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CUSPS ON BOUNDARIES OF TEICHMULLER SPACES

HIROKI SATO

0. Introduction.

We shall be concerned here with cusps on the boundaries of
Teichmύller spaces.

Bers [3], Maskit [7] and Kalme [5] studied about boundaries of
Teichmϋller spaces T(Γ). According to Bers [3], the boundary of T(Γ)
consists of cusps and degenerate groups. Maskit [7] showed how to
construct δ-groups. Furthermore Kalme [5] concretely constructed cusps
in the case of genus 1 by "pinching" and "twisting" deformations. At
first we consider the subspace of T(Γ) which consists of hyperelliptic
surfaces. By means of variation of distributions of branch points we
consider a deformation of Riemann surfaces. We shall show that, when
the distance between two branch points tends to zero, the sequence of
points in T(Γ) represented by the deformation approaches to a cusp on
the boundary 3T(Γ) (Theorem 1). For general Teichmίiller space T(Γ),
where U/Γ is a compact Riemann surface of genus g, g ^ 2, we shall
show that by the "pinching and twisting" deformation (not Dehn's twist-
ing, see §3 for the definition), we get a sequence of points in T(Γ)
which approach to a cusp on dT(Γ) (Theorem 2). For the proof of
Theorems 1 and 2, we do not use an "inequality of Bers" (Bers [3]) but
use the method of extremal length. Theorem 1 is essentially known
(Bers [3]) but the author does not know the theorem stated in this style.
The important thing is that the proof of the theorem is applicable not
only to the case of cusps on dT(Γ) but also to the case of cusps on
"boundaries" of Schottky spaces and of spaces of regular 6-groups.

In § 1 we shall give the terminology and definitions. We shall study
in § 2 the cusps on 3T(Γ) obtained by "pinching" deformation and in § 3
the cusps on dT(Γ) obtained by "pinching and twisting" deformation.
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1. Preliminaries and terminology.

For the latter necessity we shall state the definition of spaces of

Kleinian groups due to Kra [6]. In order to treat the spaces of

Kleinian groups, we represent the elements in the space by Beltrami

coefficients. We denote by SL'(2, C) the space of Mobius transformations,

that is, an element A in SL'(2, C) is represented by A(z) = (az + b)

/(cz + d), zeC (=C U {oo}) or a matrix A = ft J) eSL'(2,C) modulo

{±1}. Especially we denote the space by SL'(2,R) instead of 51/(2,0

in the case of a, b, c, d e R. Let G c SL'(2, C) be a Kleinian group, and

let Δ be an invariant union of connected components of Ω — Ω(G), the

region of discontinuity of G. Denote by A — A(G) the limit set of G.

A Beltrami coefficient μ for G is a measurable function satisfying

(1) μ(Az)A'(z)/A'(z) = μ(z), A e G, a.e. z e Ω

(2) μ\Λ = O

(3) esssup|μ| < 1.

The Beltrami coefficients form the open unit ball of the Banach space

of bounded measurable functions on Ω/G. The space of Beltrami co-

efficients for G with support in Δ is denoted by M(G, Δ). It is well

known that for every μeM(G,Δ) there is a unique q.c. automorphism

wμ of C satisfying the Beltrami equation (wμ)2 = μ(wμ)z and wμ(0) = 0,

wμ(ΐ) = 1 and wμ(oo) = oo (hereafter we write wμ(0,1, oo) = (0,1, oo)).

For fixed AeG and μ e M(G, Δ), we have

wμA(wμ)~ι e SL'φ, C) . (1)

Thus each μ determines an isomorphism called a quasi-conformal de-

formation of G

θ(μ):G-+SL'(2,C), (2)

where θ(μ)(A) is given by (1). We call μeM(G,Δ) trivial if (2) is the

identity isomorphism. The set of trivial Beltrami coefficients for G with

support in Δ is denoted by M0(G, Δ). μ and v e M(G, Δ) are called equiv-
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alent if θ(μ) = θ(v). The set M0(G, Δ) acts as a group of right trans-

formation on M(G, Δ) by

M(G, Δ) x M0(G, J) 9 Qι, i;) >̂ ̂  e M(G, Δ) , ( 3 )

where w^ = w V . In this manner, we view M0(G, Δ) as a group of

biholomorphic automorphisms of M(G, Δ). The quasi-conformal deformation

space of G with support in Δ is

T(G,Δ) = M(G,Δ)/MQ(G,Δ)

endowed with the quotient topology. If Γ is a Fuchsian group operat-

ing on U, the upper half plane, then T(Γ, U) = Γ(Γ) is the usual

Teichmϋller space if and only if Γ of the first kind. From now on Γ

denotes a finitely generated Fuchsian group of the first kind.

Let μe M(Γ,U). Then there exists an unique q.c. automorphisms

wμ of U that satisfies the Beltrami equation (wμ)2 = μ(wμ)z and the

normarization wμ(0,1, oo) = (0,1, oo). Every μ e M(Γ, U) determines an

isomorphism defined by setting θ(μ)A = w^W'1, AeΓ. Then as in the

above there uniquely exists wμ: C —> C satisfying (wμ)8 = μ(wμ)z and

^^(0,1, oo) = (0, 1, oo). We define a quasi-Fuchsian group θ(μ)(Γ) =

wμΓ(wμ)~ι c SZ/(2,C). Set w | L = TF ,̂ where L is the lower half plane.

Then TF̂  is a conformal mapping. We denote by {Wμ, z] the Schwarzian

derivative

{wμ, z) = (w /wy - a/2)(W'μ'/wμμy

Then {Wμ,z} = φμ, zeL is an element in B(L,Γ), which is the space of

bounded automorphic forms of weight (—4) for Γ in L. If μλ and μ2

are equivalent under M0(Γ, ί7), then Wμi = T7̂ 2 on2?. Then Wμi\L = Wμ2\L,

since W~*Wμ2 is conformal. Thus μx and /̂ 2 determine the same φ e B(L, Γ)

Furthermore we see easily that the mapping constructed in the above

from M(Γ, U) to B(L, Γ) is injective. Conversely, for φ e B(L, Γ) we

consider the linear differential equation

2τf'{z) + φ(z)v(z) = 0 , zeL. ( 4 )

Let ηλ(z) and η2(z) be two linearly independent solutions of (4). Set Wφ

= ηx\η2 and the consider the only φeB(L,Γ) such that Wφ is a conformal

mapping onto the one of the complements of the simple closed curve.

Set ΘΦ(Γ) = WΦΓWΦ\ Then by Bers [3] there exists a q.c. mapping
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wφ:0-*0 such that wφΓwφ

x = ΘΦ(Γ) and wφ\L = PF,. We set ̂  = (w,),
/(w,)*,z e £7, then μφ e M(C7,Γ). Let wφ:C->C be another such mapping
and set fiφ = (wφ)J(wφ)Z9 zeU. Then it is easily seen that θ(μφ)=θ(μφ). For
the μ,, we determine W by the same method as above first half.
Setting wμ*\L—Wμφy we have {Wμφ,z} = φ. Hence we may consider
T(Γ) as the subspace of B(L,Γ), that is, the space of φeB(L,Γ) such
that Wφ is the restriction to L of a q.c. self-mapping w of C compatible
with Γ. Thus we can consider 3Γ(Γ), the boundary of Teichmίiller
space Γ(Γ), in B{L,Γ). For φedT(Γ), we may define ^(Γ) = WφΓWφ

λ

as in the above. Every group of the form ΘΦ(Γ), Φ e 3Γ(Γ) (or conjugate
to such a group in SL'(2,C)) will be called a boundary group of Γ.
A point ^ 6 3T(Γ) is called a cusp if there is a hyperbolic element AeΓ
such that 0,(A) is parabolic. A point φ e dT(Γ) is degenerate if ϋφ(Γ) is
a degenerate group, i.e., Ω(ΘΦ(D) is connected and simply connected.
Bers [3] showed that dT(Γ) consists of cusps and degenerates. We shall
discuss cusps on dT(Γ) in §2 and in §3.

2. Cusps obtained by the "pinching" deformations.

In this section we shall consider cusps on the boundary of
Teichmliller space T(Γ) obtained by the "pinching" deformations.

Let S be the normalized hyper-elliptic surface with branch points
fli, >θ20-2>O,l,α20_i,oo(αi <a2< < α 2 ^ _ 2 < 0 < l <a2g_1: a^^yia^ajβR

(j = 1, . . , 2g — 1)) and branch cuts (a19 a2), - , (a2g_z, a2g_2), (0,1), (a2g_u oo)

on R as in Fig. 1.

Fig. 1.

As in Fig. 1, take a homology basis ,otg,βif - - > β g o n Now

we consider the deformation under which these branch points except
α2g_! and these branch cuts except (a2g_u oo) are fixed and the point a2g_x

tends to oo. We shall consider the variation of Teichmuller points,
especially the limit of the sequence of the points under this deformation.
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Let Γ be a finitely generated Fuchsian group such that U/Γ is the
above Riemann surface S and let Sn be the Riemann surface with
branch points a19 ,a2g_29 0, 1, a§$Llf oo and branch cuts (a19 α2), ,
(βvg-z* &2Q-2)> (0,1), (fl$l19 oo) on the real axis, where a2g_λ < a^_x. Let

φneB(L,Γ) be the Teichmϋller point of T(Γ) associated with Sn.

We have the following

THEOREM 1. Under the above deformation, that is9 if a$_λ tends
to oo, then φn goes to a cusp on dT(Γ) as n—> oo.

For brevity, we consider the case of genus 2, that is, S is a hyper-
elliptic surface with branch points a, δ, 0,1, c, oo on R (a < b < 0 < 1 < c
and c > \a\) and branch cuts of the segments on the real axis joining
a to 6, 0 to 1 and c to oo (see Fig. 2).

Fig. 2. Fig. 3

Let Sn be the hyper-elliptic surface with branch points a9 b9 0,1, cn9 oo

(c < cn) as in the above Fig. 3. Take a Fuchsian group Γ such that

U/Γ = S and consider the deformation under which S tends to Sn.

Give a homology basis al9a29βl9β2 on S as in the above Fig. 2. Espe-

cially let aλ be a circle of the radius r with center at 0, |α| < r < c.

On the another sheet we denote by a[ the circle with the same projec-

tion as aλ. Let D be the ring domain bounded by ax and a[ (the shaded

part in Fig. 2 is the half of the domain). Furthermore we write the

same homology basis a19a29βί9β2 on Sn and consider the same av Let

Dn be the ring domain bounded by ax and a[ on Sn. To these loops

<x\> a2, βi> β2 on S we assign Mobius transformations A19 A29 B19 B2 in Γ,

respectively.
We construct a q.c. mapping fn:S—*Sn as follows. Let Φ be

Fig. 4.
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the conformal mapping of the Grδtzsch extremal region to the annulus

{0 < p < \w\ < 1} (see Fig. 4). Then Φ(c) = 1/p (Kϋnzi*). We map D

and Dn to the annuli K: {0 < p < \z\ < 1} and Kn: {0 < pn < \z\ < 1} con-

formally, respectively, where the r is the radius of the circle a. Then

φ((l/r)c) = 1/Vy and Φ((l/r)cB) -

We define a q.c. mapping fn:K—>Kn by setting

f n ( σ e ί θ ) = σ n e ί θ , 0 < 0 < 2 τ r , p < σ < l ,

where σn = ((pn — ΐ)/(p — T))(σ — 1) + 1. The mapping fn has the prop-

erty such that fn(peiθ) = ρne
t$ on \z\ = ^ and fn(eίθ) = βί<? on |^| = 1.

Set h(z) = (l/r)s and g = φoh. Now we define a q.c. mapping / * : D

-> Dw by setting / * = g~ιfng. Then it is easily seen that / * = id. on

oti and a[. We define the q.c. mapping fn:S—>Sn by setting

/ * on Z?

id. o n S - D .

LEMMA 1. lim^^ — 0 if and only if lim cw = oo.

Proof. By Kϋnzi it holds

r/4cw < jjn < r(2cn - r)/(8cn(cn - r)) .

Using the above inequalities we immediately have the desired result.

LEMMA 2. For fn constructed above, there uniquely exist a q.c.

mapping Fn and the natural projection πn: Fn(U) —> Sn which satisfy the

following conditions.

1) πnFn — fnπ

2) if we set Gn = FnΓF~\ then Fn(U)/Gn = Sn

3) FnίO, 1, oo) = (0,1, oo),

where π denote the natural projection from U onto S.

Proof. Define a Beltrami differential μn on S by setting μn = (fn)s

/(/n)« Lifting μn to a fundamental set ω0 for Γ in U and denote it by

fin9 that is,

zβω0 .

%) H. P. Kϋnzi, Quasikonforme Abbildungen, in Ergebnisse der Mathematik,
Springer Verlag, Berlin, 1960.
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Then we extend μn over the whole of U by the functional equation

μn{Az)Af{z)IA'{z) = fiM , z e ωQ9 A e Γ .

We set ρn(z) = 0 in C — U. We denote the extended Beltrami co-

efficient by p*. Using the well-known result due to Ahlfors and Bers,

there uniquely exists a q.c. mapping Fn such that (Fn)2 = fi*(Fn)z and

Fn(0,1, oo) = (0,1, oo). This is the desired mapping. For, we set Gn

= FnΓF'1 and define πn as follows. For any w e FJJJ), there uniquely

exists zeU such that Fn(z) = w. Setting π(z) = ζ and /n(ζ) = ω, we

define πn as 7rw(w) = ω. This definition is well-defined, since it is easily

seen that if we set w' — Aw for any AeGn, then πn(w') = ω. Our

proof is now complete.

Set Fn\L = Wn and φn = {Wn,z}, zeL. Then φneB(L,Γ). If we
set Gn = FnΓF-1, then Gn is a quasi Fuchsian group. We assign to the

loop a on S a, Mobius transformation AeΓ. Set An = FnAF~x. Let

the multipliers of A and Aw be ̂  and Λn, respectively. Without loss of

generality, we may assume that A(z) = λz and An(«) = ̂ n^.

LEMMA 3. // \imcn = oo, ί/̂ en l i m l o g | ^ | = 0.

Proof. We denote by C the set of all simple closed rectifiable

curves c separating 0 and oo and denote by Mn the extremal length of

C on Fn(C)/{An}, that is,

Mn = sup
Anf ί (7(s)|d3|V

σ(z)2dxdy
JjFn(C)/{An}

where {An} is a cyclic group generated by An and σ(z) is a non-negative

measurable function satisfying the identity \λn\σ{λnz) = σ(z). Then it is

known by Bers [3] that

Mn = 2π/log\λn\. ( 5 )

We denote by £n the lifting, joining 0 and oo, of the branch cut

(cn, oo) and by Dn the lifting, containing £n9 of the ring domain Dn to

the complement of Wn(L). We denote by C* the set of all curves join-

ing the boundary \z\ = 1 to the another boundary \z\ — pn in the annulus

Kn and denote by ikf* the extremal length of C* in Kn. It is easily

seen that
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M*= -logpn/2π. ( 6 )

For any curve c e Cn, there exists a curve c* in Dn such that c* is a

part of c and a lifting of some c* eC*. Then from the well-known

fact, we have

Mn ^ M* . ( 7 )

By Lemma 1, if lim cn = oo, then lim^w = 0. Hence from (5), (6) and

(7), we have the desired result. Our proof is now complete.

Proof of Theorem 1. Denote by τn the trace of An9 then there is

a relation

C*n = λn + 1/λn + 2 .

By Lemma 3 and a simple computation, we have lim τ\ — 4. Hence Ao,
n-*oo

the limit of An9 is parabolic or the identity. Since by Bers [3], the

mapping θφ: Γ —> GQ is isomorphic, Ao is not the identity, where Go is

the limit of sequence of Gn associated with {φn}. Hence φ0, the limit of

φn9 is cusp. The existence of φ0 follows from the fact that T(Γ), the

closure of T(Γ), is a compact set. Our proof is now complete.

Remark. (1) In Theorem 1 we considered only the case where a2g_λ

goes to oo and aό (j = 1, -,2g — 2) and the cuts joining a2j_λ to a2j

(j = 1, . . . , g — 1) are fixed, but we have a similar result to Theorem 1

even in the case when a2j_x goes to a2j (J = 1, , g — 1).

(2) We only considered cusps for "α"-cycles, but the same results

is valid for "β"-cycles.

Next we consider the case where Γ is a finitely generated Fuchsian

group of the first kind such that U/Γ is a general compact Riemann

surface, and denote by T(Γ) the Teichmuller space attached to Γ. Let

Ci9 , Cn be homotopically independent loops on the Riemann surface

U/Γ = S, that is, roughly speaking they are n disjoint simple loops on

S no two of which are freely homotopic (as in Maskit [7]). We call a

"pinching" deformation the operation which squeezes some Cό down to a

point. Then we have the following by a similar proof to the above one.

THEOREM V. Under a "pinching" deformation, there exists a se-

quence {φn} e T(Γ) tending to a cusp on dT(Γ).
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Remark. This theorem contains Theorem 1 and was proved by a

different method by Bers [3],

3. Cusps obtained by the "pinching and twisting" deformations.

In this section we shall consider cusps on the boundary of Teichmuller

space T(Γ) obtained by the "pinching and twisting" deformations.

Take homotopically independent loops a19 , an on S and let D19 , Dn

be ring domains which are disjoint each other and assume that each Dό

contains ad 0 ' = 1, •• ,w) For brevity let n = 1. For the case of

n Ξ> 2, we can similarly treat to the case of n = 1. Let A be an element

in Γ associated with the loop aλ. We write D and a instead of D1 and

alf respectively. We will study how the corresponding Teichmuller

points vary under the following "pinching and twisting" deformation

for D.

We will construct the Riemann surface Sn from S as follows. Let

D map to the annulus K: {0 < p < \z\ < 1} conformally such that the

image of a is homotopic to the circle \z\ = V p in K. We denote again

by the same letter a the inverse image of \z\ = V p. Let K1 and K2 be

the annuli {0 < *J~p < \z\ < 1} and {0 < p < \z\ < V~p}, respectively. The

inverse images in D of K1 and K2 are denoted by D1 and D2, respectively.

By the q.c. mapping fn defined later, the annuli K1 and K2 are mapped

onto the annuli K\\ {0 < V ^ < \w\ < 1} and K2

n: {0 < pn < \w\ < V^},
respectively as follows, where ρn = exp (— \lkθ\ + (logp)2), — oo < θn <

+ oo. We define fn by setting

_ fexp {(log pnβog p)ξ + i(η — (2θn/\og p)ξ)} in K1

\exp {(log pn/\og p)ξ + i(η — 2θn + (2θn/log p)ξ)} in K2 ,

where z — eξ+i\ — oo < f ^ 0, — oo < ^ < + oo. That is, the mapping

/„ maps the logarithmic spiral joining eίθ to *J~peί{θ+θn) in K1 to the

segment joining eίθ to <Jpn e
ίθ in Kλ

n and maps the logarithmic spiral

joining Λ/~^eUΘ+θn) to eίθ in K2 to the segment joining \l~p^eu to ^one
iβ in

K2

n. Hence fn maps eίθ and ^e** to eil? and pne
iβ, respectively (see Fig. 5).

Λ

Fig. 5.
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We denote by Sn the Riemann surface obtained from S with the

following boundary correspondence by replacing D by the annulus Dn,

where Dn is a domain conformally equivalent to the annulus {0 < pn <

\w\ < 1}. The boundary points eiθ and pne
iθ of Dn are to correspond to

the same points of S as the boundary points eiθ and peίθ of D, respec-

tively. We denote by g and gn the conformal mappings constructed

above from D to the annulus {0 < p < \z\ < 1} and from Dn to the

annulus {0 < pn < \w\ < 1}, respectively.

Let fn: S —> Sn be a q.c. mapping which is the identity on S — D

and g^fnQ in D. Then we obtain the following by a similar method

to the proof of Lemma 2.

LEMMA 4. There uniquely exist a q.c. mapping Fn of C to C and

the natural projection πn: FJJJ) —> Sn which satisfy the following con-

ditions :

1) πnFn = fnπ

2) if we set FnΓF-χ = Gn, then Fn(U)/Gn = Sn

3) ί1

n(0,l,oo) = (0,l,oo),

where π: U -* S is the natural projection.

Setting Fn\L=Wn and {Wn,z} = ^n, then φneB(L9Γ). We denote

by Λ the multiplier of A associated with the loop a and denote by λn

the multiplier of An = FnAF~λ e Gn.

LEMMA 5. // l i m ^ = ±oo, ίfee^ l imlog|4 | = 0.

Proof. As the same in the proof of Lemma 3, let C be the set of

all rectifiable simple closed curves separating 0 and oo and let Mn be

the extremal length of C on Fn(C)/{An}. Then we obtain

Mn = 2π/\og\λn\. (8)

Let Cn be the set of all curves joining one boundary \z\ = 1 to the

another one \z\ = pn in Kn — {0 < pn < \z\ < 1} and let Mn be the extremal

length of Cn in Kn. Then we have

/2π. (9)

Noting that if lim0n = ±oo, then limllog^l = +oo, we have
n-*oo n-*oo

lim Mn = + oo . (10)
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We denote by ίί* a connected lifting whose closure contains 0 and oo

in Fn(U) of Kn and by C* the lifting of Cn in K*, respectively. Then

for any c eC, there is a c* e C* such that c* is a part of c. Then from

the well-known fact, we have

Mn ^ Mn . (11)

Through from (8) to (11), we have the desired result, that is, UmMn
n-*oo

= + oo so l i m l o g | ^ | = 0. Our proof is now complete.
n-*oo

We have the following by the same method as in the proof of

of Theorem 1.

THEOREM 2. Let Γ be a finitely generated Fuchsian group of the

first kind such that U/Γ is a compact Riemann surface of genus g ^ 2.

Let a19 - - -9an be homotopically independent loops on S as defined above.

Then under the above ''pinching and twisting" deformation, there is a

sequence {φn} of Teichmύller points such that φn goes to a cusp on the

boundary dT(Γ).
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