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TWO THEOREMS ON EXCELLENT RINGS1*

SILVIO GRECO

Let / : A —> B be a homomorphism of commutative noetherian rings.
The main results of this paper are:
(a) Assume / is finite and induces a surjective map on the spectra.
Then if B is quasi-excellent A is quasi-excellent and is excellent if it is
universally catenarian (Th. 3.1)2); and
(b) If / is absolutely flat and A is excellent then B is excellent (Th.
5.3). In particular the strict henselization of an excellent local ring is
excellent (Cor. 5.6.).

To prove the above we give some more general partial results. For
instance in section 1 we study the finite descent for certain P-homomor-
phisms and P-rings, and in section 2 we show that several properties
related with the openness of loci (such as property J2 of excellent rings)
descend by surjective scheme morphisms locally of finite type. Result
(a) is given in section 3 together with some applications, while in section
4 we show with a counterexample that the assumption " / finite" cannot
be replaced by " / of finite type". Section 5 contains result (b), which
generalizes the main statements of [5]. This is possible by a theorem
of Andre [1] and a new proof for the chain condition.

The author wishes to thank Prof. H. Matsumura for encouraging
him to write this paper and for several useful conversations on its content.

Foreword. All rings are assumed to be commutative and noetherian.
We use freely the notations and the definitions of [9] and [7].

1. Finite descent for P-homomorphisms and P-rings.

Let A be an algebra over the field k and let P be any of the fol-
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lowing properties: geometrically regular (or normal or reduced); Cohen-
Macaulay Sn;Rn; etc (see [8], 7.3).

1.1. DEFINITION. A ring homomorphism is a P-homomorphism if
it is flat and its fibers have property P. A ring is a P-ring if its for-
mal fibers at the maximal (or prime) ideals have P (1. cit.).

1.2. PROPOSITION. Let f:A->B be a flat ring homomorphism and
let A' be a finite A-algebra such that Spec (A') —» Spec (A) is onto. Then
f is a P-homomorphism if and only if the induced map f: Ar —> Bf =
B ®A A

1 is a P-homomorphism.

Proof. The "only if" is known (1. cit.). Conversely let p e Spec (A)
and let pr be a prime ideal of A7 lying over p. We have (B ®A k(p))
®kw HpΊ = B' ®^' HpO and since k(p;) is finite over k(p) the conclusion
follows by [81,6.7.8.

1.3. PROPOSITION. Let A, A' be as in 1.2. Then the following are
equivalent:

i) A is a P-ring
ii) Af is a P-ring;

iii) Any faithfully flat f: A—>B whose closed fibers (i.e. the fibers
at the maximal ideals) are geometrically regular is a P-homomorphism.

Proof. By [8], 7.3. i) implies ii). Conversely let m be a maximal
ideal of A. Then C = A' ®AAm is a semilocal P-ring and the canonical
map Spec (C) —• Spec (Am) is onto. Moreover if C is the completion of
C, the canonical map C-+C is a P-homomorphism ([8], 7.4.6), and i) fol-
lows by 1.2. Now we prove that i) implies iii). We may assume that
/ is a local homomorphism of local rings. Let / be the extension of /
to the completions, and let u, v be the embeddings of A,B in their com-
pletions. Then / is formally smooth (since / is, see [8], 0.19.7.1), and
hence is regular by [1]. Then vof=fou is a P-homomorphism and u
is a P-homomorphism by faithful flatness ([8], 7.3). Thus / is a P-
homomorphism. To prove that iii) implies i) one can apply iii) to the
canonical maps A-* A x (AJΛ (direct product of rings), where m is any
maximal ideal.

1.4. COROLLARY. Let A -»B be an injective homomorphism of finite
type and assume B is a domain and a P-ring. Then there is a non zero
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feA such that Af is a P-ring.

Proof. By the normalization lemma it follows easily that there is
a nonzero / e A such that Bf is a finite overring of C = Af[X19 , Xn]
where the .XVs are indeterminates (see e.g. [2], p. 70, ex. 20). The con-
clusion follows easily by 1.3.

1.5. Remarks, i) In [131 (while studying the Picard group of
certain ring extensions) it is shown how to obtain a ring A by "glueing"
prime ideals of a ring A', and conditions are given for Af to be finite
over A. Hence the above results can be applied.

ii) A local ring is Nagata if and only if any formally smooth local
homomorphism A->B is reduced. This follows by 1.3 and [8], 7.4.6 and
7.7.2.

iii) If A is a P-ring and A -* B is a reduced homomorphism then
Ap -+ Bp is a P-homomorphism whenever ψ is a minimal prime of pB.
This follows by 1.3.

iv) If A is a quotient of a Cohen-Macaulay local ring any formally
smooth local homomorphism A-+B is Cohen-Macaulay, as follows by 1.3
and [6],13.6.

v) The implication ii) => i) of 1.3 is false if A' is only of finite
type over A: see 4.1 below.

2. Descent of openness of loci and of property J2.

If P is a property of local r ings and X is a scheme (locally noetherian

as always) we denote by UP(X) the set of points xeX such t h a t the local

r ing Ox>x has property P . If X = Spec (A) we write also UP(A).

2.1. PROPOSITION. Let X be an irreducible scheme, Y an integral
scheme and f: X —> Y a dominant morphism locally of finite type. Let
P be any property of local rings which descends by faithful flatness.
Then if UP(X) contains a nonempty open set the same is true for UP(Y).

Proof. Since any two nonempty open sets in an irreducible scheme
have a nonempty intersection we may assume that (X and Y are aίfine
and) / is of finite type. By the theorem of generic flatness ([8], 6.8.1)
there is a nonempty open set U c Y such that the restriction g of / to
f~\Ό) is flat. Since g is clearly of finite type it is also open ([8], 2.4.6)
and the conclusion follows easily by our assumptions on X and Y.
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2.2. COROLLARY. Let A-+B be a finite type infective homomorphism
of integral domains. Then if UP(B) (P as in 2.1) contains a nonempty
open set the same is true for UP(A).

A scheme is said to be J2 if it has an open affine covering whose
rings are J2. Then any open subscheme is J2.

2.3. PROPOSITION. Let f:X->Y be a surjective scheme morphism
locally of finite type. Then X is J2 if and only if Y is J2.

Proof. The "if" part is clear by definition (see [9]). To prove the
converse we may assume that Y is affine and / is of finite type. Then
/ is quasi-compact, whence X = V1 U U Vn where the V/s are affine
and open. Let Z be the disjoint union of the TVs. Then Z is affine
and J2, and / induces a surjective morphism of finite type g:Z-*Y.
Thus it is enough to prove:

2.4. COROLLARY. Let φ:A-*B be a finite type ring homomorphism
which induces a surjective map on the spectra. Then B is J2 if and
only if A is J2.

Proof. We have to show that, for any finite integral A-algebra
A', Reg(A0 contains a nonempty open set. By assumption the ring
B" — Af ®A B is not zero. Let p be a minimal prime of B" and let
Bf — B"/p. Then Reg (Bf) is open and nonempty and the conclusion fol-
lows by 2.2.

A scheme is said to be a Nagata scheme if it has an open affine
covering whose rings are Nagata. Then any open subscheme is Nagata.

2.5. PROPOSITION. Let f:X-*Y be as in 2.3. Then the following
are equivalent:

i) Y is Nagata;
ii) X is Nagata and Y is locally Nagata (i.e. OYtV is Nagata for

any ye Y).

Proof. It is clear that i) implies ii). To prove the converse recall
that a noetherian ring A is Nagata if and only if it is locally Nagata
and Nor(β) contains a nonempty open set for any finite integral A-
algebra B ([8], 7.7.2). The conclusion follows as in 2.3 (with "normal"
in place of "regular").
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2.6. Remarks, i) The implication ii) => i) in 2.5 is false if Y is
not locally Nagata: see 4.1.

ii) We do not know if 2.3 and 2.5 hold if / is only dominant.

3. Finite descent for excellent rings.

A ring A is said to be quasi-excellent (QE) if it is a G-ring and
is J2. Then A is excellent if it is universally catenarian (UC). By 1.3
(with P = geometrically regular) and 2.4 we have:

3.1. THEOREM. Let A-+A' be a finite ring homomorphism which
induces a surjective map on the spectra. Then:

i) A is QE if and only if Af is QE
ii) A is excellent if and only if it is UC and Af is QE.

3.2. COROLLARY. Let A-+A' be a finite injective homomorphism of
integral domains. Assume either i) / is flat or ii) A is normal. Then
A is excellent if and only if Af is excellent.

Proof. By 1.3 we have to show that A is UC if A' is. Since i)
and ii) are inherited by polynomials and fractions, it is sufficient to
show that A is catenarian, and we may assume A is local. The con-
clusion follows then by [9], sec. 5 and

3.3. LEMMA. Let A, A' be two domains with A local and let
f:A-+A' be a homomorphism such that: i) the going down theorem
holds, and ii) άimA/p = dimA'/pA' for all pe Spec (A). Then if Af is
catenarian the same is true for A.

Proof. By Ratliff [14] a local domain C is catenarian if and only
if dimCp + dimC/ p = dimC for all peSpec(C). Let then p be a prime
ideal of A and let p' be a minimal prime of pA' such that dim Af\pf =
dim AI p. It is easy to see that f~Kp') = p, whence dim Â  = dim A'p, ([9],
section 5). It is also clear that dim A = dimA'm, for all maximal ideals
m' of A'. The conclusion follows easily.

3.4. COROLLARY. Let f:A-+A' be an injective ring homomorphism
of finite type. Assume A' is a QE domain (resp. Af is an excellent do-
main and A is normal). Then there is a nonzero f in A such that Af

is QE {resp. excellent).

Proof. It follows by 3.1 and 3.2 with the same argument used in
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the proof of 1.4.

3.5. COROLLARY. Let A be a ring and let A' be the integral closure
of Arθd in its total ring of fractions. Then A is QE if and only if Af

is QE and is finite over A.

Proof. It is an easy consequence of 1.3.

3.6. COROLLARY. Let A be a one-dimensional excellent ring. As-
sume that AIp has characteristic zero for any minimal prime p, and
that the fields A/m are perfect for any maximal ideal m of A. Then
the ring B = A[X XJ[[Y, , Ym]] is excellent for all m,n.

Proof. B is UC by [15], and the excellence of B was proved by
Nomura [11] when A is a Dedekind domain. Since our assumptions on
A are easily seen to hold for the integral closure of Ared, the conclusion
is an easy consequence of 3.5.

3.7. PROPOSITION. Let A be a ring of dimension < 2, and assume
A/φ has characteristic zero for any minimal prime ψ. Let a be an ideal
of A and let B be the ^-completion of A. Then if A is excellent the
same is true for B.

Proof. B is UC by [15], and thus it is sufficient to show that B is
QE. Since A is a G-ring, the canonical homomorphism A —>B is regular
([8], 7.8.3 v)), and hence the integral closure Br of Bτed is canonically
isomorphic to B®AA' where A' is the integral closure of Ared ([8], 6.14).
Then by 3.5 we may assume that A is a normal domain, so that B is
a normal ring (1. cit.).

Let 9ft be a maximal ideal of B and m its contraction to A. Since
the local rings Am and Bm have the same completion ([6], 6.2) and Am is
a G-ring, it follows that the generic formal fiber of Bm is regular and
hence geometrically regular by our assumption on the characteristic.
Moreover if ψBm is a nonzero prime ideal, the ring B/ϊβ is either com-
plete semilocal (if S$qLaE) or is a quotient ring of A. In both cases it
is excellent and then formal fiber of Bm at ^Bm is geometrically regular.
This proves that B is a G-ring.

Since A —> B is regular, Reg (B) is the preimage of Reg (A) by the
canonical map Spec(J?)—> Spec (A), and hence it is open. But B is nor-
mal and then it follows that Reg (B/ψ) is open and nonempty for any
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minimal prime ^ of δ . Finally by the previous argument and the as-
sumption on the characteristic it follows that B is J2. This completes
the proof.

3.8. Remarks, i) As we have seen in 1.5 i), theorem 3.1 can be
applied to rings obtained by glueing prime ideals.

ii) It is false in general that if A-+A' is finite and injective and
A' is UC then A is UC ([8], 5.6.11).

iii) The hypothesis "finite" in 3.1 cannot be replaced by "of finite
type", see 4.1 below. However the following conjecture seems reason-
able : Let / : X —> Y be a proper surjective morphism of locally noetherian
schemes. Then if X is QE, Y is QE. In the aίfine case this is just
3.1. Note also that by 3.1 and the Stein factorization one may assume
f*Ox = Oy.

iv) It is not known if an ideal-adic completion of an excellent ring
is excellent. Interesting contributions to this problem can be found in
[10], [11], [17], [19], [20].

4. A counterexample.

We show that some hypotheses in some of the previous results can-
not be weakened (see: 1.5 v); 2.6 i); 3.8 iii)).

4.1. PROPOSITION. There are two local domains of dimension 1 A,
B and a ring homomorphism f: A —> B such that:

i) / is local, of finite type and bίratίonal (i.e. it induces an iso-
morphism of the fields of fractions);

ii) B is an excellent DVR and A is non-Nagata.

To prove the above we need the following generalization due to
Valabrega of a well-known construction of Nagata.

4.2. PROPOSITION. Let X, Y be analytically independent over the
field k and let fek[X][[Y]] be transcendental over k(X,Y). Let C =
k(X, Y, /) Π k[[X, Y]]. Then:

i) C is a 2-dimensional regular local ring, X9Y is a regular sys-
tem of parameters of C and C = k[[X, Y]]

ii) A = C/fC is a domain and A = k[[X,

Proof. See [18], Prop. 3 and proof of Prop. 7.
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Proof of 4.1. Notations are as in 4.2. Let g,hek[X][[Y]] be alge-

braically independent over k(X, Y) and put / = gh2. Then / is trans-

cendental over k(X, Y) moreover, after changing a finite number of

terms we may assume that the leading term of / is XY2. Let A — C/fC,

where C = k(X, Γ,/) Π k[[X, Y]]. By 4.2 A is a local domain of dimen-

sion one, and A = k[[X,Y]]/(f); hence A is not a Nagata ring.

Now we construct B. Let m be the maximal ideal of A and let Z

be the blow-up of Spec (A) along m. Let E be the exceptional divisor

(i.e. the closed subscheme of Z associated to the sheaf mθz). Then

E = Proj (gr(A)) ([8], 19.4.2). But by our choice of / we have gr(A) =

gr(A) ^ k[U, V]/(UV2), and hence E consists of exactly two points P,Q

which correspond to the ideals (£7) and (V) respectively. Put B = OZtP.

Since Z is finite we have B = A[x/y, t'1] where x, y are the images of

X, Y in A and t is a suitable element of A[x/y]. Hence B is a finitely

generated A-algebra. Moreover P is a reduced point of E, which implies

that xnB is the maximal ideal of B. It follows that B is a DVR. Choose

now k of characteristic zero: then B is excellent and the proof is com-

plete.

5. Absolutely flat algebras over excellent rings.

5.1. DEFINITION. A ring homomorphism A-»B is said to be:

i) Absolutely flat (AF) if it is reduced, has discrete fibers, and

k(ψ) is (separable) algebraic over k(p) whenever ψ lies over p.

ii) ίnd-etale if it is an inductive limit of etale homomorphisms.

Clearly ind-etale implies AF.

5.2. Remark. Since we are dealing with noetherian rings only the

above definition of AF agrees with the usual one (i.e. B is flat over A

and over B®AB), as follows by [3], 4.1 and [12], 3.1.

5.3. THEOREM. Let f:A-+B be an AF ring homomorphism.

Then:

i) If A is a P-ring (section 1), then B is a P-ring;

ii) // A is Nagata and J2, the same hold for B;

iii) // A is locally Nagata and UC, the same hold for B;

iv) If A is excellent, B is excellent;

v) // / is faithfully flat the converses of i) and ii) hold;

vi) // / is faithfully flat and B is locally a domain the converses
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of iii) and iv) hold.

Proof. Clearly iv) follows from i), ii), iii) moreover ii) and v) are

in [5] (4.8,2.9,4.11). To prove i) we may assume / is a local homomor-

phism of local rings. With the same notations as in 1.3 we have that

/ is formally smooth and hence regular by [1]. Then vof is a P-

homomorphism, and the conclusion follows by AF, as in [8], proof of

18.3.2. In order to prove iii) and vi) we need the following proposition.

5.4. PROPOSITION. Absolute flatness is stable by finite type base

change (i.e. if A —> B is AF and Af is a finite type A-algebra the in-

duced homomorphίsm A' —> B' = Af ®A B is AF).

Proof1*. We have only to show that A' —>B' has discrete fibers and

algebraic residue field extension. We may assume A' — A[X], whence

B' = B[X]. Let Sβ'eSpecCBO and let Vβ,p',p be the contractions of ψ

to B9 A', A respectively. Tensoring with k(p) we see that it is sufficient

to study the fibers of the induced map g: k(p)[X] -»(B ®A k(p))[X]. By

assumption we have B ®A k(p) = Kx x x Kn where the Kt

ys are alge-

braic field extensions of k(p). Thus g is integral and the conclusion fol-

lows.

Proof of 5.3. iii). B is locally Nagata by [4]. Then by 5.4 it is

sufficient to prove that B is catenarian if A is. Let ψQ Q £ ψn be

a saturated chain of prime ideals of B and put pt = f'KΨί)- The pt'a

are all distinct by the discreteness of fibers; thus it is enough to show

that άimAH/pί_1AH = 1 for all ϊ 's. This is a consequence of:

5.5. LEMMA. Let C be α UC local domain whose integral closure

C is finite. Let D be a local ring and f:C->D a local AF homomor-

phism. Then dimD/ίβ = dim C for any minimal prime ψ of D.

Proof. Since / is AF, D is reduced and its integral closure is

Όr = C'®CD ([4], 3.9). Then D' = EχF, where E is the integral closure

of D/?β. By 5.4 the induced map C —> D' is AF and hence the same

holds for C-+E. Let n be a maximal ideal of E such that dimD/φ =

dim En, and let m be the contraction of n to C;. We have dim C'm =

dimί7π ([4], 3.13) and dim C = dim C'm ([8], 5.6.10). The conclusion follows.
1} With the usual definition of AF (see 5.2) this is an immediate consequence of

[12], Lemma b. However we prefer to give the present proof, so that everything in
this section depends only on Definition 5.1.
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Proof of 5.3. vi). It is sufficient to show that A is catenarian (by
5.4), we may assume A and B are local. The conclusion follows then
from 3.3 (see e.g. [4], 3.13 for hypothesis b) of 3.3). This concludes the
proof of 5.3.

5.6. COROLLARY. Let B be a strict henselizatίon of the local ring
A. Then we have:

i) A is a P-rίng if and only if B is a P-ring;
ii) A is QE if and only if B is QE

iii) if A is excellent, B is excellent;
iv) if B is a domain (that is; A is a geometrically unibranche

domain, e.g. a normal domain) then B is excellent if and only if A is
excellent.

Proof. B is an ind-etale A-algebra ([8], 18.8.17).

5.7. Remarks, i) Theorem 5.3 was proved in [5], with the extra
assumption: [k(W): k(m)] is finite whenever πt is the contraction of the
maximal ideal Wl.

ii) One can prove that AF homomorphisms preserve Nagata rings
(see [12] or [4]).

iii) The converse of 5.3 iii) is false in general ([8], 18.7.7).
iv) Corollary 5.6 i), iii) is proved in [16] when the residue field of

A is perfect.
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