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PERTURBED BILLIARD SYSTEMS, I.

THE ERGODICITY OF THE MOTION OF A PARTICLE

IN A COMPOUND CENTRAL FIELD

I. KUBO

§ 1. Introduction

The ergodicity of classical dynamical systems which appear really in

the statistical mechanics was discussed by Ya. G. Sinai [9]. He announced

that the dynamical system of particles with central potential of special type

in a rectangular box is ergodic. However no proofs have been given yet.

Sinai [11] has given a proof of the ergodicity of a simple one-particle

model which is called a Sinai billiard system.

In this article, the author will show the ergodicity of the dynamical

system of a particle in a compound central field in 2-dimensional torus

(see. § 10). For such a purpose, a new class of transformations, which

are called perturbed billiard transformations will be introduced. Let T*

be a perturbed billiard transformation which satisfies the assumptions

(H-l),(H-2) and (H-3) (see §3). Then T* is expressed in the form

(1.1) T* = TXT

where Γ is a Sinai billiard transformation and T1 is a rotation such that

(1.2) T&, r, φ) = 0, r + Hg(φ), φ) .

In Theorem 1,2 and 3, the following assertions will be shown.

(a) There exists a generator aU) with finite entropy.

(b) Every element of the partition ζ(c) = Vi°-o T%a(c) (resp. ζ (e) =

Vzr=°°_i T%a(c)) is a connected decreasing (resp. increasing) curve.
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Λ T%ζm = Λ ϊ*ζ ( e ) = the trivial partition.

A potential field is called a compound central field, if the potential

function is expressed in the form

(1.3) U(q) = ΣUX\q-q(d\),

where Ue is a central potential with range Re and q(c) is a fixed point

for each t, 1 < t < I. The ergodicity of the motion of a particle in a

compound central field can be reduced to the ergodicity of a perturbed

billiard transformation (see § 2 and § 10). Hence by applying Theorem 3,

the following theorem will be shown.

THEOREM. // Ue, c — 1,2, •,/, are bell-shaped and if the energy

E satisfies the inequality

(1.4) 0 < Έ < — min ~R<L™» U't(Rt - 0) ,
4 . Rt + L m i n

then the dynamical system is ergodic, where Lmin is the minimum distance

between different potential ranges.

The ίί-property of this system is not proved yet. However a partial

result will be presented in the forthcoming article [7]. Moreover, in

the article, the following theorems will be shown.

THEOREM. Under the assumptions (H-l), (H-2) and (H-3), a perturbed

billiard transformation T* is Bernoullian. In particular, a{c) is a weak

Bernoullian generator. Further, every finite partition whose elements

have smooth boundaries is weakly Bernoullian.

THEOREM. // the dynamical system of a particle in a compound

central field with bell-shaped potentials satisfying (1.4) has not point

spectrum, then the dynamical system is a Bernoulli flow.

§ 2. Observations

Consider a potential field on a 2-dimensional torus T which is governed

by several potential functions Uc(q), * = 1,2, •••,/, with finite ranges.

Suppose that the potential ranges do not overlap and that the boundary

dQc of the range of Uc is a closed curve of C3-class and dQe encloses a
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strictly convex open domain Qt for every c. Assume that Ut(q) is con-

tinuous in the torus T and is continuously differentiate in ζ), Observe

the motion of a particle with mass m and energy E in the potential field.

Then the motion of the particle is described by the Hamilton canonical

equations

dqa) _ dH

dt dpa)

dpa) dH
dt dqa)

with the Hamiltonian

H(p, q) = -l-{(p ( 1 ))2 + (p(2))2} + Σ Ut(qa), q{2)) ,

where q = (g(1), g(2)) means the position of the particle and p = (p(1),p(2))

means the momentum. Denote by {St} the flow induced from the dynam-

ical system; that is, for each (q,p), St(q,p) means the state of the particle

at time t whose initial state is {q, p). Then the Liouville theorem tells that

(2.1) dqdp = dqωdq(2)dpil)dp(2)

is a measure invariant under {St}. As usual one can restrict {St} to the

energy surface ME. The energy surface is represented in the form

ME = {(q, p) (p ( 1 ))2 + (<Z(2))2 = 2m{E - U(q)), q e QE}

with QE = {q U(q) < E}, moreover the measure

(2.2) dμE = const. dωdq(1)dq™

on ME is invariant under {St}, where (pa\p(2)) = ({2m(E — U(q))}1/2 cos ω,

{2m(E - U(q))}1/2 sin ω).

Let π be the natural projection from ME to the configuration space

QE τr(<?, p) = q. Put Q = T - Uί-i Q, and Mo = TΓ'^Q). Then the boundary

dQ of Q coincides with \Jt dQc. Assume that QE is connected, then almost

every motion of the particle crosses the curves BQ. Put for x = (q,p)

τ(x) = sup {t < 0 Sta> e ^-^SQ)} ,

v(x) = inf {t > 0 S ^ e TΓ^OQ)} .

Then a transformation f of ^-1(5Q) is defined by
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(2.4) fx = StWx for x = in

It can be seen that {St} is a Kakutani-Ambrose flow built by the basic
space π~\dQ), the basic transformation f and the ceiling function — τ(x)
(see [1]). In order to clarify this, it is convenient to introduce notation:
A point q in dQ can be parametrized by (c, r), where c shows the number
of the curve dQ, which contains q and r is the arclength between the
point q and a fixed origin of ΘQt measured along the curve dQt clock-
wise. Let n(q) = n(ί,r) be the inward normal at q = (c,r) in dQζ, and let
k(q) = k(e,r) be the curvature of 8Qe at q = (c, r). A point x = (g, p) in
π̂ CδQ) is represented by the coordinates (c,r,φ), where q = (*,r) shows
the position of q and φ is the angle between n(c, r) and p

Fig. 2-1

One can introduce new coordinates of ME a point as = (g, p) is
represented by 0,r,p,v), where v — v(x) and (c,r,φ) shows the point SΌx
in dQ. Then M^ is naturally identified with the set {(*, r, <p, v) 0 < v <
—τ(i, r, ψ, 0), r e 9Qf, 0 < φ < 2π, c = 1,2, , /}. Then the invariant meas-
ure is expressed in the form

(2.5) dμE(β> r, φ, v) = const, cos φdvdφdrdc,

where dc means unit masses distributed on the set {c c = 1,2, , /}.
Moreover, the measure v on π~\dQ) defined by

(2.6) dv = const, cos φdφdrdc

is invariant under f. Since the restriction of the measure μE to Mo =
π-1(Q) is expressed in the form (2.5) (see [6]), (2.5) and (2.6) are easily
seen by results about induced flows and about Kakutani-Ambrose flows
(see [1] and [2]). Put τ(c,r,φ) = τ(i,r,φ,0). Then the action of {St} is
expressed in the form.
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(2.7) StX = -

if 0 < v - t - Σ *(T-Jxύ < -HT-kx0), k > 1 ,

(a?0, v - ί)

if 0 < v - t < -\

3=0

if 0 < v - t +

fc = 0 ,

< -?(Γ-*a?o), fc < - 1 ,

with x = (e,r,φfv) and x0 = (c,r,φ) in TΓ"1

It is well known that {St} is ergodic, if and only if f is ergodic.
Thus the ergodicity of {St} can be reduced to the ergodicity of Γ. Now
continue reduction. Put

M= \{L,r9φ)eπ-\dQ)\^<φ<

namely M is the set of all incident vectors at dQ. Introduce an involu-
tion Inv on π~KdQ) by

(2.8) Inv 0, r, φ) = 0, r, π — ψ) mod 2π .

Since viTM Π M) = 0 and T2M = M, {SJ is a Kakutani-Ambrose flow built
by the basic space M, the basic transformation T2 and the ceiling func-
tion —τ(c,r, ψ) — τ(f(c,r,φ)). Therefore {St} is ergodic if and only if f2

is ergodic. Put

(2.9)

Since π~\dQ) — M is the set of vectors at dQ going out from Uf=i Q<>
the restriction of f to π~\dQ) - I is a differentiable mapping from

π-\dQe) - M to π~\dQ) Π M. Since Inv maps M - S onto TΓ^OQ) ~ M
and Inv is identical on S, one can define a transformation 2\ of M by

T Inv x
x

xeM - S

xeS .

Then each M(e) = π"1^^?,) Π M is invariant under 2\, and Tx is diίferenti-
able. Since the particle moves along straight lines in Q, during the particle
is staying in the interior of Q, the transformation T of M defined by
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T = Inv ί

is the transformation which appears in the Sinai billiard system given
in the domain Q with elastic collision at dQ (see [6] and [11]). The trans-
formation T is called a Sinai billiard transformation (or automorphism).
Thus the restriction of f2 to M is resolved into the product of two trans-
formations

T2x = T,Tx for xeM — S .

LEMMA 2.1. The flow {St} is ergodίc if and only if the product TtT

is ergodic.

Generally, a transformation T* of M is called a perturbed billiard
transformation (or automorphism), if T* is expressed in the form

(2.10) T* = TXT .

where Tλ is a differentiate transformation of M which preserves the
measure v and T is a Sinai billiard transformation given in M with elastic
collision at 9Q.

If one obtains a condition of T1 under which T* = TXT is ergodic,
then one can solve the problem of the ergodic hypothesis for the case
of one particle in a potential field (moreover for the case of two particles
with interaction potential on a torus).

In the following sections, a special class of perturbed billiard trans-
formations, which has some connection with the dynamical system of a
particle in a compound central field, will be discussed, and a sufficient
condition for the ergodicity will be given.

§3. Fundamental properties

In what follows, a special class of perturbed billiard transformations
are discussed. Assume the assumption

(H-l) the transformation T1 is given by

Tx(c, r, φ) = 0,r - H(c, φ), ψ)

with functions H(c,φ) of C2-class satisfying H(c, π/2) = H(c, (3/2)ττ) = 0
for c = 1,2, . . . ,/.

Obviously, 2\ preserves the measure v. It is convenient to assume
that v is normalized;
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dv — —VQ COS φdφdrdc

with v0 = (2\dQ\)~\ where \dQ\ is the total arclength of the curves dQ =

Uί-i3Q* For (e,r,φ) in M, put

τ(c,r,φ) = {2Elmyί2τ{t,r,φ) .

Since the particle moves with speed (2E/m)ί/2, — τ(c,r9φ) is the distance

between the point in dQ described by (c,r) and the last point crossing

3Q measured in Q.

It is convenient to use the following notations for a given x = 0, r, φ)

in M; t(x) = c, r(x) = r, φ(x) = φ, k(x) = k(c,r), k'(x) = fc(^,r + H(t,φ)),

h(x) = h(t,φ)9 τ(x) = τ(c,r,φ) and r^^) = τ(2γ#), with Λ(ί,p) = dH(c,φ)/dφ.

More simply, put ^ = {curuφύ = T x̂, ^ = ^(ajf), r< = r ( ^ ) , ^ =

), fc = fc'^i), fe< = h(Xi) and r< = τ(^).

LEMMA 3.1. The Jacobian matrix of the transformation Tj 1 = T~ιTϊι

is given by

rλ drλ

dr dψ

(3.1)
COS φ + k/τ1

COS ψx

kλ cos φ + kf cos φλ + kιk'τι

_ (COS φ + fe7ri)fe + τx

COS ^ i

COS

λ cos y? + kf cos

COS φx

_ .

or by

(3.1)'

dr dψ

drx dφx

dφ dφ

drx dφ1 ^

__ (kx cos φ + k' cos ψx + kxι

COS φ

h + τxkλ + cos φ

(cos p + k'τλ)h + rx

! cos φ + kf cos pi + k1k'τ1

COS

COS p
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Proof. Put (c',r',φ) = Tϊ\c,ryφ) and (ι19rl9φd = T-1(/,r',<p'). Since

*, r' = r + HO, φ) and p' = 9,

is obviously

dr''

dr1 '

true.

drι]
dφ'

dφx

dφ'

On

=

dr'
dr'

dφ'

dr

the

r

kx

dr'
dφ

dφ'

dφ

other hi

cos
<

cos φ +

<

md,

φ + k't
3OS9?!

k' COS φ

c o s ^

"9

1 " T Π'l '*' T> l

COS ^j

COS p x

holds (see [5] §4). Therefore the assertion is true. Q.E.D.

Since T is differentiate on the domain on which T is continuous,

T% is so. More precise statement of the properties concerning with the

continuity and the discontinuity will be presented later.

LEMMA 3.2. Let γ be a curve of Cι-class in Mω = π-\dQ() (Ί M on

which Γj1 is continuous, and suppose that γ is given by the equation

= ψ(r). Put γx = ΓJY and suppose that γx is given by φx = ψx(rx) in MUι\

Then it holds that

dψλ ___ {kx cos ψ + k' cos ψ1 + kxk'τx)(h + dr/dψ) + kxτx + cos ψx

dψ
dr

(cos ψ + kfτx)(Jι + dr/dψ) + τx

fcx cos ψ + k' cos ψ 1 + kxk'τx — (cos ψ + kfτY)dψλ\drx

&! cos ψ + k' cos ψ 1 + fc1fc
/ri i—{(cos

cos
,

j __ _ kx cos ψ + k' cos Λ !̂ + kxk
rτλ f* , d r 1 __

I J

xk'τx drx __ k'τxkf

dψx cosψ dψx cosψ

cZrt __ __ cos ψ + k'τx _ (cos ψ + k'τx)h + ^ dψ
x dr

dψ J cos ψx

dr cos ΨΊ

dr __ _ (kx cos ψ + k' cos ψx + kxk'τx)h + kxτx + cos ψx

drx cos ψ

, (cos ψ + k'τx)h + τx dψx

cosψ drx
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= -Bin
^ Λ + hψ\ + _Il\ _ g i n Λ

i \ αr / cos ψ̂  J \
. Bin ^ { + hψ + g i n + h ^

dr I cos ψi \ αr / cos ψ̂  J \ dr

*P- = sinΨ l + sin
cos ψ cos ψ \ dr1

Proof. Since

—^- = tan α>(cos φλ + fciΓi) + sin φ1 and —^- = — rx tan ω
drλ dφ1

hold, the last equality of the lemma is true. The other equalities follow

from Lemma 3.1. Q.E.D.

Assume the following two additional assumptions throughout this

article

(H-2) every Qt is a strictly convex domain such that the boundary dQe is

a curve of C3-class, and {Q{ U dQt t — 1,2, , /} are disjoint.

(H-3) min {h(c,φ) + [max k(c,r) + (min \τ(e,r,φ')\\ 1 ) > 0 .
t,φ I L r \<,r,φ' / A J

It is useful to introduce the following constants;

kmln = min k(e9 r), |τ | m i n = min \τ(c9 r, φ)\, η = kmin \τ\min ,

#maχ(0 = max k(t9 r) + (min \τx{c9 r, <p)\) ,

Km&x = max l^min h(e, φ) + 1/Zm a x(θj ,

Kmin = max h(ι, φ) + l/fcmIn and ^ = min {η, (1 +
L t,φ A

Then 0 < Kmin < kmin < KmΆX(c) < ίCmax < oo holds. Further constants cλ =

(1 + UL'L)1 7 2, c2 = Km^/Kmin, cz = log 16c^ and c, = l + c2 will be used.

For a subset ί1 of M, define φm&x(F), <pmin(F), max cos (F) and

min cos (F) by

) = sup φ , ^inCF) = inf
(e,r,φ)GF ( t )

max cos (F) = sup |cos φ\ and min cos (F) = inf |cos φ\ .

For a monotone connected curve p in M ( o , define θ(γ) and p^) by

0(τO = I dφ = yw(r) - ^m i n(r) and ^(^) = I dr .

For a fixed point x in 7, define % , x) and £(7, ίc) by
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θ(γ, x) = φm^(γ) - <p(x) and θ(γ, x) = φ(x) - <pmin(γ) .

For a countable union γ of monotone connected curves γu\ j = 1,2,3,

define θ(γ) and p(γ) by

and

LEMMA 3.3. Let γ be a curve of Cι-class as in Lemma 3.2. Then

the following assertions hold.

(i) // 0 < dψ/dr < KnJjί), then

> 1 + η, -dp- > ^l±L and θ(rΰ > (1 +
dr cos ψ

(ii) // dψ1/dr1 < 0, then

dr

1 + η and θ(γ) > (1 + η)θ(γι) .>l +
aψ

Proof. If 0 < dψ/dr < KmSLX(c), then it follows from the assumption

(H-3) that h(c, ψ) + dr/dψ > 0. Hence by Lemma 3.2, the estimate

kλ cos ψ + k' cos ψx + kιk
ίτι ^ dψj . 7 . cos ψ

^ Ss ^1 "Γ

c s ψ + /ψ d
drλ

is given. Therefore one can prove (i). The assertion (ii) is obvious

from the estimate

h + τ-i < - - * L < h + c o s ^ + fc^
cos ψ + krτλ dψ kx cos ψ + kr cos ψ1 + kxk

fτλ

which is true under the assumption (H-3) and the condition d)fr1/dr1 < 0.

Q.E.D.

In order to investigate the ergodicity of T*, it is useful to see

properties of the curves of discontinuity of T* and Γj1. Here the

curves of discontinuity of T* (resp. Tj1) is defined by

T?S (resp. T*S) ,

with S = {(t,rfφ) eM; cos^ = 0}. By assumption (H-l), Tβ = S holds,

hence
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T^S = T^S (resp. T*S = T^S) .

Therefore the curves of discontinuity of T* coincides with those of Γ,

and the curves of discontinuity of T*1 are merely a deformation of

those of T~ι in the r-direction, that is,

T?S = {0, r - HXφ), φ) (*, r, ψ) e TS} .

Hence almost all properties of the curves of discontinuity are preserved

under a small perturbation. The image T^}S (or Γ^S) consists of countabl-

ly many curves of C2-class. A maximal connected component of such

a curve in C2 is called a branch of the curves of discontinuity.

(1°) Let γ be a branch of the curves of discontinuity of T* (resp.

2V). Then γ is an increasing curve (resp. a decreasing curve) which

satisfies the equation

dφ 7 , COS φ

dr

(resp. JV- = cosy + fc'r, \ >

\ dr (cos φ + Wτϊ)h + τλ /

though the solution of the equation are not unique.

Proof. By Lemma 3.2, the equations are easily obtained and the

2-times differentiability is obvious. The non uniqueness is checked by

observing the curve γ: r = r0 — Hc(φ) and T^γ (resp. f:r = r0 and T*γ)

with a constant r0. Q.E.D.

(2°) Put S(+) = {(;, r, 0 9 = π/2} and S ( - ) - {0, r, 0 φ = 3ττ/2}.

Give d sign to each branch p of T^S (resp. Γ^S) as follows: sign (γ) =

(+) if p is included in the image of S(+), and sign (γ) = (—) if γ is in-

cluded in the image of S(—). Then, only the following types of branch-

ing of the curves of discontinuity appear:

Fig. 3-1
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In general for given connected curves γ, γr and γ", let us say that
γ joins f and y" if one of ends of γ lies on f and the other end lies
on γ".

For any x in T^S (or T*S), there exists a monotone curve γ in
T^S (resp. T*S) with x on γ such that 7- joins S(+) and S(-) .

(3°) The situation of the mapping T* near the curves of discon-
tinuity is shown in Fig. 3-2.

Fig. 3-2

Let r be a branch of 2γS (resp. T*S) and let If be a small closed
neighbourhood of z in γ. If sign (̂ ) = (+), then T*(resp. Γ51) is con-
tinuous on the closed half part of W below γ and the image intersects
with S(+). While if sign (γ) = (-), then T* (resp. 2y) is continuous
on the closed half part of W above γ and the image intersects with S(-).

(4°) Let a{e) be a partition of Λf such that each element Xf of a{6)

is a maximal connected set on which T* is continuous. Then a{e) is the
partition separated by the curves 2yS. Let γ be a segment of a branch
such that γ is a part of the boundary of Xf. Then, γ is included in
Xf, either if sign(f) = (+) and γ lies above Xf or if sign (γ) = (-)
and f lies below ZJe).

Let α(c) be a partition of M such that each element Xf of a{c) is
a maximal connected set on which Γ;1 is continuous. Then aic) is the
partition separated by the curves T*S. Let γ be a segment of branch
such that γ is a part of boundary of Xf. Then, γ is included in X$c),
either if sign(f) = (—) and γ lies below Xf or if sign(^) = (+) and γ
lies above Xf.

Further one can choose the numbering of {Xf} and {Xf} such that
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T*Xf = Xf. Then T* is a C2-diffeomorphism from the interior of Xf

onto the interior of Xf.

(5°) One can see that Π< 2**5 consists of at most a finite number

of points, say 2(1),2(2), >- ,z(IJ. There exists branches JŜ  of T*S and

2V of 2 γ S which contain z(i) as a common end point. There exist an

at most countable branches Σtj of T#S (resp. ΣϊtJ of 7γS), / = 1,2, ,

such that one end lies on Σt (resp. Σϊ) and the other end lies on S.

Put z+(i, j) = SΠ Σ}j, z+(i, j) = Σt ΓΊΣΐj, z-(i, j) = SΠΣΪJ, zϊ(i, j) = Σr nΣΪJ.

Then one can choose suffices j'& such that distance between z(ΐ) and

z+(ί,j) (resp. z~{i,j)) are decreasing with increasing j . The remaining

branches T*S - Uίii ^*+ - Uίli U , ^+,, (resp. T^S - (Jfii ^ - U ί

are finite in number, say

Σΐ, h + l<i<h (resp. ΣΓ, I, + 1 < i < U) .

Fig. 3-3

Generally, a decreasing curve γ, φ = ψ(r), is said to be K-decreasing, if

T =F '

For an increasing curve p in Mω, φ = ψ(r), is said to be K-increasίng, if

γ _ γ>
f o r

LEMMA 3.4. There exist constants c10 ~ c17 which admit the following

estimates:

Cut3'2 <

and
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(ii) Let γ be a K-increasing (resp. K-decreasing) curve which joins
Σtj and Σf9J+ι (resp. ΣϊtJ and ΣϊJ+1). Then

cj-2 < 0(γ) < cj-2 .

(iii) Let XϊtJ (resp. Xϊj) be the element of aie) (resp. a{c)) enclosed
by Σϊ,ΣZj,ΣϊtJ+1 and S (resp. by Σϊ9ΣrtJ9ΣrJ+1 and S). Then

cj < inf \τ(Tiιx)\ < sup \τ(T*x)\ < c15 j ,
xex+t xextj

c15j < inf \τ(x)\ < sup \τ(x)\ < cj ,

sup |τ(Γ;^)-τ(Γ;^)|<c17,

tPyex£J+1

sup \τ(x) - τ(y)\ < c17 .

(iv) Let Σ and Σr be two branches of T*S (resp. T^}S) such that Σ
lies below (resp. above) Σ' and that signCi?) = (—) and sign (Σ') — (+).
Let γ be a K-increasing (resp. K-decreasing) curve which joins Σ and
Σr. Then

θ(γ) > c10.

(6°) One can choose a suitable numbering of {Xf} and {Xf} which
admits the following lemma for suitablly rechosen constants cn — c16.

LEMMA 3.5.

( i ) Cn/-1/a < max cos (Xf) < cj~1'2 ,

cnj~
1/2 < max cos (Xf) < c12j~

1/2 .

(ii) Except for a finite number of j's, Xf (resp. Xf) is enclosed
by three K-decreasing (resp. K-increasing) branches and a segment of
S. Let γ be a K-increasing (resp. K-decreasing) curve which joins two
sides of Xf (resp. Xf) with the same sign. Then

cj-2 < θ(γ) < cj-2 .

(iii) cj < inf |r(!ZyaO| < sup \τ(T^x)\ < cj ,

xexp xexf
cj < inf |τ(a?)| < sup |τ(aθ| < cj .

xexp xexp
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§ 4 . Construction of transversal fibres

The purpose of this section is to construct transversal fibres, and to

show that a(c) and a(e) are generators and that almost every element of

ζ(c) ΞΞ \J^0T%aic) (and ζ(e) = V\7=°°o T%a{e)) is a local fibre. The method of

the construction of the transversal fibres is similar to Sinai billiard

systems (see [6], [11]).

LEMMA 4.1. Let C be an element of V?=o T%a(c) (resp. V?=o T^a(e)),

and fix x,y in C.

( i ) C is a maximal connected set on which T*n (resp. T%) is con-

tinuous.

(ii) The boundary of C consists of several K-decreasίng (resp. K-

increasing) curves of C2-class and segments of S.

(iii) // x and y are joined by a connected increasing (resp. decreas-

ing) curve, then the curve is included in C.

(iv) // x and y are not joined by connected increasing (resp. decreas-

ing) curve, then there exists a decreasing (resp. increasing) curve, which

joins x,y and is included in C.

Proof. The assertion (i) is obvious by (4°) in § 3. (ii) is a consequence

of (1°) in §3 and Lemma 3.2. (iii) and (iv) are obvious by (i),(ii) and

the property (2°) in §3. Q.E.D.

Let dist (x, y) be the Euclidean distance between x and y in the same

M ω . Put for i = 0, ± 1 , ± 2 , ,

(4.1) Φ£)(x) = dist (x, U T^

LEMMA 4.2.

( i ) v({x d(e)(x) < u}) < p^u*™

with some constant pλ(β) and p(S) = (2 m + 1 — I)" 1 ,

(ii) Put cλ = (1 + Z"L)1/2 and

inf ( 1 + ^ d{i\Tilx) if i > 1
2c

(4.2) A(x) = n \ t

inf ( 1 + V d(e)(T%x) if £ < - 1 .
^< 2c1

Then ΔU)(x) > 0 for almost every x and for & Φ 0.



16 I. KUBO

Proof. From the properties (5°) and (6°) in §3, it follows that for
any > 1 and j ' > c\2c^j2

Xf n xf = 0

holds. Hence the intersection T^S Π Xf consists of Z-increasing curves
whose number is less than c\2c^j\ Since Xf = T^Xf, T*2S Γ) Xf con-
sists of Z-increasing curves whose number is less than c\2c^2f. Since by
the above discussion T^S Π T*(Xf Π T*Xf) consists of Z-decreasing
curves whose number is less than c\2c^p, T^S Π Xf consists of K-
decreasing curves whose number is less than

Σ c&ΰY2 < (ci2c^yf .

Recursively, it can be proved that the intersection T^£S Π Xf consists
of 2£-increasing curves whose number is less than const. fe+1-2. Hence
(U*-i T#*S) ΓΊ XΪJ consists of Z-increasing curves whose number is less
than const, f+1~\ Therefore, for £ > 1 and £x = 2£+1

const, Mst M

v({x d^(x) < u}) < πu^ + const, u Σ> f1'2 < const.

holds. For £ < — 1, one can see similarly. The second assertion is
obtained from (i) using the Borel-Cantelli lemma. Q.E.D.

Put

ζ ( c ) = V T%a{c) and ζ ( e ) = V T^a{e) = V T^aic) .
i=0 i=0 ί=l

It will be shown that almost every element of ζ(c) is a connected curves
of C!-class. Let x = (Γ, f, φ) be a fixed point with Δ{l\x) > 0, and let C
be the element of ζ(c) which contains x. Since ζ(c) > V?-o T%a(c\ there
exists the element Yn of V?-o 27*^(c) which includes C. Therefore Γjw

is continuous on C (of course on Yn) by Lemma 4.1. Note that T*nYn

is an element of V?-i Γ5V(C).
Let γ™ be a Z-decreasing curve of C -̂class passing through xn =

Γ;n^ such that

By definition, (1 + ηYnΔa){x) < d(1)(^J/2c1. Hence for any y in ^n ), the
inequality d(y)>^dω(xn) holds, since dist(xn,y) < dω(xn)/2. Therefore
T* is continuous on γ^K By Lemma 3.3, Ttf™ is a connected Z-decreas-
ing curve and satisfies the inequality
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Therefore one can choose a connected segment γ^lx of T^γ^ such that

By the same reason in above, one can choose a sequence of connected

iί-decreasing curves of C^-class such that

ln) c i = 0,1,2, . .,n - 1 .

= (1 + #J ( 1 ) (α0 i = 0 , 1 , . . . , n .

And T* is continuous on γp\ 1 < i < n. In particular,

and Γj w is continuous on ^ n ) . Furthermore,

(4.4) dist (Γ V^, >S U Γj1^) > |d ( 1 )fe) 0 < t < n .

Hence γkn) is included in Yn. Thus for any n > 1, there exists a con-

nected Z-decreasing curve γkn) of C^class which is defined on the interval

[φ — Δa\x),φ + Aω(x)] and is included in Yn. Let fn) be a segment of

the line given by the equation ψ = φ for a fixed $> in the interval such

that the segment fn) joins γin) and γhn+1). By Lemma 4.1, fn) is included

in y n , and hence p(fn)) < (1 + ^)->(Γ;wf ( w ))/|cos9| < (1 + τj)-nπ/\cosψ\ by

Lemma 3.3 (i). Therefore Σln=ip(fn) < °° and hence ^ w ) converges uni-

formly in [ψ — Δa\x)yψ + Δω(x)] as n—>oo. Let TO be the limit curve of

{?Ή. τ h e n by (4.4)

dist o, S U T^S) > ^da){xd for i > 0

holds, and of course γ0 C Yn for all n > 0. Therefore C includes the curve

γQ. Now it will be proved that C is a curve. Let y be a point in C

which is different from x. Then SB and y are joined by a decreasing

curve. In fact, suppose the contrary, then there exists a point z in C

such that r(z) = r(y), ψ{z) = 9?(£), 2 =£ 7/ and 2 9̂  35. Let γ be the horizontal line

which joins x and z. Then for any n > 1

< < +

Hence p(γ) = 0 that is, r(y) = r(a ). Thus the above assertion was

proved. Since Γ;reζ<<!) = VΓ~» ^ α ( c ) > ζ w ) , Γ;MC is included in an element
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C of ζ (c). Hence T*nx and T*ny are joined by a decreasing curve γ™

in TιnYn. By the same reason in the above, T%γ™ converges to a curve

f0 which contains a; and y. Furthermore T% is continuous on γ0 for all

n > 0. Therefore C is a curve.

Denote by ?-(c)(£) the element of ζ(c) which is a Z-decreasing curve

passing through %. Then Tj^(c)(Γ;w^) is the element of T%ζ{c) which con-

tains x, and is an at most countable union of curves which are elements

of ζ (c). Put Γic\x) = U^o T%feKTϊnx). Then Γ{c\x) is a countable union

of curves which are elements of ζ ( c ). The connected component of x in

Γic)(x) coincides with γ(c)(x). By the Borel-Cantelli Lemma, for almost

every x the inequality dω(T^x) > 2ττ(l + η)~j holds for all sufficiently

large j's. Hence the estimate

is obtained. Therefore for z in γ{c)(x)

d^iT-J-tz) > idω(T^-^x)

and hence

inf (1 + V)~J~% dα)(r-j-ig) > (1 + η)~% jα)(r-;ig) > J i jα)^) > 0 .
y^o 2Cj 2 2

Since z is not in U5=o 2VS,' J(1)(^) > 0 holds for any z in γ{c)(x). Thus,

for almost every x and for every « in γ{c)(x), Aa)(z) > 0.

In order to show that γlc)(x) belongs to C^class and to calculate the

gradient, it is useful to prepare the following lemma. Define functions by

(4.5)

b_ι(x; t) = - ^ -
{k cos ψ_x + k'_Ύ cos ψ+kk'_xτ\t—(cos ψ_x + k'_Yτ)

Q(x ;f) = t,

^χ. t j Ξ (cos φ + fc^tXfe + t) + Γi
! cos p + λ/ cos px + kJt'τ^Qi + t) + cos ^ +

where xi = fe, r€, p€) = Γ j% and the notations in § 3 are used. Define a

sequence of functions recursively by

ί&- -i(3 ί) Ξ b_x{T%x 6_w(α; t))

for w > 1.
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LEMMA 4.3. ( i ) Let γ be a curve of Cι-class given by the equation

r = u(φ). Suppose that yx = T^γ is defined by the equation rt =

with (ciyUiίφάiφt) = T^icyUiφ),^). Then, for any i,

H __

(ii) When t > l/J£max(O and n>0,

• * <bn(x;t)<l/Kmhι

with xn = (ίn, rn9 φn) = T*nx. When t < 0 and n < 0,

~γ— < ~bn(x;t)< — ! — .

(iii) When t<0 and n<0,

0 < 6 (Tn X * ί) < COS p w Q , _"\-2n
cίί cos p

and 6w(Tjπίr t) converges uniformly in wide sense as n —> — oo in

(M — S) x (—00,0] ίo a function independent of t which will be denoted

by l/χ(c)(x). Further χic)(x) is continuous on M — U7=

(iv) When t > l/KmΆX(cn) and n > 0,

0 < JL.bn(T%x t)
dt cos ψ

and bn(T%x t) converges uniformly in wide sense as n —» — oo in (M — S)

X [l/i£max(O, oo) ίo α function independent of t, which will be denoted

by l/χ(e)(x). Further χ(e)(x) is continuous on M — \JJ=1T*S.

Proof. By Lemma 3.2, (i) is obviously seen. By Lemma 3.3, (ii) is

obvious. Since

d b (x • t)

[{ki+1 cos ψt + kft cos φi+ι + ki+lkfci+1}t - (cos φ€ + fe<τUl)]2

0 < A.b^(
at b^(xt+1;t) < (1 + ^)
at cos ^

holds. Therefore the inequality in (iii) is true. Since
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COS φ

holds, bn(T%x t) converges uniformly in wide sense as n —> oo to a function

independent of t by (ii). Since bn(T%x t) is continuous on M — (J7=o T*jS,

χ(c)(c,r,φ) is continuous. The assertion (iv) is shown similarly. Q.E.D.

Fix x with Δ{l)(x) > 0. Suppose that the curves γ{c)(x) and T*nγ{c)(x) are

represented by the equations r = u(ψ) and r = %n(0 respectively. Since

the curves γic)(x) and T*nγ(c)(x) are if-decreasing, w(p) and un(ψ) are

absolutely continuous. By Lemma 4.3 (i), it is easily seen that for almost

every φ

du ,
dψ \ dφn

holds with 0n>Mn((pn),rn) = ΓϊnO,w(0,r). By Lemma 4.3 (iii), the right

hand term converges to χ{c)(c,u(ψ)9ψ)~ι. Hence for almost every φ

(4.7) —— = χ{c)(c, u(φ), φ)~ι

dψ

holds. Since γ(c)(x) is included in M — U7=o T$.S9 χ
ic)(t9 u(ψ), φ) is continu-

ous in φ. Therefore, γ(c)(x) is in C^class and has the gradient χ(c)(x) at

x in γw(x).
Similarly, almost every element ζ(e) = VΓ=o ΓVβ ) is an increasing

curve passing through 35 which is denoted by γie)(x). Then Γie)(x) =

(J Γ^ ( e )(Γj%) is a countable union of the curves which are elements of

ζ ( e ). Furthermore γ{e)(x) is the connected component of x in Γ{e)(x). The

gradient at α? is given by χ(e)(x), where χ(e)(x) is the limit of bn(T%x t)'1

as n —• oo with ί > 1/KwJίc). Thus the following theorem was obtained.

THEOREM 1. Let ζ(c) and ζ(e) δβ ίfcβ partitions defined by

ζ ( c ) = V T%a{c) aud ζ ( e ) = V Γ;'α ( β > .

T/ιe?ι almost every element of ζ(c) (resp. ζ(e)) is α connected K-decreasing

(resp. K-increasing) curve of C^class, on which T*n (resp. T%) is con-

tinuous for any n>0. The curve γ{c)(x) (resp. γ{e)(x)) is a solution curve

of the equation
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= Xl0Kc, r, φ) (reap, -g- = χ(e) 0, r,

where χM(x) (resp. χ<e)(x)) is defined by

χw(x) = (resp. χ(e)(x) =
lim b(T%x; oo) I li

( r e s p . χ ( x )
lim bn(T%x; - o o ) I lim bn(T%x oo)
1— - c o ^ 7l-»oo

The curve γ(c)(x) (resp. γ{e)(x)) is called the locally contracting (resp.

expanding) transversal fibre of x, and the union of curves Γ{c)(x) (resp.

Γ(e)(x)) is called the complete contracting (resp. expanding) transversal

fibre of x.

In order to show more precise results, refer to a theorem of V. I.

Rohlin = Ya. G. Sinai [8]. The proof will be omitted, however one can

refer to Appendix 9 in [6].

LEMMA 4.4. Let T be a given measure preserving transformation

on a Lebesgue space.

( i ) Let ξ be a measurable partition such that

Tξ > ξ , \JTkξ = ε, h(Tξ\ξ) = h(T) < oo .

Then Λ Tkξ = π(T).

(ii) Let a be a countable partition with entropy H(a) < oo. Put

ξ = VL-oo Tka. If \Jk T
kξ = ε, then h(Tζ\ξ) = h(T) and /\k T

kξ = π(T).

(iii) π(T) - π(T-χ).

THEOREM 2. ( i ) aU) and a{e) have the same finite entropy.

HΠ-iric) \ r(c) y r(e) \ (̂e)

o

V * # ^ — y -ί *<* — £ 9

oo - 1

(iii) h(TιιCc) I ζ ( c )) = h{T*Ce) \ ζie)) = fe(Γ).
/•ί TT̂  T^Tl O Ύ\Γtwt'i't'ΐΓtΎi /*(c) Λ °° 'T'i f*(C) ί/yβQΎ) /*(β) — Λ —I 'TH f*(β)Λ ΛQ "triP
\ ί \ ) JL Ivts £JU/ί ULvvU ii ( j,,, m / w — j j t j i j t g ^ ' tso£J* S — oo : : = : / \ i = s —oo-* >{ίS / ^ " l/tvxj

measurable covering of the partition into {Γ{c\x)} (resp. {Γie)(x)}).

Proof. By Lemma 3.4, the estimate

j + I)"3 < v(Xt) < -J±-cl2c12r
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is true. Therefore (i) is true. Since 0(T;y c )(#)) < π(l + τj)-n for n > 0,

{Γ;TOζ(c) n > 0} separates any pair of different points. Hence VΣ—«, T%ζ(c)

= ε. By Lemma 4.4, the other equalities in (ii) and (iii) are shown,

(iv) is obvious by definition. Q.E.D.

§ 5. Lemmas

In § 6 — § 8, certain measure theoretical regularities of the partition

ζ (c) and ζ(e) will be discussed. By using those regularities, it will be shown

that π(T) is the trivial partition {M, φ). The fact implies that T% is a

if-system by virtue of Theorem 2. In this section several lemmas for

those sections will be prepared.

Let {bn(x; t) n = 0, ± 1 , ± 2 , •} be the sequence of functions on

M x (—00,00) defined (4.5) and (4.6). Let γ be a curve of C^-class in

Mω defined by r = u(φ). Put

A/ . \ k\ cos φ + hf cos φ1 + h-Jk!τx ί du

( 5 . 1 ) X'T ~ ^ ^
J/ Λ Λ Q /-Λ I ΊJ * pΓ\Q /r\ I If TP^T / flu \ Tf^T*

A <U / \ **/1 v v O {-Is "Ί" #V VyV/ij Â'l "T" fl/1 #1/ t 1 7 / ΛJUIΛJ \ #1/ ς i - |

COS p \ dφ ) COS ̂ )

with x = (t9u(φ)9φ) and ^ = (^, ^1(̂ 1), 91) Ξ T J 1 ^ .

LEMMA 5.1. Lβέ γ,Λ and A* be as in above.

( i ) dφjdφ = yί(α; ^) = 1/Λ*(x 7-).

(ii) If γ is K-increasing, then

—A{x γ) >1 + η and cos φλΛ(x γ) >η .

(iii) // T J Y is K-decreasing, then

— A*(x ^) > 1 + 37 cmcZ cos ^ * ( ^ γ) > η .

Proof. The assertions come from Lemma 3.2 and Lemma 3.3, evi-

dently. Q.E.D.

Let γ be an either ίC-increasing or ίC-decreasing curve of C^-class in

Mω which is defined by the equation r = u(φ), and let a(c,u(φ),φ) = a(φ)

be a function defined on γ.

LEMMA 5.2. For suitable positive constants C19, C20 cmd η19 the follow-

ing holds.

( i ) // a < 0, then
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Lmin

log(—6_i(

(ii) // α

dφ

log bx{x, a) log

Remark. The equalities in Lemma 5.1 hold with the constant ηx =

(ίLmin/Zmax)(l + ^)2. However it is convenient to define ηλ by ηx = min {37,

Proof. The first inequality is obviously true by Lemma 4.3 (ii).

Evidently, (d/dkj log (—6J, (3/3&0 log (—60, (3/3(cos φ)) log (—δx) and

(3/3(cospχ)) log(—6χ) are bounded. Moreover, dkjdφ19 dcosφ1/dφ19 dk'\dφ

and (dcosφ)/dφ are bounded. The expression

4EL_?_tog(-6_0

cos φjkfi^ — I) 2 [sin (9 + ^) + sin φ(kγ — dφιjdu^τι\
[ζa — cos^) — fc'rjtffeα + (cos^ + k^a — (cos#> + kfτjh—τji

is bounded, where ξ = fcx cos 9 + fcr cos ^ + kjt'τ^. Further

3
log (—b_ι(x i

COS 9χ

[ξa — cos ?̂ — kfτdlξh + cos ^ + k1τ1 — {(cos p + Ίύτίjih + τjl/α] |α|

cos φ cos p!
[1— Jif—(cos p + fc^O/αj + cos p cos <pj \a\

Therefore (i) is true. The proof of (ii) is similar.

LEMMA 5.3. For a function a(φ) on γ, defined an by

an(φ) = bn(£,u(φ),φ;a(φ)) .

Q.E.D.
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Then for n > 0, the following holds with a constant c21.

Case 1. // a > 0 and γ is K-increasing, then

d logan

d log a

Case 2. // a > 0 and γ is K-decreasίng, then

4-
dφ

a + Vly
nc21 + α + mrn d

dφ
log a

Case 3. // a < 0 cmeZ ^ is K-increasing, then

(1 + ηJ-*cΛl + (1 + r]iYn

Case 4. If a <0 and γ is K-decreasing, then

d

dφ
log a

d

dφ_n

log(-an)
d

dφ_n

log a

Proof. By using Lemma 5.1 repeatedly, one can obtain the results

w i t h c21 = c19/Vl(l + ηx) + c20/Vl. Q.E.D.

Let f and γ be two connected ίC-decreasing curves in Mω such that

fj = T*jf and fj = T*3γ are also connected if-decreasing curves which are

defined by the equations rά = ύjiφj) and rά = ύjiφj) respectively, j = 0,1,

2, , m. Let γ and γ' be Z-increasing curves which intersect with both

f and f and given by the equations r = w(p) and r = %'(0 respectively.

Suppose that T^m is continuous on γ and / . Put £j = (βj,fj9φj) =

and r ; = Γ y , j = 0,1,2, ., m.

Fig. 5-1
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LEMMA 5.4. The following estimates hold with a constant c22.

( i )

U γj+1)
log

for 0 < j < m — 1.

(ϋ) l o g

U
+ a

du

for 0 < j < m — 1.

c 2 2 ( l

min cos (γj U ry+i) + a + % log

dφ0

duf I du

dφΌ I dφ0

for 0 < j < m — 1.

Proof. By Lemma 3.2, the following estimates are obtained:

c,r)
max dr

dk(c, r)

< j <

dr

min cos 0(?̂ _i)
1 < j <

l o g

COS <p(Xj) min cos
0 < j < m .

For example the estimate for τ is shown by the inequality

d

dφ
(sin^ + sin^J c o s ^
\ I cos ψj_x

TJ ίk _ dψj

>s ψj^ \ x duj.

COS ψj^

-(1
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Applying Lemma 5.3 Case 3 to a(φ) defined by

a(φ) = —exp I %m ~~ ̂ m log (—

the following estimate is obtained

d -i _ /

dψn

Since αy_TO0TO,ώ

by Lemma 4.3,

log

= dύj/dφj and

log
dύm

d$n

Iφm / dφm

= dύj/dψj hold

dύv

Therefore the assertion (i) is true. Similarly, (ii) is true by Lemma
5.3 Case 1 and (iii) is true by Lemma 5.3 Case 2. Q.E.D.

Call a set G in M a quadrilateral, if the boundary of G consists of
a pair of opposite increasing curves and a pair of opposite decreasing
curves (see Fig. 5-2).

Fig. 5-3

Denote the side curves of G by γa .= γa(.G), γb = γb(G), γc = γc(G) and
γd = γd(G) respectively as in Fig. 5-2. If some of sides shrink to points,
then call such a G a trilateral or a dίlateral as the case may be, and
use the corresponding notations for the remaining sides. If a quadrilateral
is surrounded by ίC-increasing curves and K-decreasing curves, then
call G a K-quadrilateral.

If Γj1 is continuous on a quadrilateral G and if T^G is also a
quadrilateral, then

TMG) = γc(T^G) and T^Tc(G) = γa(T^G) ,

Γ;Yδ(G) = γΛT^G) and T*%(G) = γb{T^G)

hold. Of course, generally T^G is not necessarily a quadrilateral. It is
convenient to denote by γa(T*ιG) (resp. γdT^G)) the part of boundary
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of T*XG which joins the upper (resp. lower) ends of T^}γb(G) and T^}γd(),

and to denote γd(T^G) = T^(γb(G)) and γb(T^G) = Tϊ\γd(Gj). Now intro-

duce the following notations for a quadrilateral G;

\\G\\ = % δ (G)) + θ(γc(G)) = % α (G)) + θ(γd(G)) ,

max 0ln(G) = sup {θ(γ) y runs over all increasing curves in G} ,

max θde(G) = sup {#(7) p runs over all decreasing curves in G} ,

. ϊ r u n s o v e r a ^ -^-increasing curves in G
M h j i ( G ) d ( ( ? )

r u n s o v e r aH ^-decreasing curves in G

LEMMA 5.5. Γfcβ following estimates hold.

(i) max 0ta(G) < || G \\ and max 0de(G) < || G\\ ,

(ii) min 0in(G) > θ{γh(Gj) - θ(γa(G)) ,

de(G) > θ(γa(G)) - θ(γb(G)) .

Especially if G is a K-quadrilateral, then

\\G\\ < (1 + c2)(θ(γa(G)) + θ(γb(G)))/2

with c2 = Kmax/ίCmln.

The proof is easily seen by definition. Now introduce a condition

on a quadrilateral G.

CONDITION (L). There exist a positive constant L and a partition

which satisfy the following: Every element of the partition is a Jίf-in-

creasing curve which joins γa(G) and γc(G). Denote by f(x) the element

containing x. For any if-decreasing curves f and γ in G which join

and fd(G), define a mapping W = Ψf;f from f onto f by

Φ Φ

a? > f (a?) Π ^ .

Then for every segment f of f, the following inequality holds

The following lemma is easily seen (see Appendix 6 in [6]).
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LEMMA 5.6. Let G be a K-quadrilateral such that θ(γa(G)) >
c2(l + c^~ιθ(γb{G)). Then G satisfies the condition (L) with L = c3 =
loglβCJ.

LEMMA 5.7. Let G be a K-quadrilateral which satisfies the condition
(L). Let G be a sub-K-quadrilateral such that G c G , γb(G) c γb(G) and
γd(G) c γd(G). Assume that Γjm is continuous on G and that Gm = T*mG
and Gm = ΓjwG are also K-quadrίlaterals. Then the following estimate
of the ratio v(G)/v(G) holds with some constants c24 and c2b;

exp \LΦ Φ p \ + 24 + 25Σ ψ
) KGJ m i n ^ G J L y.o mincos(Gy)

Proof. Since dp = —vQ cos φdφdrdc, the estimates

K G ) < ^
max cos (Gm) max ^in(G) max 6>dθ(GJ ,

min cos (GJ min ^in(Gm) min 0dθ(GJ

hold. Easily, the estimate

max cos (Gm) < max cos (Gm) < e χ p IIG

min cos (Gm) min cos (Gm) min cos (Gm)

is obtained. Now in order to estimate the ratio max#de(Gm)/min0de(Gm),
let γm and fm be X-decreasing curves in Gm which join γb(Gm) and γd(Gm).
The inequality

< exp [L + Σ 1 (1 +

Λ m - 1

is obtained by Lemma 5.4 and the condition (L). Therefore

*ΛJ < «tJ exp fL + cί, + cς Σ f
mm cos

with some constants c24 and c25. Hence the assertion was proved.
Q.E.D.
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§ 6. The Main Lemma

The Main Lemma which will be proved in this section is the key for
ergodicity, Z-property and Bernoullian property. The proof of the lemma
is essentially identical with that of the corresponding lemma for Sinai
billiard systems. Hence one can refer to [6], in which more precise in-
terpretations are given.

Let γ and γ' be any pair of ΛΓ-increasing (resp. if-decreasing) curves.
Define the canonical mapping Ψγ]r (resp. Wf]r) by

Ψp]rx = fc\x) Π f (resp. Ψ%x = fe\x) Π f) ,

for x in the subset {x e γ γ{c) (x) Π γf Φ 0} (resp. {x e γ γu\x) Π f Φ 0})
(see Fig. 6-1).

Fig. 6-1

Let σ = σr be the measure on ^ induced by Θ, that is,

(6.1) σ r(f)= \ dψ

for any Borel subset f of γ. The measure σr> on γf is defined by the same
way. Define a measure Ψ(

r?r>σr< (resp. W(

rffσf) by

(6.2) (resp.

The canonical mapping Ψp]r (resp. F^) is said to be absolutely continuous
on a set A, if the restrictions of σγ and W^σf (resp. SΓJ**̂ ) to A are
mutually absolutely continuous. Set

VJβ) = { 0 , r , 0 e l ; |cosψ\ < α(l + ^)"m/32} .

Now the main lemma can be stated:

LEMMA 6.1 (Main Lemma). For given a (0 < a < 1), Ω (Ω > 1) αmZ
ω (0 < ω < 1), ίftere e^sίs α^ even natural number £0 = ^0(α, β, α>) /or
which the following property holds: Let G be a K-quadrilateral satisfy-
ing the assumptions
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(A-l) min cos (G) > ω ,

(A-2) θ(γa(G)) < Ωθ(γb(G)) (resp. θ(γc(G)) < ΩΘ(γd(G))) ,

(A-3) 2VG Π Vjiδo) = 0

0 < j < £0 with δ0 = θ(γb(G)) (resp. δ0 = 0(r<*(G))) ,

(A-4) T*e° is continuous on G and T*hG is also a K-quadrίlateral.

Then there exists a measurable subset G(c'α) of G such that

(C-l) for any x in G(c>α), γ{c)(x) ΓΊ G(c'α) is a connected segment of

γic)(x) which joins γb(G) and γd(G)y

(C-2) v(G^a)) > (1 - a)v(G),

(C-3) for any pair y,yf of K-increasing curves in G which join

ϊa(G) and γc(G), the canonical mapping Ψp]r is absolutely continuous on

γ Π G(c>α). Moreover there exists a constant β(Ω) independent of a,ω and

G such that for x in γ Π G(c>α)

^ d ψ

 β(Ω) .
β(Ω) ~ dσr

Proof. One may assume that Ω >c\ without loss of generality.

First, the proof will be given for the case

(6.3) CΛ < *fr»«?» < Q .
1 + c2 ~ θ(γb(G)) ~

Let £0 be a sufficiently large even number, whose actual value will be

given laler.

Consider a Jf-quadrilateral G which satisfies the assumptions (A-l),

(A-2), (A-3), (A-4) and the inequality (6.3). A sequence of partitions

*m = {Gm]s> H°myt}, m > £0, of G which has the following properties will

be constructed:

(ττ-1) {π{^} is an increasing sequence of partitions.

( r-2) Set PS} Ξ U, GZ and PL0) = Π , , ^ ? . then P<? is monotone

decreasing and the relations

V π™ IPCO, - ζ ( c ) Ipcg, , π™+1 | G _pco, = π£> \ G . P ^

hold.

(ττ-3) A point a? is in P<® if ^(c)(ίc) Π G is a connected segment of

γic)(x) which joins γb(G) and γd(G).

(ττ-4) GS, and Gm>s = T-mG®\s are X-quadrilaterals.
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(ττ-5) A point x is in P<? if and only if γ(c)(x) Π G is a connected

segment of f(c)(#) which joins γb(G) and fώ(G).

(ττ-6) The sum of the measures v(Gm,s) over all G m / s which satisfy

is greater than (1 — a)v(G).

By Lemma 3.2 and Lemma 5.5, the inequality

holds for m, 0 < m < £0. The quadrilateral 2V°G can be divided into

several ίC-quadrilaterals {G ÔjS} in such a way that

and that rα(G,0,s) (resp. γc(G£J) coincides with γa(T^G) (resp. γc(T^G))

or a segment of Uϊ=o ΓmS with some n > 0. Put τr̂ 0 = {G ÔjS}, P ô =

LJ« ^o,s> ^ 0 , s = -̂  *^/o,*» ^ 0 = ^ίo.s — -̂  Ht^/o' Γto — w s ^ 0 , s — ι *•*/o a s s u m e

that a set P m _! = U 5 G m _ 1 ) S and a partition ττm_! = {Gm.!,,,^.!^} which

satisfy (τr-1) — (τr-4) have been constructed. Every component of the

restriction a(c)\Gm>8 of a{c) to Gm>s is expressed in the form G m _ M n i f ,

Obviously, G m _ M Π Z^c) is a if-quadrilateral (or a trilateral or a dilateral).

If it is a Z-quadrilateral, denote it by Om_hsJ. If there exist two tri-or

dilaterals which have a common side of them, then joint them together.

After that, if there still exist tri-or dilaterals which have a common

side, then joint them again. Continue such a procedure repeatedly.

Denote such a maximal jointed set by Qm_i,M (see Fig. 6-2). Then it is

easily seen that

(6.5)

ΓϊΌm-i,.,/,

Fig. 6-2
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Let Da{x) (resp. Dc(x)) be the set of all points which lie over (resp.

below) the two lines passing through x with inclinations ~-Km&x and

—Kmin, respectively. Set

Όm-i,8j,a Ξ Om_usJ Π U T*De(x) ,

Όm-i,.j,c Ξ O m _ w Π U Γ#Dβ(a?)
*erα(2?

lr
1o«-i,f,y)

and O^_ M J = Om_ 1 ) M — O m _ M j < M — O m _ M ) λ c . Then O m _ M j Λ α and Om__M>Λc

areZ-trilaterals(orK-dilateral). The sets O'm_lt8tj and Fm_hsJ = ?YO^_M)(/

are if-quadrilaterals. If

θWm-wjy) < Mod + ? ) ' m / δ ,

then put Gm_M)</>1 = F m . 1 Λ y. If

then Fm_usj can be divided into Z-quadrilaterals {Gm_1)S)J)? q = 1,2, . •}

such that n(Gm-h*j,q)c r»(G), rd(G«-i,«,i,«)c r^(^),

(6.6) ίo(l + 9)-«/8 < ί W 6 Λ . i , , l M ) ) < Wod + ? r m / 8

and that β̂CGm-i. .i.g) coincides with either γa(Gm_hs) or a segment of

(J?=i ϊ 7 ^ for n > 1. Now change the numbering of {Gm_lfβf^β s, /, g} and

denote them by {Gm^}. Moreover, denote {2yQm_1 ) M, T^Όm_hsjia9

21;1O«-i,.,i,c T^Hm_ht] by {#„,,,}. Put

π m = {(τm>s/, Hm^t] , Km = T%πm

D(0) _ rpmp

Then {πm} satisfies (ττ-1) — (ττ-5) as desired in fact the proofs for (π -1),

(ττ-2) and (^-4) are obvious, while (π-S) and (^-5) can be shown as follows.

Since T*mγ{c)(x) is ίC-decreasing for any m > 0, if γ{c)(x) ΓΊ G joins γb(G)

and γd(G), then T;m(^(c)(x) Π G) is included in an element Gm,s for any

m > 0. Therefore (7r-3) is true. Conversely, if x is in P£ }, then there

exists a Z-decreasing curve y ^ passing through T*mx such that 7-^ is in-

cluded in a certain element Gm>s and that γ™ joins γb(GmiS) and γd{Gm^s).

Since Γ!£ is continuous on GTOfg, ^ m ) = Γ * ^ is a connected Z-decreasing

curve which joins γh(G) and ̂ d(G). Further, it is easily seen by the same

way as the proof of Theorem 1 that γ{

o

m) converges to a curve which joins

γa(G) and γb(G) and that the limitting curve is identical with γ{c)(x) Π G
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Now the measure of the rejected sets

Λm-id) = U Φm-it.J,a U O m _ W , c ) ,

will be evaluated. In order to evaluate them, it is convenient to classify

{Gm,s} as follows.

DEFINITION. A piece Om_Myj is said to be docile, if either γJJ^ιOm_λ^SJ)

or r c(2yθm_M )y) intersects with S.

DEFINITION. A piece Gm,s is said to be narrow if

A piece Gm,s is said to be wide if

θ{γb{GnJ) > δQ(l + v)~m'8 .

Put

Rm(3) = {Gmy,Gm,sf]Vm(δo)Φ0},

BTO(4) = {Gm>5 Gm>s is narrow} .

It is convenient to denote by the same notation Rm(j) the union of the

sets contained in the family Rm(f) (j = 1,2,3,4).

(1°) Estimation for B*(3) = JBW(3) U {Γ;Όm, s,^. 2 γ δ m , M , . c Vm(δ0)}.

It is easily seen by (6.6), Lemma 5.5 and Lemma 3.3 that

I|G»,.II ^ Wod + yYmβ + cAΩδoa + ηYm

with c4 = 1 + Xmax/ίw Hence if

then every Gm>s in JR*(3) is included in Fm(2^0). Therefore, β*(3) is in-

cluded in Vm(2δ0). Hence

(6.7) »CR*(3)) < v(ym(23α)) < 2(1 + Viy

(2°) Estimation for J2*(4) = Λw(4) - UΓ-#0 Γ

By Lemma 3.4 (iv), if

then for any component of {Om-it8ltJl; ^ = 1,2, •••}, the case where
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sign (7 Λ(OTO_lfβltil)) = ( - ) and sign (^(O m _ M l J l )) = ( + ) at the same time

does not happen. Therefore one can see the following properties (G-1) ~

(G-4) for a given triple

(G-1) Gm-ιt8ι contains at most one component which is not docile.

(G-2) If Gm>s is not contained in Rm(3) and if Om_hSuJ1 is docile,

then the inequality

% δ ( G m , s ) ) > δo(l + η)-^

holds, namely, Gm>s is wide.

(G-3) 2V(χm_Ml contains at most one component Gm>s which is not

wide and not contained in J?m(3).

(G-4) For each wide Gnjβn, there exists at most one series {Gn + M n + <;

0 < i < v} such that

where Gn+i^Sn+i is not wide, not contained in Rn+i(3), 1 < i < p, and Gn+PiSn+p

is narrow.

The properties (G-1) ~ (G-4) can be proved easily. For each fixed

wide GUiS, there exists at most one series as in (G-4). Let Gn+PiSn+p be

the first narrow if-quadrilaterals in the series. Then

hold. Hence by Lemma 5.5 and (£Q-1

Put G = T%Gn,Sn and G = T%+pGn+PiSn+p. Then one can apply Lemma 5.7

to the pair G and G. Since the inequalities

min cos (T 'G) > δo(l + η,)'^2 for £0< S <n ,

\\T*nG\\ < M0(l + η)~n/8 + cΛd + y]Yn < 3od + ^ ) ' n / 1 6 ,

min ^ i n (T-G) > flfoOVG)) - θ(γa(T^G))

> δo(l + ηY*»-cA(X + ηYn > H d + ^)"TO/8

hold by Lemma 5.5, the estimate
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§ < 4(1 + ηY^-w exp [c, + c24 + c25]v(G)

is obtained by Lemma 5.7. Hence

(6.8) !>( U T%R*(4)) < 4 exp [c, + c24 + c25] Σ (1 + ?)-m/MG) .

(3°) Estimation for Λ*(2) = {QWfM Gm,s is not in 2ϊ*(4) U U?-io Γ " m + &

Let G7 be a ίC-quadrilateral. Then one can define a family of sets

{QJ; ^ = 1,2, •} by the same way as QTO_M, in the construction of τrm.

Let C7(ί) be a sufficiently small neighbourhood of z(ϊ) where {z(ϊ) i = 1,

2, , /J. = Π7=-oo Γ^iS. Then the branching points of T^S outside (Jίii W )

are discrete. Hence there exists a constant C9 such that for G' with

\\G'\\ < c'9 G' contains at most one branching point outside (Jftα U(f). If

Gf is included in ZJ(ϊ), then G' includes at most two components {Q'lf Q'2}

as is seen in Fig. 6-3. Therefore there exists a constant c9 such that

for every Gf with \\G'\\ < cβ, G7 includes at most two components {Qί, Qa}

2(0

Fig. 6-3

Since Gm>s is not narrow, by definition it holds that

From the inequality (6.5), the inequality

max 0ln(QTO,M) <

follows. Therefore, applying Lemma 5.7, the estimate

v(Q?'''H < 4 exp [c3 + c24 + c25](l + ^)-3-/4

is obtained. If the inequality
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is fulfilled, the estimate

(6.9) »(#*(2)) < 4 exp [c3 + c24 + c25](l

is obtained.

(4°) Estimation for Rm(l).

Divide Rm(ΐ) into three classes;

I Όm,sj; OmiSj is not docile and Gmi8 is not i

U T-^RIZ) U

p m , , , , ( ) ; foC,^,,)) ύ( + ?) and
U

^ίδ) U .R*(5) ^(rδ(Om>8i<)) < δoa + vy
m<* and)

,. is not in U Γ- r a + ίβ/3) U β*(4)
e=e0

Since by (4-2) GmiS contains at most one component which is not docile

and since Gm>s is not narrow, the estimate

(6.10) v{R*ϋ$)) < 8 exp [c3 + c24 + c25](l + ηY^v(G)

is obtained by Lemma 5.7. By applying Lemma 5.7 again, the estimate

(6.11) K#*(6)) < 8 exp [c3 + cu + c25](l + rj)

is obtained. Lastly, one must estimate the measure of #*(7). Except

for a finite number of Xfs, say Xf, j = 1,2, •,/, Xf coincides with

XI j , with some ί and ;/' (see §3). There are two cases depending on the

sign of Σΐj*. Only the case of ( + ) will be explained here, the case of

(—) goes the same way. Since O m > M is docile, 2 y θ m ) S j ) C is included

in Vm(£0) and hence in #*(3). In order to estimate the measure v(Om,sj,a)

= v(T^}Όm^sj>a), note that the inequality

CisΓ2 < θ(γb(OmiSj)) < do(l + η)~m/2

which is obtained by Lemma 3.5, implies that j > j m where j m is the

minimum natural number greater than cr3

1/2^1/2(l + η)mμ. Put γ = γc(ΌmiSiJia)

and γx Ξ Tιιγ. Then θ(γ) < cAQd0(l + ή)~m. By Lemma 3.5 for x in γ

-τ(Tιιx) > cj and -cos φ(x) < c12j~
ι/2
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hold. Therefore, by Lemma 3.2 the estimate

7 ^ CiQdnO

37

ύ = f
J r

dφ

η)~

is obtained. Hence the rejected sets are included in the domain indicated

by the hatching in Fig. 6-4.

(e) ψ-lV(c)

not docile

docile

Fig. 6-4

The measure of t h e domain is less t h a n

On the other hand, by the same reason as in the estimation (3°) for j ,

1 < j < I, at most two components Om)Sj's belong to JB*(7). Since

Gm,8 is not narrow and max θ m(Όm^,ΛJ < c4ί2<50(l + rj)-m, by Lemma 5.7

the estimate

KOm,*j,J < 4exp [c3 + c24 + c25](l + ^)-3m/V(Gm,5)

holds. Therefore the estimate

2v0eic12δ00-

(6.12)
8 exp [c, + c24 + c25](l

. . 7 / 2

V0CtC12ΩC13 Λ -

KmIn/cmincuc15

8 exp [c, + c24 + c a ] ( l

is obtained.
This completes the estimations of all rejected sets. Since the estimate

G ) ^ < ( G ) < v.(l + c2)Ω

is true for any K-quadrilateral G, by (6.7) ~ (6.12)
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U ) (
2 / \ 0)

holds with some constant c26 for a sufficiently large £0 which satisfies

(£0-ΐ), (Λ-2) and C#0-3) Hence if an additional condition

ω

is fulfilled, then the set

£(*,-> == G - U U

is greater than (1 — ά)v(G). Furthermore, G(c'α) satisfies the conditions

(C-l), (C-2) and (C-3). The conditions (C-l) and (C-2) were already

seen. Now to show (C-3), define partitions ξ(m) of f(resp. ξ'iyn) of γ'), m > £0,

by

ξ(m) = 2̂> |r (resp. f(m) = π^} μ) .

Put τrL0) = Vmtf, f(oo) = ττL0)|r and f'(oo) = τrL0)μ. Then f(m) increases

to f(oo) and ^(m) increases to f'(oo) as m—> oo. Further ?(oo) |P(j> (resp.

f'(cχ))|pg)) is the partition of 7 Π PL0) (resp. / Π PL0)) into the individual

points. Conventionally, put Ψ = Ψ%. For x in PL0), there exists a X-

quadrilateral G2>, in π% which contains ». Denote by G%>(x) the

and put Gm(x) = TimG™(x). For # in r , denote by Cm(#) (resp. C

the element of ξ(m) (resp. f7(m)) which contains x (resp. #'). Then for

x in Pi0) Π γ

Cm(x) = G™(x)Γlr and C ^ Λ ) = G£> Π / .

In particular, if x is in G(c'α),

p o (l + ,)-«" < θ(γb(Gm(x))) < (5 + c4β)^0(l + ^ - ^ ,

(6.14) max θde(Gm(x)) < cAΩδ0(l + ηYm ,

Imin cos (Gj(x)) > δo(l + η)-^2 , 0 < < m .

For x in γ Π PL0) with a/ = r^, it holds that

(6.15) J r " ί ' - W <=°
ί* 7/1—1

5(C»(a!θ) = Π \M.n,u'lψd, φt T^r')\-^m ,

where rt = u^ψi) and r< = ^(^) are equations of Γ^γ and T*y respec-
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tively. By Lemma 5.4 for any pair $, y in Cm(x),

I ^22 /

L 3=1 mimin cos (T^Cm(x) U
(6.16)

exp
dφ I dφ

< exp jY— + 1 j (c22 + log cM = exp c2

is obtained by (^0-l). Therefore

(6.17) exp (-c27) < < exp c27

is obtained. Alternatively, the estimate

(6.17/ exp(-c27) <

is obtained for xr = Ψx. On the other hand,

(6.18) - 2(1

holds by (6.14). By Lemma 5.4, the estimate

(6.19)
A(xi9

log-

39

lθg^L(^)/^
aφ I aφ

du0 (*Λ / du0 ,

•pf I dφ

for % > 0 is obtained, since for m > £Q T~mx and T~mx/ are in the same
Gm,s which does not intersect with Vm(δ0), further for So > i > 0 Ύ~ιG
does not intersect with Vi(δ0). By using (6.19) and

log
dur I du

dφr I dφ

it is proved that the infinite product

logc2
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a(x) - π Λ^' τ**r>

converges absolutely and uniformly in ^(oo). Moreover by the assump-
tion (A-2), g(x) is bounded as

(6.20) — L - < g(x) < β,(Ω)

with β,(ω) = exp [(1 + η^){2c,c22Ω + logc2). By (6.16) ~ (6.18),

<6 21)

holds with β(Ω) = 2e2C27ft(β).
Let A be a Borel subset of γ Π (?(c'α) with σr(A) = 0. Then, for any

ε > 0 there exists a covering {CJ of A, such that C* = Cmi(y(i)) with some
ί/(i) in (?«>«> Π r , A c Ui C* and Σf=i Θ(PJ < ε. Since ?ΓA c (J< CL^il/©)),
it is shown that

cvOPΆ) < Σ θ(C'm(Ψ(y(i))) < β(ω) Σ θ(Cmi(y(i))) < » .

Hence σf(ΨA) = 0. In the same way, one can show the converse asser-
tion. Hence the canonical mapping Ψ — Ψr,iT is absolutely continuous.
Also

β(Ω) dσr

can be shown by the above discussions. Thus the proof is completed
for the case θ{γa(G)) > (c2/(l + c2))θ(γb(G)). In case θ(γb(G)) < (c2/(l + c2))
-θ(γb(G))y one can divide G into small i£-quadrilaterals F/s each of which
satisfies the assumptions (A-l), (A-2), (A-3), (A-4) and the inequality
0(γa(Fj)) > (c2/(l + c2))θ(γb(Fj)). Then there exists a subset Ffa) which
satisfies (C-l),(C-2) and (C-3). Put G(c'α) = \JάFfa\ Then G^a) satis-
fies the conditions (C-l),(C-2) and (C-3), obviously. Q.E.D.

In a similar manner the following lemma can be shown.

LEMMA 6.Γ. For given a (0 < a < 1), Ω (Ω > 1) and ω (0 < ω < 1),
there exists an even natural number So = £0(a, Ω, ω) for which the follow-
ing holds: Let G be a K-quadrilaterάl satisfying

(A-l) min cos (G) > ω,
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(A-2)' θ(γb(G)) < Ωθ(γa(G)) (resp. Θ(U(G)) < ΩΘ(γc(G))),

(A-3)' ΓiGΠ 7/3α)=0 0 < / < ^
wiίft a0 = 0(r«(G)) (resp. θ(γc(G))),

(A-4)' T§? is continuous on G and T%G is also a K-quadrilateral.

Then there exists a measurable subset G(e'α) of G such that

(C-1)' for any x in G(e'α), γ{e)(x) ΓΊ G(e'α) is a connected segment of

γ{e)(x) which joins γa(G) and γc(G),

(C-3)7 Zeί ^ and -7 δe an?/ pair 0/ K-decreasing curves in G which

join γb(G) and γd(G). Then the canonical mapping W$]r is absolutely

continuous on γ Π G(e>a). Moreover for x in γ Π G(e'a), iί /̂ oMs that

§ 7. Canonical mapping

In order to apply Lemma 6.1, it is useful to note the following
lemma.

LEMMA 7.1. Fix a(0<a<ΐ), Ω(Ω>1) ω(Q<ω<ΐ). Let £o = £0(a, Ω, ω/4)

be the number which was given in Lemma 6.1 and Lemma 6.1'. Then

there exist positive functions ε0 = εQ(xQ, a, Ω, ώ) and ει = £ι(xQ, a, Ω, ώ) such

that; for xQ not in {Ji°=0T%S (resp. (Ji°=o T*ιS) with — cosp(#0) > ω

( i ) T*e° (resp. T%) is continuous on the ^-neighbourhood Uεo(x0) of

x0 and for 0 < j < £0

Π Vj(2eQ) = 0 (resp. ΓiC7ε(^0) Π F/2ε0) = 0) ,

min cos (Ueo(x0)) > ~ ,

(ii) for any positive Ωι(<Ω) and for any K-increasing (resp. K-

decreasing) curve in Uεi(x0), there exists a K-quadrilateral G in Uεo(x)

such that T*e°G (resp. T%G) is also a K-quadrilateral with γb(G) = γ and

θ(γa(G)) = Ωφ(γ) (resp. with γa(G) = γ and θ(γb(G)) = Ω1θ(r)).

Proof. Put

δ(x0, £Q) = min -,

Denote by Y the element of Vfe1 Trjία:(c) which contains x0. By (5°) in

§3 and by Lemma 4.1
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T = Y - Xj

is a connected open set which contains x0. Hence one can choose

εo(<δ(xo,£o)/4) in such a way that Z7e0O0) is included in Y'. Then T^°

is continuous on U6Q(x0) and it is proved that min cos (U60(x0)) > (ω/4)

and for 0 < j < £0

If εj is taken to be so small that

U61(xQ) c Γ$t/β 2(2γ%) and Uaε2(T^xQ) c T^

with a suitable ε2 and a = 4(c4 + l/KmiJ, then (ii) is true. Q.E.D.

Let γ and yf be two ίC-increasing curves of C^-class and let Ψ = ίΓ^

be the canonical mapping with domain Φ and range Φ'. Then there

exists a Z-quadrilateral (? such that

Φ c r&(G) c r , Φ' c r d(G) c f ,

and that both γa(G) and ^C(G) intersect with no-elements of ζ ( c ). Put

(7.1) G° = {xeG; f c ) ( x ) ΠγΦφ a n d r

( c ) ( ^ ) Π f Φ φ] .

Then Φ = G° Π γ and Φ7 = G° Π f.

LEMMA 7.2. Lei γ and yf be K-increasίng curves. Let G and G° be

as in above. Then G° is measurable and there exists a measurable sub-

set G(c) of G° with v(G(c)) = v(G°) such that

G Π fc)(x) c G(c) for x e Gic)

holds and that for any K-increasing curves f and f of C1 class in G

which join γa(G) and γc(G), the canonical mapping Ψ$]r is absolutely con-

tinuous on f Π G(c).

Proof. Fix a0 (0<a0< 1) and put a = ^*(G°)/4, where ^*(G°) is

the outer measure of the set G°. Then Lemma 6.1 gives a natural

number £0 = £Q(a,l + c2,ω/4). Now construct a sequence of families of

Z-quadrilaterals {Fm>J like {Gm?s} in the proof of Lemma 6.1 as follows.

Put Fo = G and suppose that {Fm_M} is suitablly constructed. Then put

om_hsJ = ί1,,.!,, n xψ ,
F m _ 1 ) 5 j = T^Om_hsJ - U 2?α(») - U Dc(x) .
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After a suitable renumbering {Fm_lt8iJ}, denote them by {FmjS,}. It

is obvious that

G°= n u τiFm,s c u Γ ί1™,, c G .
n=m,Q s

Hence G° is measurable and v*(G°) = v(G°). A piece Fm^s is said to be

docile if Fm^s touches to S. A piece Fmt8 is said to be wide or narrow

according as

or

θ(r>(FnJ) < τr(l

Define Δ(x) = inf {(1 + ̂ )- ί/4d(-1)(Tj ί^)/c1 i > 0}, then one can choose ω and

m* so that î ((?0 - E) < a for £7 = {α? e G°; -cos p(a?) > 4ω, A(T*kx) >

4ττ(l + ̂ "Oα + ?)-*/4 for fc > m#}. Put

ψm(α) = {a?, d(^0)(^) < α(l + ̂ )"w/16} .

Now let m0 be a sufficiently large natural number whose actual value

will be determined later. Fix m(>m0) and suppose that Fm^s is not

narrow, then one can find a family of X-quadrilaterals {GmiSj} such that

?V0 is continuous on Gm^sj, T*e°Gm,sj are also K-quadrilaterals, and the

following relations hold;

Fm,s - U Gmt9j C Wm{2(l + c2)
2π) ,

Gmt9j Π Wm((X + c2)
2τr) - 0 ,

(see §7 in [6]). If

min cos (Gmi8j) > ω/4

holds, then one can apply Lemma 6.1 to each Gm^sj, to prove that

there exist measurable subsets G^ ̂ y which satisfy the conditions (C-l),

(C-2) and (C-3) in Lemma 6.1. Since T?£ is a C2-diffeomorphism from

Gm^j into G, the canonical mapping ψfy is absolutely continuous on

Gm = U {GTO . t i F w ? s is not narrow and min cos (Gm, ί f i) > ω/4} .

Note that the measure of the set N = {x e Gmo>So Tkx is contained in not-



44 i. KUBO

wide and not-docile Fk)Sk for any k > m0} is equal to zero by Lemma 5.5

(cf. § 6). In other words, for almost every xeE°==E - (Jm=m0 TmWm(2(l

+ c2)
2) with Tmx e Fmttm9 m = 0,1,2, , there exist infinitely many wide

Fm,Sm's. Note the estimate θ(γb(Fm+hSmJ) > (1 + 9)(min {θ(γb(Fmt8 J ) , d(-υ(Γ-*&)

/cj — 2 max #de(FTO>Sm)). If Fm>STO is wide, then for n>m>m* the esti-

mate θ(γb(Fn>sJ) > 2τr(l + ηYmμ holds that is, FΛttn is not narrow. By

Poincare's recurrent theorem, for almost every x e E° there exist infinitely

many {mk} with Tmkx e Gmk. Thus one has the estimate

- U ^ G , , ) < const. (1 + ?)-*o»(A,)/iβ + v((-o _ # ) ?
w=m0 /

where const, is an absolute constant. Let m0 be a natural number for

which the right hand side of the above inequality is less than 2a. Put

G2 β> Ξ U , i {G£;& G m , S J c Gm} and G(a0) = U^=w o y*GS'a). Then

+ Σ ΣΣ

Put G(c) = UΓ=3 Gd/w). Then G(c) satisfies the desired conditions.

Q.E.D.

In general, denote by dγ — dγ(x) the gradient of a curve γ at x and

put dγ = l/S^. Further put

(7.2) 3fcr(z) = a(Γ; f c

r )(Γ S ^) and dkγ(x) ^

Then by Lemma 4.3 (i),

(7.3)

holds.

Let γ and / be increasing curves of C^-class as in Lemma 7.2. Sup-

pose that they are given by the equations

r = u(φ) and r = w'Cp) ,

respectively. Hereafter assume that the domain and the range of the

canonical mapping Ψ% to be 0%, = γΓ\ G(c) and Φ% = f Π G(c) respectively,

where G(c) is the set given in Lemma 7.2.
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LEMMA 7.3. Let γ and γ' be K-increasing curves of Cι-class as in

Lemma 7.2, and let g(

rff(c9r9φ) be the Radon-Nikodym density:

(7.4) gfrie, r, φ) = ®H*fjL on Φff .
dσr

Then g7y can be represented by the infinite products;

g\%(c, r, ψ)

(7.5)

i+1 cos ψi + k'j cos <pi+ι + ki+1k
/

iτί+1 ^ + h ^

_ dγ COS φ fj C O S ^ IΛ COS 9 4 / ' C O S ^ J
11 7—df

COS φi I \ COS ^ / COS J

where (curuφi) = T^(e9r9φ) and (ιutuφd = T%W$rO,r,φ). Moreover, the

estimate

g%,(c, r, φ) < exp \c27 £ . <] + ^ \ψ -
L <-o m m {—cos ψu —

- Φ\
dγ

holds with a suitable constant c21.

Proof. First recall the estimate (6.16). Since θ(Cm(x)) and

converge to 0 as m-»oo,

max
dψ I dφ

and max log
dφ I dφ

converge to 0 as well. Hence

From (6.18) and (6.19),

holds. Since
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dφί+1 = dφt+1 άri dri+1

dψi drί+1 dψi drt

by Lemma 3.3, the two expressions in (7.5) are obtained. By (6.19) and

(6.19)', the inequality in the lemma is obtained. Q.E.D.

§ 8. Measure theoretical properties of γ{c) and γ(e)

The purpose of this section is to show that γ{c) and γ(e) play a role

of a coordinate system in the sense of measure theory. Let γ be a curve.

Put

A[γ] = A^[γ] = U r(C)0*0
xer

(8.1) , ,
(resp. A(e)[γ] = Ur ( e )0*0)

If jr is continuous, then the expression

A[γ] = Π U C

is true. Therefore A[γ] is a Borel set.

LEMMA 8.1. Let γ be a K-increasing curve, then

»(A[r]) > 0 .

Proof. Since UΓ=o ΓJjS consists of a countable number of if-decreas-

ing curves, f Π (UΓ=o ̂ S ) is a denumerable set. Hence there exists a

point x0 in p — U*U Γ*S. Let e2 = e1(a?0,1/4,1, ω) be the constant given in

Lemma 7.2 with ω = —cos<p(x0). Put f = γ Γi U61(x0). Then there exists

a K-quadrilateral G such that f joins ^α(G) and γe(G), θ(γb(G)) = θ(γa(G))

holds and T*£oG is also a Z-quadrilateral with ^0 = A(l/4, l,ω/4). Ob-

viously, χ;(A[r]) > v(G(c'1/4)) > (3/4)p(G) > 0. Q.E.D.

Let γ be a ^-decreasing curve with <?(̂ ) = π, and let r = uo(φ) be the

equation of γ. Put /* = {0, r + t,φ); (c, r, p) e γ}, that is, «̂ be the curve

given by the equation r = ut(φ) with ut(φ) = ^0(^) + ί. Denote by G ί)S

the quadrilateral surrounded by S,γt and γs. Put

G?iS = {a; e G M ^(c)(ίc) intersects with both γt and ŝ} .

Then Lemma 7.2 gives a set G$ on which the canonical mapping Wj$ =
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Φrfj, is absolutely continuous. Introduce, for convenience, simplified

notations:

() = W(c) φ(c) =ί,s = ψ rt,rs>
 ψt,s =

Suppose that the curve γ{c){c,ut{ψ),ψ) is represented by r = ut^ψ(ψ). Then

for a given Borel set f>

v(B Π Gft) = —1>0 Γ
 dr ί c o s

Jt jBr\G$nrr

~ — vo\ dr cos<prgtr(c,ut(<p),<p)dart(<p)
Jt JΦt,Sf)Ψ^\.(BΠΐr)

holds, where 0, wr(pr), p r) = ^ 0 , ̂ ( 0 , 0 and

(8.3) gt(φ, ψ) = -v 0 cos ψΛ f β ί t f w - t t 0 ( + )0, « ί ϊ f (ψ

Put N * = U . G$-qAn+1)2-q, iV* = U<z ̂  and

= A[γ] Π N*. If J(1)(ίc) > 0 and c(x) = *, there exist g and n such that a; is

in G^.β f ( n + 1 ) a- g, because θ(γ(c)(x)) > 0. Hence v(Mω - N*) = 0. Therefore

= v(A*[r] Π B)
(8.4) f f

dσr(φ)
Jr(cHc,uo(φ),

LEMMA 8.2. Let γ be a K-decreasίng curve in Mic\ Then σr(γ) = 0

if and only if v(A[γ]) = 0 for any Borel subset γ in γ.

Proof. Assume that σr(f) = 0. Then by (8.4)

v(A[γ]) = v(A[f] Π A*[r])

= ί dσr(φ) f 9o(φ,ψ)dσr«>W
JfΠA*ίrl Jr<c)U,u0(φ),φ)

= 0 .

Conversely, assume that <7r(f) > 0. Since γ Π Uί°=o T*S is a denumerable

set, there exists a point xQ in f — (Ji°=o Γ*S which is a density point of

γ. Then there exists a segment f0 of γ such that α;0 is in γ0, where γ0

is in U61(xQ) with εx = ê ίfy, 1/4,1, ω) with ω = —cos ^(^0) and that σr(^0 Π f)

> (1 — l/GAβ^Dσfyo). Let G be a Z-quadrilateral with γ0 in G such that

γ0 joins ^α(G) and ^(G), and that T~e°G is also a ^-quadrilateral with

^ = 4,(1/4, l,ω/4). Then there exists a subset G = G(c'1/4) which satisfies
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(C-l), (C-2) and (C-3) in Lemma 6.1. Since by Lemma 6.1 and Lemma 7.1

i6ίr_cmax v

and since max θάe(G) < (1 + c2)θ(γ0), the following estimate is given

,((?) < ^ c o β p f r d f l l ) f dσfydσ^U, Ulψ), φί)
Z ^ Jβnro

< _α + Φ:™sφ(xc)βα)σr(ϋn

On the other hand,

Therefore

and hence

This proves

n j= n S])

<?(roMr» n f n 5)

> 0 . Q.E.D.

Let γ be a K-decreasing (resp. ίC-increasing) curve of C -̂class in M(f).
Let ^* be an extension of γ which is a iί-decreasing (resp. If-increasing)
curve of Cx-class with θ(γ*) = π. Suppose that γ* is defined by the equation
r = uQ(φ). Denote γicXc,ulφ),φ) simply by fc) (resp. r(e)(c,u0(φ),φ) by ^(e))
and suppose that γ(c) (resp. ^(e)) is defined by the equation r = u(c)(ψ)
(resp. r = uie)(ψ)). Define the functions g(

o

c)(φ, ψ) and gke)(φ, ψ) by

COS ψj + kj COS ^j+

cos ψ€ + ^ cos
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) , ψ ; dujdψ) and 6< = bi((c,uQ(<p)9<p); dujdφ),

,a ~ χ(δ)(a;o) ί = - 1 cos p ,

X {fcj+i COS ̂  + fc COS y< +i + fti+ifcjΓ<+1}6i + 1 —ftfr<+1 —COS
{ίΰi+1 COS ψi + K COS ψi δ f e

with ^Ξ^f^^Ξ^M^ψ),!), kί

δ^ Ξ bi(t> u(e)(ψ), ψ dujdψ) and 6< = &c0, wo(p), 99 dujdφ), of course (*f, r t , p t)

= Γ;<0, uQ(φ), φ), kt = kOt, rt), K = kf(eu r<), r< = τ(^, r<, ^ ) . Then the follow-

ing lemma holds.

LEMMA 8.3. Let γ be a K-decreasing {resp. K-increasing) curve of

Cι-class in Mω. Then

(8.7)
v(B Π A<c)[r]) = f dσr(φ) [ gl'Kφ, ψ)dσrUψ)

Jr Jr(c>nB

(resp. v(B ΓΊ A ( e )[ r]) = f dσr(φ) f g(oe)(φ,Ψ)dσrUψ)) .

Proof. Put γ = γ — γ Π A*[γ] and assume that σr(f) > 0. Then by

Lemma 8.2, p(A*[f]) > 0. Since f c y, the inclusion A*[f] c A*[γ] holds.

On the other hand, A*[γ] Π A[^] = 0 since A*[?-] Π γ = 0. This is a con-

tradiction. Hence (j(f) = 0 and hence Lemma 8.2 is true for the first

case by the use of (8.4). The second case can be shown similarly.

Q.E.D.

LEMMA 8.4. (i) Each conditional measure with respect to ζ(c) (resp.

ζ(e)) are equivalent to σr<a (resp. arω) for almost every γ(c) (resp. γ(e)).

(ii) Let σ{e) be a measure on a curve γ{c) (resp. γ{e)) defined by

(resp. σM(γ) = v(A'e)[γ])9γ c γ(c)) .

Then for almost every γ{e) in ζ ( e ) (resp. γ{c) in ζ ( c )) σ{6) and σrω (resp. σ{c)

and σγ(e)) are equivalent.

Proof. The proof is clear by Lemma 8.2 and 8.3.

§ 9. A perturbed billiard transformation is a /Γ-system

The idea of the proof of the K-property is the same as in the case of
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the Sinai billiard system [6], [10]. The idea due originally to E. Hopf
was generalized by Ya. G. Sinai [9].

LEMMA 9.1. ζίLΛβ? is the trivial partition.

Proof. Let fix) be a ζίfL Λ ζίf-measurable function. Then there
exist functions fx(x) and f2(x) such that

(fλ(x) = f,(y) for any y in Γu\x)

(9.1) If2(x) =f2(z) for any z in Γ(e)(α;)

[/(#) = fλ(x) = f2(x) for almost every x in M .

Further there exists a measurable set N(f) such that

MN(f)) = 1

(9.2) W(/)lr(c)G*0) = ^V(/)lr(e)0*0) = 1 for a? in iV(/)
[/(a?) = /i(aθ - /,(*) for x in

Put a = (128ca(l + c*))-1 and ^0 = £0(a,2,ω/4t). Denote by {Yf>} the all
elements of the partition \J%_eo_1T%a{c) Γi {x;—cosφ(x) > ω}. Let x be
an inner point of Y(/o) and let ε1 = ê a?, or, 2, ω) be as in Lemma 7.1. Let V
be a rectangle in Uεi/2(x) such that a pair of sides is parallel with ^-axis,
the length of the horizontal side is 4/l£min times of the length of the vertical
side and x is the center of V. Let V be the rectangle with the same
center x, the same horizontal size as V and twice vertical size of V.
Then V separates V into three rectangles. Denote by Vλ the top rec-
tangle and by V2 the bottom rectangle (see Fig. 9-1). Since F c Όn(x),
there exists a jK-quadrilateral G such that γa(G) and γb(G) join the top side
and the bottom side of V and that T^°G is also a if-quadrilateral. By
Lemma 6.1, there exists a subset G(c'°° of G, which satisfies (C-l), (C-2)
and (C-3). Since the estimate

64(1 + c2)c2

is obtained, the inequality

v(G(c'α) Π F t Π N(/)) > av(G) > 0

holds. Hence there exists a point x in G(α) Π N(/) Π Vx. Obviously, the
curve γ{c)(x) intersects with the bottom side and the top side of V.

Let x0 be an arbitrary point in V Π N(f). Let Vo be a rectangle in
V such that the vertical sides of Vo are included in the vertical sides of



PERTURBED BILLIARD SYSTEMS 51

Fig. 9-1

Γ

v2

X-

Fig. 9-2

V and the line φ = £>O0) is the center line of Vo. Divide Vo into three

rectangles V19 V2 and V3, where Vλ is the upper quarter of Vo, V2 is the

central half of Vo and V3 is the lower quarter of Vo. Denote by γ19 γ2, γ3

and f4 the top side of V19 the top side of V2, the top side of F 3 and the

bottom side of Vz, respectively (see Fig. 9-2). Suppose that xQ lies in

the left hand side of γ(c)(x). Then there exists a Z-quadrilateral Gt such

that γh(Gx) - feKx) Π VOf θ(ra(GJ) = θ(r>(GJ) and Γ^G X is also a K-

quadrilateral. Then

OPCGX) > o

holds. By Lemma 8.3 and Lemma 8.4,

n o
because x is in N(J). Hence there exists a point xλ in

n^

Then f(c)(#i) intersects with ^2 and γA. Therefore by Lemma 6.17, there

exists a Z-quadrilateral G2 such that γc{G2) = fc)(xd Γ) (V2 U y3), ^(G)

joins yx and 7-4, and Ύ%G2 is also a K-quadrilateral. Then similarly in

the above, one can see that



52 I. KUBO

σr*M(G?'*> ΠV.Π N(f) Π r«>(xd) > 0 ,

and that there exists a point x2 in G(

2

e>d) Π VΊ Π iV(/) Γi ̂ ( a ^ ) . Perform-
ing such a procedure repeatedly, one can obtain a chain {x0, xx, , #2W}
such that xt is in 2V(/), x2i is in r(c)fe-i)> #2*+i is in γie)(x2i) and r(e)(#27l)
intersects with γic)(x). Since the canonical mapping ΨytHX2n_l)iTio{s) is
absolutely continuous, there exists a point x'2n in f(c)(#2w_i) Π iV(/) such
that x'2n+1 = r ( e ) ( ^ J Π r

( c )(ά) is in 2V(/). By (9.1) and (9.2), it is obtained
that

= f2(

Similarly, one can see that f(x0) = /(£) when ίc0 lies in the right hand
side of γic)(x). Since xQ in N(/) Π V is arbitrary, /(ίc0) is equal to a
constant for almost every x0 in Vo. Since # is an arbitrary inner point in
Y(fo), f{x) is equal to a constant for almost every x in Y(f°\ Assume
that the intersection of the boundaries of Y{/0) and Y(βo) includes a curve
γ. Then by Lemma 4.1, one may assume that γ is either K-increasing
or Z-decreasing. Suppose that γ is K-increasing. Since γ Γ) (UΓ-o ϊ7*^)
is a denumerable set, there exists a point #0 in γ which is not in Ui°=o T%S.
Then there exists a Z-quadrilateral G in Uβl(x0) with ex = ê ίCo, 1/4,1, ω) such
that θ(γa(G)) = θ(γb(G)) holds, Γj^G is also a ίC-quadrilateral and y inter-
sects with rα(G) and γc(G). Then p(Γ^> Π G(c>1/4) Π N(/)) > 0 and v(Y^ Π

G(ci/4) n ^(j)) > 0 B y (9 1 ) ? f o r a i m o s t every x in Yf > U Γ̂ o> is equal

to a constant. When / is decreasing, one can show the same result.
Since ω > 0 is arbitrary, it is proved that for almost every x in Mω fix)
is equal to a constant aω.

Observe a triple of boundaries dQt, 9Q,,, dQt,, such that there exists a
point z in M(</) Π S with Γ;1^ in M(ί) - S and T*z in M(<//) - S. Let ^
be the branch of T Ή which contains T^z. Suppose that γ is the com-
mon part of the boundaries of Xf and Xf. Since γ is K-increasing,

v(A^[r] Π Xf) > 0 and v(A(c)[γ] Π Xf) > 0 .

Since one of Xf and Z^} is mapped into M('°, and the other is mapped
into Mu"\ and since fλ(x) is constant on T*γ{c)(y) for 7/ in γ, one can see
that ev = αf/,. Performing this argument repeatedly, it is concluded that
for almost every x in M f(x) is equal to a constant. Q.E.D.
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THEOREM 3. Under the assumptions (H-l), (H-2) and (H-3),
( i ) T* is a K-systern,
(ii) ζ(c) and ζ{e) are K-partitions,

COS <pλ

cOSfr + frfc'τ f 1 \ ) d p

(iii) * f (
J \ COS <pλ

+ frfc'τx f 1 + He,φ)\)
Lχ(β)(',r,p) r J /

= ί log (l + fc/<Γl + fci COS p + ft' COS y i + fexfe^x \ & ι ^
J \ cos φ cos φχ(c)(c19 rx, φj /

Proof. By Theorem 2 and Lemma 9.1,

TΓ(Γ )̂ == TΓCZY) = ζ?L - ζ<? - ζ(_cL Λ ζLe)

is the trivial partition. Therefore (i) and (ii) are proved. The third as-
sertion (iii) follows from a theorem of Ya. G. Sinai [10] together with
Lemma 3.3 (see § 11 of [6], [5]).

§ 10. The motion of a particle in a compound central field

Appealing to Theorem 3, the ergodicity of the motion of a particle
in a compound central field will be shown under some assumptions.
Suppose that there exist several fixed kernels q(ϊ), •,?(/) in a torus T
and that these kernels have central potentials; UtQq — q(c)\), c = 1,2, ,
7, where \q — q(e)\ means the Euclidean distance between q and q(ί). The
potential field governed by

(10.1) ff(0) = Σ t 7 , ( | g - ? ω | )

is called a compound central field. If the potential ranges of Ut(\q — ?(0|)'s
do not overlap, the dynamical system of a particle in the potential field
satisfies assumptions (H-l) and (H-2). Therefore Theorem 3 is applicable
to the dynamical system. In order to check the assumption (H-3), it is
necessary to calculate the path of the motion of a particle in a central
field. A central potential function V is said to be bell-shaped, if

(V-l) V(s) is continuous for s > 0 and V(s) — 0 for s>R with some R,
(V-2) V(s) belongs to C2-class in (0,R) and there exist left deriva-

tives V'(R-Q) and V"(R-0),
(V-3) —sV'(s) is monotone decreasing and V'(R-0) < 0.
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Now discuss the motion of a particle with mass m and energy E in the

potential field governed by a bell-shaped potential function V. Then the

Hamiltonian is given by

(10.2) H(s, β) = im(s2 + s2β2)V(s)

using the polar coordinates (s, β). It is well known that the angular

momentum of the particle

(10.3) A = ms2β

is a first integral and that the equation of the motion is given by

(10.4) ms- sβ2 = -V\s) .

Hence the equation of a path is expressed in the form

- ί
Observe a path whose minimum value of the radial coordinate is

equal to u. Suppose that the path passes (^, 0). Let (R, aiu)) be the

point at which the path goes out from the potential range, and let ψ(u)

be the angle between the velocity and the radius vector at (R, a(u)). Then

the formula

(10.6) H(φ) - 2Ra(ψ-\\π - φ\)) sign (φ - π)

is obtained.

Fig. 10-1

The angular momentum A is expressed in the form

A = {2m(E - V(u)ψ2u

by (10.2) and (10.3). By (10.5)



(10 7) aiu) = J.
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u\E - Viu))

Since the velocity at (s, β) is given by (s cos β — sβ sin β, έ sin β + sβ cos β),

one can see

(10.8) cos

By (10.2)

(10.9)

Since by (10

is seen, and

(10 10)

is obtained.
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where a(u) and ψ(u) are given by (10.7) cmώ (10.8) respectively. Further

H(φ) belongs to C2-class and

dH(φ) ^ -4R(E - Viu)) + 2R{R2E - u\E - V(u)ψ2g(u)
dφ 2(E - V(u)) - uV'{u)

with u = ψ~\\π — φ\), where

a(u)= ΓR/U l~e2S(E ~ ^ ( e ^ ) ) y / ^ ) + e*s(E " VmVXe'u)] d
Ji 2[E - V(u)]1/2[e2s(E - V(esu)) -E+ V(u)]3/2

2[E - V(u)]1/2[e2s(E - V(esu)) -E+ V(u)]3

Proof. The first equality was shown. Noting the expression

~Ji \e2*(E-V(e*u))-(E-V(u))ϊ ** '

h(φ) = dH(φ)/dφ can be calculated and it can be shown that h(φ) is con-

tinuously differentiable. Q.E.D.
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Denote by Re the range of the potential U( and denote by Lm i n the

minimum distance between the domains Qt = {q; \q — 50)| < Rt}9 i — 1,2,

THEOREM 4. // every Ut is bell-shaped and if energy E satisfies the

condition

(10.11) 0 < E < — min ί R<Lmm u^R _ 0 ) ]

4 r I # , + L m i n J

£fte% {SJ is ergodίc. Moreover the transformation T* is a K-systern, of

course T* is ergodic.

Proof. Since the curvature of dQe is equal to l / # , and |τ | m i n = Lmin,

the assumption (H-3) is equivalent to

If Ut is bell-shaped,

min >
dψ ~ UXR.-O)

holds by Lemma 10.1. Therefore if E satisfies the inequality (10.11),

then the assumption (H-3) is fulfilled. Q.E.D.

EXAMPLE. The following central potentials are bell-shaped.

(asa — aRa 0 < s < R ,
(a) V'(8) =

|0 R < s ,

for a < 0,

(alogR/s 0 < s < R ,

(b) V\s) = <

lO β < s .
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