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BOUNDARY VALUE PROBLEMS OF BIHARMONIC FUNCTIONS

HIDEMATU TANAKA

1. Introduction

Let Ω be a bounded domain of ^-dimensional Euclidean space Rn

(n > 2). On Ω we consider the biharmonic equation

( n 32

A function u in C\Ω) is called biharmonic in Ω if it satisfies the equa-
tion (1). In this note we shall deal with the following boundary value
problems. Find a biharmonic function u in Ω such that the following
couples of functions have boundary values given on the boundary of Ω:

d(Δu) .
(a)

(b)

du
dn

Δu ,

(c) u ,

dn
du
dn

d(Δu)
dn

J. L. Lions [4] treated these problems for the operator Δ2 + / and
gave solutions in case that Ω is a Nikodym domain. But in his method,
the boundary of Ω or boundary functions are not referred to.

In this note we take as the boundary the Martin boundary M of Ω
and define notations γo(u) and γ^iu) for a function u on Ω as follows.
If u has a fine boundary function f on M we denote / by γo(u) and if
u has φ, as generalized normal derivative of Doob [3] (in a slightly
modified sense), we denote ψ by γx{u) (c.f. Definitions 1 and 2).

Now our boundary value problems are described as follows. Find
a biharmonic function u in Ω such that the following couples of functions
are equal to boundary functions given on the Martin boundary M:
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(a) γ^u) , γx(Δu)

(b) γlΔu) , γλ{u)

(c)

Let K(x, ξ) be the Martin kernel and μ be the harmonic measure
on M. Define new measures μ and μ on M by dfi(ξ) = k(ξ)dμ(ξ) and

dβ(ξ) = -A—dμίς), where fc(?) = f X(&,£)cte.

Then we shall show that for any ψ e L\μ) with <p(ξ)dμ(ξ) = 0, there

exists a square integrable harmonic function h on Ω with Z?(fc) < oo
such that γ^h) = p if and only if β is a Nikodym domain (Lemma 8).
As an application of this fact we shall solve the above boundary value
problems as follows.

Assume that Ω is a Nikodym domain, then

(a) for any φ and ψ in L\μ) with ψ(ξ)dμ(ξ) = 0 there exists a

biharmonic function u such that ^OM) = φ and ftCJtή = ψ

(b) for any feL2(β) and φeLXμ) with f y>(£)d/£(£) = - f Hf(x)dx

there exists a biharmonic function w such that γo(Δu) = f and γx(u) — φ

(c) for any / e L\μ) and φ e L\μ) with φ(ξ)dμ(ξ) = 0 there exists

a biharmonic function w such that γo(u) = f and γ^Δu) = ^.

Moreover the uniqueness of the above solutions will be shown.

2. Preliminaries

Let Ω be an arbitrary bounded domain of the ^-dimensional Euclidean
space Rn(n > 2) and G(x, y) be it's Green function with respect to the
equation Δu = 0, that is (—Δy)G(x,y) = εx in Ω.

We shall mention the definition of the Martin boundary of Ω.
We put

Qy y)

on Ω x Ω if y Φ x0 and K(x, xQ) = 0 iί x Φ xQ and K(x0, xQ) = 1, where x0

is a fixed reference point in Ω.
We take a fixed exhaustion {Ωn} of i2 such that x0eΩ19 and put



d(xl9 x2) = Σ
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K(x, xλ) K(x, x2)

K(x, xλ) 1 + K(x, x2)

Then d defines a metric on β. We denote by β* the completion of β

by this metric. For a point ξ e Ω* — Ω, we can find a sequence {yn} in

β such that d(ξ, yn) —> 0 and so we can define

K(x, ξ) = lim K{Xy yn) .

We say that β* is the Martin compactification of Ω and the set M

= Ω* — Ω is called the Martin boundary of β. The function K(x, ξ)

on β x β* is called the Martin kernel. We denote by μ the harmonic

measure on M with respect to the fixed reference point x0.

Now let Gλ{x,y) be the Green function of Ω with respect to the

equation (J — ΐ)u — 0, that is (—Jy + l)Gi(x,T/) = εx in β. For a efl

and ξeM, we put

(2) K,(x9 f) = X(a?, f) - J Gxία, i/)X(y, ξ)dy .

We set for / e L\μ),

(3) H/(»)

and

(4) H1

/(a?)

Denote by D(^) the Dirichlet integral of u on β. For measurable

functions / and g on M, we put

( 5 ) D(f, g) - 1 ί f (/(f) - /(?))(flr(f) - g(τj))θ(ξ, η)dμ{ξ)dμ{rj)

and D(J) = />(/,/), where ^,57) is the Nairn kernel (c.f. [7]).

The following lemma is obtained by Doob [3].

LEMMA 1. If u is a harmonic function with D(u) < 00, then u has

a fine boundary function uf and D(uf) = D(u). Conversely if f is an

arbitrary measurable function on M with D(f) < 00, then feL\μ) and

D(Hf) =



HIDEMATU TANAKA

Put k(ξ) = K(x, ξ)dx, and k(ξ) is a strictly positive lower semi-

continuous function on M and so inf k(ξ) = c > 0. Since

I fc(f)φ(?) = J (I K(x, ξ)dμ(ξ))dx = \Ω\ (area of Ω) ,

we see that k(ξ)eL1(μ).
Define new measures β and μ on Af by dβ(ξ) = k(ξ)dμ(ξ) and

= dμ(?) respectively, and we have the following relations
k(ζ)

( 6 ) *(Af) C L2(/i) C L2(^) C L\μ) C L1^) ,

where B(M) is the space of all bounded measurable functions on M.
We also see that

(7) \\f\\mh < U
c

for any / e L\β).

By the Fubini theorem, Hfi(x)dx < oo for any / e L\β). Hence we

know

J Hlf[(x)H]gl(x)dx < J Hlf[(x)H{g[(x)dx

< (ϊ Hf*(x)dx- f Hgz(x)dxY2 < oo

for any / and g in L\μ).

LEMMA 2. Let f and g be in L\β). Then

( 8) J Hf(x)Hl(x)dx = J Hg{xWf{x)dx

and

( 9) [Hf{x)Hι

f{x)dx < f (Hf(x)ydx < c' f Hj{x)H}f{x)dx

for some constant & > 1.

Proof. By the definition of ϋ̂ O*;,?) and the resolvent equation,
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(10) H^x) = Hf{x) - I Gx{x, y)Hf(y)dy

and

(11) Hf(x) = H^x) + J G(x, yWf{y)dy .

Hence

= j Hg(x)(Hf(x) - J G&,

= J Hg(x)Hf(x)dx - J Hf(

y) - H\{y))dy

and

(12) f (Hf(x)Ydx - ί HjixW^dx = ί Hf(x)(Hf(x) - H^

= J H/(as)(f Gλx, y)H/y)dyyx

= J | Gt(a;, y)E}{x)Ίis{y)dxdy > 0 .

By (11)

[(ff/α HVfo - ΪHf(x)H}(x)dx = fe(*)(ί G(», y)H}(y)dy\dx

and hence

(ί (Hf(x)Ydx - [HjixWjWdxX

< J (Hf(x)Ydx (J(J G(«, 2/)d3/ J G(z, y){Hl

f{y)

<d j (Hf(x)Ydx J (#}(aθ)2<to

where c0 = sup (•?(#, τ/)<ii/. Similarly to (12), we know
xeo J

ΪHf(x)H}(x)dx - ί {H^Ydx > 0 ,
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and so we have an inequality

{(Hf(x))2dx

Hence

ί (Hf(x))2dx < c

for some constant c' > 1. This completes the proof.

Now we set

(13) H(M) - {/; / eL\β) and D(f) < 00} ,

and define two inner products on H(M) by

(14) (/, g\ = />(/, g)+j Hf(x)Hg(x)dx

and

(15) (/, g\ = />(/, g) + J Hf(x)Hl(x)dx

for functions / and g in H(M). By the above lemma, we know that

( , .)2 is an inner product on H(M). We put ||/|g = (f,f\ and ||/|g =

(Λ/)2 for feH(M). Then we have

LEMMA 3. Norms \\ ||i and \\ ||2 are equivalent and H{M) is a Hilbert

space with respect to these norms.

Proof. By the above lemma,

(16) | |/ | | 2 < Il/Hx < (max (1, cθ) 1 / 2 1|/ | | 2 ,

and so these norms are equivalent. Let / be in H(M). Then by the

Riesz decomposition of —(Hf)
2 we have

Since D(Hf) = — | dvf, we have
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(17) mμ)

= J ((Hf(x)Y + I G(x, V)dvf{y))dx

< max (l,2co)(f (Hf(x))2dx + D(Hf)\

(Hf(x))2dx + D(fή= max (

= max (

Hence we see that #(M) is a Hubert space.

3. Definitions of γo(u) and ^(M) for a function u on Ω

We shall define TΌ(W) a n d Γi(w) ί ° r a function ί̂ on fl as follows.

DEFINITION 1. If a function u on Ω has a fine boundary function
/ on M, we denote / by γo(u).

The definition of γx{u) is a slight modification of the definition of
the generalized normal derivative of u (c.f. Doob [3]).

DEFINITION 2. Consider the function u{x) = Hf(x) + up(x), where /
is a measurable function on M with D(f) < oo and up is a potential of
a measure y o n β . We assume that for any g eH(M),Hg is integrable
on Ω with respect to the absolute variation of y. If there exists a

function φ on M such that ^(f)g(?)dμ(?) < + oo and

(18) D(f, g) = - J p(£)flr(f)d/f(£) + j Hg(x)dv(x)

for any # e H(M), we denote p by γx(v).

We shall show the following

LEMMA 4. Lβί φ be in L2(μ). Then there exists a unique function
f e H{M) such that γx(v) = φ, where

u(x) = Hf(x) - J G(x, y)Hf(y)dy .

Proof. In the Hubert space ίί{M) with the norm || l̂ , the mapping



92 HIDEMATU TANAKA

9 -* —I g(ξ)φ(ξ)dμ(ξ) is a linear functional. By the Schwarz inequality

and (17), we have

\g(S)\

\\φ\\hcμ) \\9\\hΓμ)

- J

Hence the above mapping is bounded on H(M). Therefore there exists

a unique function /eH(M) such that (/,g)1 = —I φ(ξ)g(ξ)dμ(ξ), namely

D(J,g) = -jφ(ξMξ)dμ(£) + §Hg(x)(-Hf(x))dx

for any g e H(M). If we put u(x) = iϊ/ί^) — G(x, y)Hf(y)dy, then from

the definition we have γx{u) = ̂ ?.

Similarly we have

LEMMA 5. Let φ be in L\p). Then there exists a unique function

feH(M) such that rι{Hι

f) = φ.

Proof. By Lemma 3, the mapping g -> — ί g(ξ)φ(ξ)dμ(ξ) is a bound-

ed linear functional on the Hubert space H(M) with the norm || ||2.

Hence there exists a unique function / e H{M) such that

D(f,g)=-\

for any g e H{M). Since H\{x) — Hf(x) — \ G(x, y)E\{y)dy, we have r^H})

We set

H(M) = {/ 6 H(M) there exists γx(Hf) e L\p)} .

Then we have similarly to Folgesatz 17.27 in [1] and Theorem 6 in [6]

the following

LEMMA 6. H(M) is dense in H(M).



BOUNDARY VALUE PROBLEMS

Proof. Let /„ be in H(M) and (/0, g\ = 0 for any # G H(M). Then
we have

(19) JD(/o, #) + J Hf0(x)Hg(x)dx = 0 .

Since /0 is in L2(/l), by Lemma 4 there exists /„' e .fiΓ(M) such that

(20) rι{Hn - J G(., y)Hf.(y)dv) = Λ .

On the other hand

n(f G ( »y)Hn(y)dy\ = JX(aj, )Hffic)dx

and

Hence γλ(Hf,)eL\μ) and /0' is in #(M). By (19), we have

DiUfί) + ^HfQ(x)Hf,(x)dx = 0

and by (20),

therefore we know that fQ = 0. This completes the proof.

4. Nikodym domain

In this section we shall treat the problem whether we are able to

find / G H(M) such that γ^Hf) = φ for any φ e L\μ) with ί <p(ξ)dμ(ξ) = 0.

DEFINITION 3. (Deny-Lions [2]) We shall say that Ω is a Nikodym

domain if every distribution T with 3 T e L\Ω) (1 < i < n) is in L\Ω).
d

We set <ίy£) = (w weL\Ω) and -?— w e L\Ω) (l<i<n)\ .

A necessary and sufficient condition for Ω to be a Nikodym domain is
given by the following inequality of Poincare: there exists a constant
P(Ω) such that
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ί {u{x))zdx 11 u(x)dx
\Ω\

< P{Ω)D{u)

for any ue£Ί*{Ω) (c.f. [2]).

Deny-Lions [2] gives another characterization of a Nikodym domain

by setting

in e S\IΩ) Δu e V{Ω) and {-Δu, v)LHΩ) = D{u, v)

~ { for any v e i\lΩ)

LEMMA 7. (Deny-Lions) For any F e L2{Ω) with F(x)dx = 0 we can

find u in N {unique up to an additive constant) such that —Δu — F if

and only if Ω is a Nikodym domain.

The following lemma gives an answer to our above problem and it

gives a characterization of a Nikodym domain.

LEMMA 8. For any φ e L\p) with φ(ξ)dμ(ξ) = 0 we can find f in

H(M) {unique up to an additive constant) such that γι(Hf) — φ if and

only if Ω is a Nikodym domain.

Proof. Assume that Ω is a Nikodym domain. Let φ be in L\μ) with

φ{ξ)dμ{ξ) = 0. Then by Lemma 4 there exists a unique function f0 e H{M)

such that

Hence

(21) D(/o, g) = - J φ{ξ)g{ξ)dμ{ξ) + J Hg{x){-Hfo{x))dx

for any geH{M). We put g = 1 in (21), then ΪHfo{x)dx = 0 from the

condition φ{ξ)dμ{ξ) = 0.

Since f0 is in H{M), HfoeL2{Ω) and D{Hfo) = D{fQ) < oo. Therefore

by Lemma 7, we can find u in N (unique up to an additive constant)

such that — Δu = iϊ / o . Hence we know that Δ2u = 0, ueL2{Ω) and J9(^)

< oo and so by the uniqueness of the Royden decomposition of u9 we

have
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u(x) = h(x) — I G(x, y)Δu{y)dy

= h(x) + ^G(x,y)Hfo(y)dy

for some harmonic function heL2(Ω) with D(h) < co. From (17), h has
a fine boundary function hi in L\μ) and so h = ίfΛ, with fc' e

Since tt is in N and {£Γg g e H(M)} c ^i2(β), we have

\Hg(x)(-du(x))dx = D(u,Hg)

for any # e ^(M). Hence we have

= D(h,Hg) -JHg(x)(-Δu(x))dx

= D(h,Hg)-D(uyHg)

= D(h-u,Hg)

(., y)Au(y)dy, H^j = 0

for any g e H(M) and so γx(v) = 0.
Now we put / — /o + Λ/, then / is determined (uniquely up to an

additive constant) in H(M) and we have

Tl(Hf) = ri(ff/β + λ)

= 7l (Hf0 - J G( , y)Hf0(y)dy + u)

= p .

Conversely assume that for any 9 e L\p) with φ(ξ)dμ(ξ) = 0 we can

find / in #(M) such that TΊ(H/) = p. We shall show that for any v

€ L2(β) with (̂αθd# = 0, we can find u in N (unique up to an additive

constant) such that — Δu — v. Then by Lemma 7 we conclude that Ω

is a Nikodym domain. Let v be in L\Ω) with J v(x)dx — 0. Since

^\v(x)\-\Hg(x)\dx<oo

for any g e H(M), we know
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, )v(x)dx

Put φΏ = γi — I G( ,y)v(y)dy\, and we know

= \-^zrfv(ξ)dμ(ξ)
J fΰ{ξ)

J —!— (J K(x, ξ)dx • J K(x,

and

J φ»{ξ)dμ{ξ) = J ( - J If (α, ξ)v(x)dx)dμfe) = - J ^ ) c t a = 0 .

Hence we can find / in H(M) (unique up to an additive constant)
such that Yi(Hf) = φυ. We put

u(x) = Hf(x) + J G(x, y)v(y)dy

thus w is determined (uniquely up to an additive constant) in ^ia(β),
—An = v and Δu e L\Ω).

Now we shall show that u is in N, that is D(u,w) = (—Λu,w)LH0)

for any w in ix

L^Ω).
We have the following decomposition of ^(Ω):

i\lΩ) = {flj ff e H{M)} Θ L2D0(i3) ,

where L2D0(Ω) is the closure of C£(Ω) with respect to the norm D( )

+ II IIL2(0) I n c a s e w — H\ for some g e H(M)9 we have

,, if,) - JD(| G( , y)v(y)dy, ̂ G( , y)HχV)dy)

= I>CΛ flr) - J ^(^)(J GKx, yWWdyjdx .

Since ^(^) = γι(Hf) + \ K(x, -)v(x)dx = φυ — φΌ = 0, we know
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for any g e H(M). Hence we have

D(u, HI) = I V(X)(HO(X) - I G(x, y)H1

ΰ(y)dyjdx

= - f Jw(a?)HJ(a?)ίte .

In case w is in Cj*(fl) we know that

w(x) = I (?(#, 3/)(—Δw(y))dy ,

Hence

D(w, w) = ΰ ( | G(.,y)v(y)dy,

= J
= —

For any w in L2DQ(Ω), we can find a sequence {wn} in CQ(Ω) such that

ww->iί; in L2D0(Ω). Since D(u,wn) = —\ Au(x)wn(x)dx, letting w->oo,

we have D(u, w) = — I Δu{x)w(x)dx. Therefore we know

D(u,w) = (-Δu,w)LHΩ)

for any w e ^(^2) and so u is in iV. This completes the proof.

5. Boundary value problems

In this section we shall solve the boundary value problems de-

scribed in section 1 as an application of Lemma 8. We put

SPλ = {u e C\Ω) u and Δu are in Sl^Ω)} ,

S/?

ι = {̂  e C4(β) w is in ^ 2 ( β ) and J ^ is in L\Ω)}

and

^ 3 = {u e C\Ω) Δu is in SX

L^Ω)} .

Then we shall show

THEOREM. Assume that Ω is a Nikodym domain, then

(a) for any φ and ψ in L\p) with j ψ($)dμ(ξ) = 0, ίfeerβ eαjis
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yλ unique up to an additive constant such that Δ2u = 0, γγ{u) = φ and

Ti(Δu) = ψ

(b) for any f in L\fi) and φ in L\p) with

(22) J φ{ξ)dμ(ξ) = - J JΪ

exists u in Sf2 unique up to an additive constant such that Δ2u

= 0, γo(Δu) = f and γSu) = φ;

(c) for any f in L\μ) and φ in L\p) with φ(ξ)dμ(ξ) = 0, there

exists u in Sf% such that Δ2u = 0, γo(u) = / and γx(Δu) = φ.

Proof, (a) For any φ and ψ in L2(/0 with f ψ(ξ)dμ(g) = 0, by

Lemma 8 there exists / in H(M) such that γi(Hf) = ψ and

(23) J (p(f) + J Z(aj, ξ)Hf(x)dxyμ(ξ) = 0 .

Since p + ϊK(x, )Hf(x)dx is in L\μ) and (23), there exists f0 in ff(AO

such that γi(Hfo) = φ + Jϊ(x, -)Hf(x)dx.

We put

ff/t(a0 - J G(a?, y)Hf{y)dy .

Then we know that u is in ^ , J 2 ^ = 0, γx(u) = ^ and

Next we shall show the uniqueness of the solution. Let w be in

Sfx such that Δ2w = 0, γx(w) = 0 and γx(Δw) = 0. By the uniqueness of

the Royden decomposition of w, there exists fw and gw in H(M) such

that

w = Hfw - J G( , y)Δw(y)dy

and Jw = iϊgw,. Since γλ(w) = 0, we have

(24) £>(#,„, ffα) + I Δw(x)Hg(x)dx = 0

for any # in H(M). Hence
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(25) D(w, w) = D(Hfw, Hfw) + jT G(x, y)Δw{x)Δw{x)dxdy

= — Δw(x)H fw(x)dx + J w ( W G(x,y)Δw(y)dy\dx

= — Δw(x)w(x)dx .

Since γλ(Δw) — 0, we have

(26) D(Δw,Hg) = 0

for any g in H(M). We put g = gw in (24) and g = fw in (26), then we

know that Δw = 0 and so w — constant by (25).

(b) First we shall remark that the condition (22) is necessary for

the existence of the solution. Let u be a solution, then

u(x) = Hfu(x) - J G(x, y)Δu(y)dy

for some fu e H(M). Since γo(Δu) = / and γ^u) — φ, we know J ^ = Hf

and

(27) 2?(ff/M, Hg) = - J φ(ξM&dμ(ξ) + J Hg(x)(-Δu(x))dx

for any ^ e 2/(M). Put ^ = 1 in (27) and we have (22).

For any / in L\μ) and φ in L\μ) we know that K(x, -)Hf(x)dx is

in L2(μ) and by (22)

J (φ(ξ) + ^K(x,ξ)Hf(x)dxyμ(ξ) = 0 .

Hence there exists f0 in i^(M) such that

Tl(Hf0) = φ + ^K(x, -)Hf(x)dx .

We put

u(x) = £Γ/β(aj) - J G(α, y)Hf(y)dy .

Then tt is in «̂ 2, J 2 ^ = 0, γo(Δu) = / and ^(tO = ^.

The uniqueness of the solution is shown in a similar manner to (a).

Let w be in £f2 such that Δ2w = 0, γo(Δw) = 0 and γλ(w) — 0, then we

have
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D(w, w) + Δw(x)w(x)dx = 0 .

Since Δw is harmonic and γo(Δw) = 0, we know Δw = 0 and so w =
constant,

(c) Put

u{x) = Hf(x) - J G(x, y)Hf0(y)dy ,

where /0 is in H(M) such that γι(Hfo) = p, and w is the desired solution.
This completes the proof.

Remark 1. In the case of (c) the uniqueness of the solution is
interpreted as follows. If u0 is a solution of (c), then every solution is

given by u0 + a\ G(*,y)dy, where a is some constant.

In fact if w is in ^ 3 , Δ2w = 0, γo(w) = 0 and γx{Δw) = 0, then h(x)

= w(x) + G(x, y)Δw(y)dy is harmonic and γo(h) = 0. Hence we have

w(x) = — G(#, y)Δw(y)dy. Since γx{Δw) = 0, we know w(#) = α G(α;, ?/)d?/

for some constant α.

Remark 2. Lemma 8 asserts that if one of the above boundary
value problems has always a solution, then Ω is necessarily a Nikodym
domain. Hence the above problems are solved if and only if Ω is a
Nikodym domain.
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