

W(E, Θ) s H'(E, End (FDjs))

for all j . In particular we have

Γ(E, End (FDπ)) = C .

A vector bundle F is said to be simple if Γ(E, End (F)) = C. A

simple vector bundle is indecomposable. Hence

COROLLARY 8.3. The vector bundle FDH is simple and hence it is

indecomposable.

Moreover we have Hj(E, Θ) ̂  H°>j(E, C) and since E is an ^-dimen-

sional complex torus, dimίf°^(Z?, C) = ί j . Thus we get

We now consider a theta function θ for the factor JH. The function θ

is a CCZQ-valued holomorphic function on V satisfying the equation

θ(a + a! + u) = JH(a + a', u)θ(u)

for all a e L19 a' e L[ and ueV.

We write
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Θ{U) = Σ θg(u)fg
geκt

and we identify β(u) with the column vector {θg(u)) of holomorphic

functions θg(u) on V. We see from (8.4) that the components of the

vector θ satisfy the following equation.

θg(a + a! + u)

(8.14) = εfiiϊfa, a + a') + ίff(α + α', α + αθ)
I2ι 4̂  J

where ]8 = #.

If veN19 then A(i>,αO is an integer and el—A(i>,αθ} = ± 1

hence e{—A(y,αθ) = e[——A(y,αθ) Then we get from (8.10) that

#<> + or7 + u) = ^(v + αr;, w)^(w)

for ^eiV1,α /6Lί. This shows that the component θg(u) is a theta func-

tion for the lattice M and the factor j g . In particular 0O (0 is the zero

element of KJ is a theta function for the lattice M and the factor j Q .

Letting a = β, a' = 0 and replacing u by — β + u in (8.14) we get

(8.15) 0α(tt) = ε{~Mu9 β) - ±-
I2ι 4̂

where ~β = g. This shows that #g is uniquely determined by θ0.

Let fe be a theta function for the lattice M and the factor jQ. We

show that there exists a theta function θ for the lattice L and the fac-

tor JH such that ft = θ0. To see this we first assert that

ifffa, 0) ff(i8, j8)U(-j8 + u)
2̂  4̂  J

ff(M,r)
4̂

for any two elements β and 7- in Lx such that j§ = γ. In fact, if j§ = f,

then we have v = β ~ γ eN1 and hence
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We have

flff(M - β, β - γ) + ±H(β ~ T> β
I2ι 4̂

However, as A(β, γ) = 0, we have H(β, γ) = H(γ, β), whence

fiff(«, f) - iiϊ(r, r))φ, ~β + u) =

from which our assertion follows.

We can then define θg for each g e Kx by

(8.16) gβ(u) = (

where ^ is any element in Lx such that J8 = g. In particular letting

β z= 0 we have θQ — h. Then we can verify easily that the vector (θg)

satisfy the equation (8.14). Thus θ = iθg) is a theta function for the

lattice L and the factor JH such that θ0 = fe.

We have shown that h —> θ defines a bijective map from the vector

space of all theta functions for M and jQ, which is identified with the

vector space Γ(EM, Lo) of all holomorphic sections of the line bundle Lo,

onto the vector space of all theta functions for L and JH. The latter

vector space is identified with the vector space Γ(E, FDH) of all holomor-

phic sections of the vector bundle FDs.

Since the theta factor jQ is in the normalized form (8.10), we know

that if Γ(EM,L0) Φ{0}, then the Hermitian form H is positive (;>) and

dim Γ(EMf Lo) is equal to the reduced Pfaffian of A relative to M, that

is, the product of nonzero elementary divisors of the integral alternat-

ing form A on M (see [1], [4], [6]).

The lattice M has a basis

{di<ύly d2ω2, , deωe, ωi+19 , , ωn, a/19 - , ω'n}

and we have

A(ωt9 o)j) = A(ω{, ω',) = 0
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where e£+1 = = en — 0 and eu , et are non-zero (see § 5). Then

and by (5.1) we get

A(dtωi9ω0 =

for i — 1,2, , L Therefore e%{βu d)~ι (i — 1, , £) are non-zero ele-
mentary divisors of the integral alternating form A on M and we get

dim Γ(EM,LQ) = aim Γ(E,FDa) = Π Φ * ^ " 1

ί = l

Summing up we get

THEOREM 8.3. Let FDH be the holomorphic vector bundle over E
defined by the Schrodinger representation of the group GH(L). The

rank of FΌκ is equal to de J] (ei9 d)~ι and the dimension of the vector

space Γ(E,FDH) of holomorphic sections of FDH is nonzero if and only
if H is positive and H Φ 0 and if this is the case, we have

dim Γ(E,FDff) = Π e^e^d)-1;
i = l

here d is the smallest positive integer such that dA is integral valued
on L, A being the imaginary part of H, and e19 , ee denote the non-
zero elementary divisors of the integral alternating form dA on L.

For any complex torus E = V/L and a theta factor J of rank r for
L, let us denote by DP(E,J) the complex vector space of all Cr-valued
differential form ω of type (0,p) on V such that

(Tfω)u = J(a, u)ωu

for every a e L and ueV, where Ta: V -> V denotes the translation of
V by a and ωu is the value of ω at u. Since J(a,u) is holomorphic in
u, we have d"ωeDv+\E,J) for every ωeD*>(E,J). Thus D(E,J) =
2 DP(E, J) is a complex with coboundary operator dff and the cohomology

groups HP(E,J) of this complex is canonically identified with the
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cohomology groups Hp(E,Fj) of the sheaf of germs of holomorphic sec-

tions of the vector bundle Fj defined by J.

Consider now DP(E,JDH) and let ωeDp(E9JDH). We can represent

ω by a column vector (ωg)(geK^) and we can show precisely as in the

proof of Theorem 8.3 that ω0 is an element of Dp(EM,j0) and that the

map from DP(EM, j0) to DP{E, JDH) defined by ωQ —> ω is a bijective linear

map for each p commuting with d". Thus this induces an isomorphism

of cohomologies

(8.17) HP(EM, LO) S Hp(E, FDH)

for all p.

We now have the following theorem of Mumford [4] (see also [7]).

Let E be a complex torus and F a line bundle over E defined by a nor-

malized theta factor ψ(α)I — H(u,a) + — H(a,a)\, where aeL,ueV with

I2i 4̂  J

E = F/L. Assume that the Hermitian form if is non-degenerate and

let i(H) be the number of negative eigenvalues of H. Then HP(E, F) = 0

except for p = i(ίf) and the dimension of HUH)(E, F) is equal to the

Plaffian of the imaginary part A of H.

Applying this theorem of Mumford to the line bundle Lo over EM

we obtain from the isomorphism (8.17) the following theorem.

THEOREM 8.4. The notation being as in Theorem 8.3, we assume

that H is non-degenerate and let i(H) denote the number of negative

eigenvalues of H. Then we have

Hp(E, FDH) = 0 , pφ i(H)

and

dim HίiH)(E, FDH) — \

§9. Vector bundles associated with indecomposable holomorphic representa-

tions of GH(L)9 their tensor products and Chern classes.

In §4 we called a holomorphic representation p of GA(L) is homo-

geneous of order k, if p(0,ά) = akΛ for all α e C * , where k is an inte-

ger. Every irreducible holomorphic representation is homogeneous and

every representation of L is regarded as a homogeneous representation

of degree 0.
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LEMMA 9.1. Let p be a holomorphίc> representation of GΛ(L). Then
p splits into a sum of holomorphίc homogeneous representations pu ,
^s having distinct orders.

As a corollary we get

COROLLARY 9.1. Every indecomposable holomorphίc representation
of GA(L) is homogeneous.

To prove Lemma 9.1 we first observe that every holomorphic rep-
resentation σ of C is of the form

σ(z) = exp zB ,

where B is a complex matrix. Now let σ: C* —> GLr(C) be a holomorphic
representation and let p:C-*C* be the covering homomorphism defined
by p(z) = exp z. Then ker p = {2πim \ m e Z}. We can lift σ be a rep-
resentations σ: C—> GLr(C) such that σ(X) = σ(p(z)). There is a r X r
complex matrix J5 such that </(#) = exp zB. Then we have 1 == σ(p(2πi))
= exp2πΐβ. Then ί -* exp 2τriίB (t e jf?) defines a representation of R/(ϊ)
and hence we may assume that exp2πίtB are unitary for all teR. Then
iB is skew Hermitian and so B is a Hermitian matrix. Again we may
assume that B is diagonal. Then as exp 2πiB = 1, the diagonal entries
mlf , mr of 1? are integers and exp zB is the diagonal matrix with
diagonal entries expzmί9 ,exp zmr. Since p(z) = expz, we see that
for each aeC*,σ(ά) is the diagonal matrix whose diagonal entries are
αmi, , amr.

Let /) be a holomorphic representation of GΛ(L) in a complex vector
space U and let σ(a) ~ p(0,a). Then σ(a) is a holomorphic representa-
tion of C*. We have a basis of £7 with respect to which every σ(a) is
represented by a diagonal matrix whose diagonal entries are am\ , αmr.
Denote by {fcj, , ks} the set of distinct integers which appears in
{m19 -,mr) and let

Ui = {u e ϋ\σ(a)u = aki u for all α

Then U = U1Θ Θ Ur. Let w e Z7<. Then

σ(a)p(a, l)u = p(0, a)ρ(a, l)u = ?̂(

= a*^(a,i)ti. Thus we get p{a,ϊ)ue Ut. It follows then that each Ut is
an invariant subspace. Let pt(a,a) be the restriction of p(a, a) to ϋ^



190 YOZO MATSUSHIMA

Then pi is a representation of GA(L) in Ut and ^(0, a) = σ(a)\ Ut = αfci l .

Thus ^ is homogeneous of order fc^ and ^ splits into the sum of p19 ,

To a holomorphic representation p of GA(L) corresponds a holomorphic

representation pH of GH(L) and a holomorphic vector bundle over E =

V/L associated to pH. In this section we shall denote this vector bundle

by Fp or by FPA. According to the splitting of the representation p,Fp

also decomposes into direct sum. Hence the important case is the case

where p is an indecomposable representation. By Corollary 9.1 p is

then homogeneous.

THEOREM 9.1. Let Hι and H2 be Hermitian forms on V such that

the imaginary parts A1 and A2 are rational valued on L. Let pAl and

PA2 be indecomposable representations of GAl(L) and GAi(L) of order kx

and k2 respectively. Let

H = kxHx + k2H2 , A = kxAx + k2A2 .

Then there exists a holomorphic representation ρA of GA(L) which is

homogeneous of order 1 such that

Proof. Let

σ(a) = pAl(a, 1) ® pΛ%(a, 1)

for all aeL.
Then we have

σ(a)σ(β) = e{±A(a, βήσ(a + β) .

Put

pA(a, a) = σ(a) a .

Then pA is a holomorphic representation of GA(L) homogeneous. of order

1. The theta factor / corresponding to pA is given by

(see (4.3)).

J(a,u) = βflfl(w,α) +
I2t At
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We can write this in the form

J(a, u) = J^a, u) (g) J2(a, u) , (a e L) ,

where

Jj(a,u) = ε[—kjHj(u,a) + —kjHJ(a,a)\pA,(--a,ΐ)

for / = 1,2. Then J^ is the theta factor corresponding to pAj. This

proves t h a t FPΛ ^ F , ^ (x) FPA%.

To prove the next theorem we observe t h a t Lλχ L[χ U2d is a sub-

group of GA(L)9 where U2d denotes the group of all 2d-th roots of unity.

For, we have

(α, 0,1). (0, a\ 1) = (a, a', el—A(ct9 a')\\ and dA(a, a') e Z .

Moreover the image of this group by the Schrδdinger representation DA

is a finite group, because we have DA(v, 0,1) = DA(0, v, 1) = 1 for v e N19

vf e N[. Therefore we may assume that DA(a, a', 1) are unitary trans-

formations of C(K^ (for a suitable inner product) for all aeLιya
f

THEOREM 9.2. Let H1 and H2 be Hermitίan forms on V such that

the imaginary parts Ax and A2 are rational valued on L. Let pAl and

pM be irreducible holomorphίc representations of GΛl(L) and GA2(L)

respectively and let kx and k2 be the orders of homogenuity of pAl and

PA2 Let

H = kxHλ + k2H2 , A = M i +

Then there exist 1-dimensional representation σ19 , σs of L such that

FPAl ® FPA2 s (Lσi ® FDA) Θ Θ (Lσs (x) FDJ ,

where Lσi denotes the line bundle associated with at.

Proof. By Theorem 7.1., FPAχ ^ Lτi ® FDkχAχ and F p , 2 ^ L r 2 (x) F ^ ^

hence FPAl ® F ^ 2 ^ LΓ l Θ r 2 <g> F ^ ^ ® F ^ ^ . Let

σ(a) - Dt^Cα, 1) ® DkU%{a, 1) for all α.e L

and

ρA(a9 a) =
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Then as in the proof of Theorem 9.1, pA is a homogeneous representa-

tion of GJJL) of order 1 and we have FDkχAi ® FDtUa s FPA. Since DklΛl(α, 1)

and Dk2A2(α, 1) are unitary for all αeL as we have seen above, σ(α) is

also unitary for all αeL. Then the representation pA is completely

reducible and we have ρA = ^ 0 - 0 ps, where each pt is irreducible and

homogeneous of order 1. Again by Theorem 7.1, we have Fpt ^ LH®FDA.

Then

Letting <J* = τi ® τ2 <g> λt for i = 1,2, , s we get FP

Remark. From the proof of Theorem 9.2 we obtain the following

rather strange results. Let m(H) be the degree of the Schrodinger

representation DH of GH(L). Then m(Hx + iϊ2) divides miHJ-miHz).

To compute the Chern classes, let π: 7 -»£7 = V/L be the covering

map. We choose an open covering {U7J of E with the following prop-

erty: Ui are connected and each connected component of π~\Ui) are

mapped homeomorphically onto Z7* by π. For each E7<, choose a connected

component £/* of π~\U^. Then we have π~\U^ = (J Te.C/i, where

Ta:V-+V is the translation of V by a eL. Let

(9.1) ptiϋi-^ϋi

be the inverse of the homeomorphism π:Ui-*Ui.

For each pair (i, j) of indices such that Ui Π ?7̂  is non-empty, there

exists a unique <r̂  e L such that

(9.2) Pi(x) = Λ ( α ) + σy<

for all a? 6 I7< Π Uj.

Let J be a GLr(C)-valued theta factor for the torus E and let

(9.3) gu{x)^J{σii9ps{x))

for all xeUi Π 17̂ . Then gij: U^ Π Uj-+ GLr(C) is a holomorphic map

and {gij} is a system of transition functions of the vector bundle F over

E associated with the factor J.

A connection of the vector bundle F is defined by a connection form

ω = {<yj. Here each ωt is a r X r matrix whose entries are 1-forms
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defined on U€ and they satisfy the condition

(9.4) ωj = gtfdgtj + g^g^ on Z7, Π Uj .

We assume that J is of the form

(9.5) J(a, u) = εfifί(M, *))<?(*) ,
I2ι J

where C(ά) is a constant matrix depending on aeL. Notice that the
theta factor associated with a homogeneous representation of GA(L) has
this form. Take a basis of V and identify V with Cn and write

H(u, a) = Σ KbUaΰb .
α,δ = l

Then J f e w) = exp <7r Σ feβδ^o«δlC(α) and
I α,δ J

= exp {TΓ 2 habua(pj(x))(σ^)b}C(σji) .

Let

for each i. Then {z^\ ,^i}} a r e local coordinates of S on Ut and from
(9.2) we get

dzf = d^> on t7« Π Z7̂  .

Let ζa be the holomorphic 1-form on E such that π*ζa = d^α. Then we
have

Cα = d ^

on each £7<β

We get

where l r is the r X r unit matrix.
Let

d Λi = ( ̂  Σ
\ α,6

α,δ

on each Ϊ74. Then it is easy to verify that ω = {ωj is a connection
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form. The curvature form Ω = {Ωi} is the system of 2-forms such that

Ωi = dcύi + ωt A ωt on Ut .

However we have ωt Λ ωt = 0 and hence Ωt = dωt. Then we get

lr on Ut

and since the left hand side is globally defined we have

(9.6) Ω

globally.
The total Chern class C(F) is defined by

C(F) = det (lr + -^-Ω

V 2π

Since Ω is of the form (9.6) we get

OF) = (l + 4r Σ K£a Λ ζ δ ) r .
\ 2 α,δ /

Thus we have

In particular we have

and

Cs(F) = 4 (

Now let F,A be the vector bundle associated with a holomorphic represen-
tation pA of GA{L) homogeneous of degree k. Then the theta factor is
of the form

J(a,u) = εl—kH(a,u)}c(a)
I2i J

and we get the following theorem.
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THEOREM 9.3. Let FPA be the vector bundle over E = V/L associated

with a holomorphic representation pA of degree r of GA(L) which is

homogeneous of order k. Let H be the Hermitian form whose imaginary

part is A and let

H(u, v) = χ; habuavb
a,b

for u, v e V. Let ζa be the holomorphic 1-form on E whose pullback to

V is dua (a = 1,2, , n). Then we have

Cλ{FPA) = kr ±Σ Kbζa Λ ζδ, CS(FPA) = 1
6 a,b r
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