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AN EQUALITY OF DISTRIBUTIONS ASSOCIATED TO

FAMILIES OF THETA SERIES*

STEPHEN J. HARIS

Introduction

Let G be a connected algebraic group, p a finite dimensional repre-
sentation of G in a vector space V, all defined over a number field fc.
To the pair (G, p) we can associate the family of theta series

Θ(G,p,Φ,g) = Σ Φ(p(g)ξ)

where g e GA9 the adelisation of G, gives the parametrization of the
family. Here Φ e £f(yA), is a Schwartz-Bruhat function on the adeli-
sation of the vector space V. If (G, p) is admissible, that is, if the
function g ->Θ(G,p,Φ, g) is an ZΛ-function on GA/Gk, it gives rise to a
tempered distribution on VA,

Φ > IP(Φ) = J Σk Φ(p(9)ξ)dg .

Such distributions occur in the Siegel formula. In fact, the distribution

Φ — > ΓpiΦ) = J Σ Φ(piΰ)ξ)dg

where the sum is over a principal subset V c V, is the main part of
Ip in the complete Siegel Formula, as given by Weil [9].

Suppose now that G —%- G is an isogeny of groups, where G is
simply connected, semi-simple. Then β — πog is absolutely admissible/fc
if and only if (G,p) is absolutely admissible/fc ([4]). Hence, in this case,
there are two distributions that we can associate to VAy namely Γp9 J~.
Our main result is that these are the same. Actually, it is expected
that Ip = Ip on VA, but at the moment we need information on the orbits
that are outside the principal subset V (see § 5 for the definition of V1).
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In any case, the family of theta series associated to (G, β) is a subfamily

of the series associated to (G,p).

Such an equality of distributions is implied by the conjectural Siegel

Formula of Igusa, since the distributions that arise from the associated

Eisenstein series are easily seen to be the same. However, here we give

a direct proof, without passing through the Siegel Formula. In a sense

our result can be viewed as further evidence for the validity of these

conjectural formulae.

The central tool is the crossed diagram, made explicit by Ono [7],

In §2 we list a set of axioms that we suppose (G, p) to satisfy. Under

these hypotheses, we obtain an estimate of the ratios of the Tamagawa

numbers of the stabilisers of points, in terms that do not depend on the

point. Then, the special features of admissible representations, studied

in detail by Igusa [3], enable us to verify the axioms and so obtain the

equality of distributions. The author wishes to thank Professor Igusa

for suggesting this problem.

Index of notations

Z,R: the integers, real numbers (respectively)

Fq: the finite field with q elements

Gm: the multiplicative group of the universal domain

k: algebraic number field

kυ; completion of k with respect to a valuation v

k: the algebraic closure of k

Gal(£/fc): the Galois group of the extension Jc/k

[G: H]: the index of the group G over the subgroup H

[S]: the cardinality of a set S

For an algebraic group G defined over a field k

Go: the identity component of G

Gk: the subgroup of G consisting of the points rational over k

GA: the adelisation of G

X(G) = G = Horn (G, G m ) : the module of rational characters of G

Xk(G): the module of fc-rational characters of G
A

G — -̂> G', Gf — -̂> G: the corresponding map of the character modules

Rκ/k(G): the algebraic group defined over k obtained by restricting

the field of definition from K to k

HQ(k, G) = Hq(Ga\ (Jc/k), Gk) (q > 0): the gth Galois cohomology set
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[H*(kV9 G)]

[Ker (H*(k, G) - \\v H«(kv, G))].

1. The Tamagawa number

Ono [7], has defined the notation of a Tamagawa number for con-

nected, reductive groups. For our purposes, we need to extend this

notion to non-connected groups. In all that follows we suppose that G

is an algebraic group, defined over a number field k, subject to the follow-

ing two restrictions:

(Rl) all the connected components of G have fc-rational coset representa-

tives, for the cosets with respect to the identity component Go.

(R2) G has no fe-defect. That is, the restriction homomorphism Xk(G)

^> Xk(G0), has finite cokernel.

For such G, we will define τ/G), its Tamagawa number.

Let GA be the adelisation of G,

G'A = {g e GA\ \\χ{g)\\ = 1, for all χ e Xk(G)} ,

where | |t | | is the idele norm. Then by Borel [1, 5.6], GΛ/Gk has finite

invariant measure. Let χ19 , χr form a Z-basis for the torsion free part

of Xk(G). Then the mapping

Ψ : G A >&

g >(log||χ(flr)||, -.,log||χr(flr)||)

induces the isomorphism ψ: GA/G'A-^-+ Rr.

Let ω be an invariant gauge form on G, defined over k. It induces

a Haar measure \ωv\ on Gv, the fc^-rational points of G. Let

-Iμp = \ωp\

be the volume of the O^-rational points of G. Then, the standard argu-

ments and the assumption (Rl) imply that

for almost all p (q = Np, G(p) is the algebraic group defined over the

finite field Fq obtained from G by reduction modulo p [8]). Let λ = (λυ)

be a family of positive real numbers, one for each valuation on fc, such

that Π Λpftp is convergent. We call λ a system of convergence factors

for G. For Δk the discriminant of fc, set dλGA = |J fc |-
dimί?/2 \\vλvωv. This
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gives a Haar measure on GA, so by a suitable normalization, dλGA —
d(GAI'GA)d(GA/'Gk)dGk where d(GA/GA) = dt is the usual measure on Rr we

obtain via the mapping ψ, and dGk is the discrete measure. τλ(G) — the
measure of GA/Gk, for the measures so normalised. One has the follow-
ing useful characterization:

ί F(ψ(g))dGA

f
%J R r

for ί1 an integrable function on Rr ([7]). Ono's idea was to use this
latter characterization even when G has no characters, by interwining
it with a torus in the "crossed diagram." Clearly τλ(G) is the usual
Tamagawa measure for G when G is connected, reductive. Note that
for an isogeny of groups G —̂ -> G, both, subject to El, R2, we can use
the same system of convergence factors ([8]). Further, if Xk(G0) = {1},
then G has no /c-defect and we may take λ — 1 as a system of conver-
gence for G, since in this case GA — GA and GA/Gk has finite invariant
measure.

LEMMA 1. Let 0 — > G' — > G —̂ -> G" — > 0 be an exact sequence
of groups, all the maps and groups defined over k. Then, the index
[fc(GA) Π G"k: κ(Gk)] is finite.

Remark. This is a strengthened version of Ono's result [7], where
he assumed all the groups to be connected, reductive. We are able to
strengthen his result, because of the Borel-Serre theorem that has since
appeared.

Proof (Ono). For x e κ(GA) Γl G", /c'1^) is a principal homogeneous
space for Gf, defined over k, which has a fcυ-rational point for every
place v of k. Now by Borel-Serre [2], there are only finitely many isomor-
phism classes of these. Thus it suffices to show that for x,y e Gk,
x~xyeιc(Gk) if and only if κ~\x) is isomorphic to tc~\y) as principal
homogeneous spaces for G\ If y — κ(b)x, for beGk, then ξ—>ξb gives
κr\x)-^-+κ~ι(y). Conversely, if f:/c~\x) f: ιc~\x) -+ ιc~\y) is an isomor-
phism over k, pick ξ e ΛΓ1^) which is algebraic over k. Then, since
σξ e κ~\x)

σξ = ξaσ , for aσ eG', σe Gal (ϊc/k) .
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Hence, '(/(£)) = /(•£) = f{ξ)aσ, whence

& ='(/(£)£-') = /(£)£-'e G* and /(£) = £&,

so i/ = (&)

2. The crossed diagram

Let

G

G -J-> Aut (V)

be a representation of G (a connected group), where π is as isogeny, all

the groups, mappings and the finite dimensional vector space V being

defined over k. Fix v eVk and set

H = H(v) = {geG\ pπ(g)v = v}

H = H(v) = {geG\P(g)v = v} .

Both of these stabilisers are defined over k, and π induces the isogeny

K\Z:H-*H. If M = Ker (TΓ : G -> G), then clearly M c JT for every stabi-

liser. Let © = Gal (Jc/k), then M is a finite continuous ©-module (Krull

topology on ©, discrete topology on M). The character module M =

Horn (M, kx) can also be considered as a continuous ©-module, by (σξ)(x)

= σ(ξ(σ~ιxj). Let &fr = {σe®|*£ = £ for all ξeM}. This is an open,

nomal subgroup of ©, hence its fixed field K$ is a finite Galois exten-

sion of k and I is a Gal CK /̂fc)-module. Let Γ — the integral group

ring of Gal (K&/k). We have the following exact sequence

0 >w >Γ + . . . + Γ >M >0

s-times

of Γ-modules. By canonical duality, we have therefore an exact sequence

of groups, defined over k:

0 > M > T -A> T > 0 ( 1 )

where M is viewed as a zero dimensional group. T, Tf a re tori, defined\k,

and

T = RκA,SGrJ X ' - X ***,*&*)
s-times
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so that t' ^ Γs is a projective Gal (K£/k)-modu\e. We fix such a sequence

(1) and it is important in what follows that we can use the same

sequence (1) for every stabiliser H. Consider now the following crossed

diagram:

(H):

where M is diagonally embedded in H x T and H* = H x T'/M. All

the maps are the natural ones, each is defined over k and the diagram

is commutative, with exact row (H) and exact column (V).

LEMMA 2. Let 0 > Gf — > G — > G" > 0 be an exaot sequence

of groups, all defined over k, such that Grf is connected. Let Go, GQ

denote the connected components of the identity of G', G and it — K \ Go.

Then [GΊ GQ = [G: G0][Ker it: (Ker flj and

Proof. The last statement follows by a simple dimension argument.

Also, since G" is connected, we can choose coset represetatives for G/GQ

in c(Gf), say *(&), , ' ( Λ ) Let *(&), -9e(gr) be representatives for

Ker £/(Ker £)0. Then {gtdj} form a system of coset representatives for

LEMMA 3. Let 0 — > Gr — > G ~^-> G" — > 0 be an isogeny of

groups, all defined over k where G, G" are not necessarily connected.

Then

[G: Go] = [G": G^ltG7: G' Π Go] .
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Proof. Let g", , g'/ be coset representatives for G" in G" and

choose g19 -,gs in G, so that yc(̂ ) = g". If #ί, > ,g'r are coset repre-

sentatives for G' Π Go in G', then it is easily seen that {g^} form a

system of coset representatives for Go in G.

LEMMA 4. Let 0 — > Gf — > G —^-> G" — > 0 6β an e#ac£ sequence

of connected groups, all defined over k. Let G" he a torus, and G' have

no characters, X(G') = {1}. Then the index [G%: /c(GA)G"] is finite.

Proof. Since the characteristic of k is zero, G = H RU(G), a semi-

direct product of the unipotent radical of G with a maximal reductive

subgroup H of G both H,RU(G) are defined over k. Denote ίc = κ\H9

so that Gf = (Ker£) RU(G), again a semi-direct product. This gives rise

to the exact sequence

0 > Ker a >H > G" > 0

of groups over k with Z(Ker a) = {1}, from the same assumption for G'.

Let T = Z(H)0 be the identity component of the centre of H, Tf a

maximal torus, defined over k, of the semisimple part S of H. Then

H = TS and TT is a torus, defined over k of # . Further, S c Ker Λ and

since Z(Ker it) = 1, Ker ίc = S, (unipotent radical), semi-direct product.

Therefore a maximal torus of S is a maximal torus of Ker a. T Π Ker£

is a reductive subgroup of Ker£, hence a conjugate of it lies in S.

But T, being central in H, is its own conjugate in Ker£, whence

T Π Ker icczs. But it clearly is in the centre of S, so that T Π Ker K f

and we have the following exact sequence of tori:

0 > T > TT -^-> G" > 0 .

Clearly [G2:*(GJG£] < l&ί: ιc(TT)AG'n and this latter is finite [6, 4.3].

Now apply these results to the exact sequence (H) of the crossed

diagram. Let Hf be the identity component of if*, ίc = κ\H*, whence

(Ker κ)0 — Ho. By Lemma 2,

[H: Ho] = [H*: # 0*][Ker a: (Ker ίc)Q] .

Applying Lemma 3 to the sequence 0 -* M —> Ή. x T -> H* -* 0, we have

[H:HQ] = [H x T:HQχ T']
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whence

[Ker a: (Ker ίc)0] = [M: M Π Ho] .

We make the following assumptions on (G,p), where fi = poπ. Suppose

v e Vk is such that for the stabiliser H(v),

(Al) ίί(v)/H(v)0 has /^-rational coset representatives.

(A2) X(H(v\) = {1}

(A3) M = Ker TΓ C Jϊ(t;)o

(A4) £Γ(V)o is of Kneser type, i.e.

h}p(H(v)o) = 1 for all non-archimedian p of k

ΐ(H(v)0) = 1

Therefore, for the exact sequence (H) for such i; e Vk9 (A3) implies that

Ker£ is connected and we have the exact sequence of connected groups

0 • Ho — > H* ~^> T • 0 .

PROPOSITION 1. For the exact sequence (H), [TA: κ(H$)Tk] is finite

and κ(Hf) is open in TA.

Proof. We have just seen that (H) gives rise to the exact sequence

0 > Ho > H* - ί U T • 0

of connected groups. Hence ίc((H£)A) is open in TA ([7, 1.2.1]) so that

Λ (lϊjί) 3 ic((Hf)A) is open in TA. By (A2), Lemma 4 is applicable to the

above sequence, whence [TA: κ(Hf)Tk] < [TA: ίc((Hf)ATk] < oo.

Let μ: tc(H*)/fc(H*)-+TA/Tk be the natural mapping. We define

r(H) = [ c o k e r/Λ = [TA:κ(H*)Tk]
[ k ] UiHi)(λT{Ht)1

By Lemma 1 and the above proposition, this is a well defined finite

number.

LEMMA 5. H* = H x T'/M has no k-defect and H*/Hf has k-

rational coset representatives.

Proof. By the axioms (Al) and (A2), ΈL is of this type. T, being

a torus is connected, so clearly is of this type, whence if*, being a
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homomorphic image has rational coset representatives. To see that H*
has no fc-defect, it suffices to prove the following: G algebraic group/k,
Γ a finite normal subgroup, defined over k. Then G has no fc-def ect if and
only if G/Γ has no fc-defect, since G —> G/Γ induces Go —> (G/Γ)o and
X(G/Γ) —> X(G) is injective, with finite cokernel, so clearly Xk(G/Γ) —>
Xk{G) has the same properties. Hence

rank Xk(G/Γ) = rank Xk(G)

rank(Xfc(G0)) = rankZfc((G/Γ)0) gives the equivalence.

By the axioms and Lemma 5, every group occuring in the crossed diagram
had rational coset representatives for the identity component and has no
fc-defect, hence we can define τλ(G), for suitable convergence factors λ.
For the torus T, take λ to be the canonical one given by Ono [6]. For
H we can take λ = 1 and for if* take their product ([8]). Then, by an
earlier remark we can take the same systems for T, Tf and also for H,
H. We shall suppress these convergence factors in our notation. Set

τ(JB*)

The crossed diagram gives rise to the following commutative diagram
and exact sequences of character groups:

Xk(H)

0

Further λ is injective with finite cokernel. Exactness of the row im-

plies that Im 00 has finite cokernel, so since Im (£) is torsion free,

rankX f t(T) = rankXfc(£Γ*). But rankX fc(Γ) = rankZ f c(Γ0, so since i has

finite kernel, i must have finite cokernel. Choose generators £?, « ,f?

for the torsion free part of Xk(H*) and a basis ξ19 « ,fr for Xk(T),

such that
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Commutativity of the diagram, λ = ?o£ implies that λ(ξi) = nf?(ff), whence

[coker (j)fc] = w[coker (?)*] , n = f\ nt

and all the maps are in fact (λ)k, etc.

PROPOSITION 2. For the exact sequence (H): 0 — > H — > H* ~^~>

T—>0

τ(fl) = τ{H
[coker I

Proof. Consider

for the basis ξlf , ξr of Xk(T) chosen earlier. Then

is surjective and the image under μ is open, by Proposition 1.

I F (ψ>//^(ίl/))cί(Λ:(ίί*)/Λ:(ίί*))

= f ί/ KθΓ μ

[coker/ij

The groups occuring in (ϋ) are unimodular, so by Weil [8, 2.4.4], we

can rewrite the following integral,

I = f F(ψ"(κA(x)))d(H*/H*)
JH*A/H%

= τ(H) f F{Vμix))d{κ{H

= ^ f F(ψ"(x"))d(TA/Tk)

= *&M> f
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Choosing the basis for the torsion free part of Xk{H*) as before and

changing variables suitably in Rr, we have also

/ = f tF(ψ(x))d(H*/H*)
nx n^ J HA/H^

_ τ(H*) f F ^ d t

n JRr

where

x > dog||f!*(»)!!, ,log||f*(»)ll) .

LEMMA 6. The exact sequence (V): 0 > T -ί-> # * > H > 0

has a generic cross section defined over k. This is precisely Ono [7, 2.1.1].

This is the reason for choosing f' to be a Gal (KM/k)-projective module.

The fact that this also gives τ(Tf) = 1 is not needed for our purpose.

PROPOSITION 3. For the exact sequence (V): 0 — > T —ε-+ H* — >

H—>0

τ(V) = [coker © J .

Proof. This proposition is a variant of a result of Ono. We must

modify his result to account for the non-connectedness of H*,H and for

H not being semi-simple. Choose bases ξ19 , | r for the torsion free

part of Xk(H*) and ξ[, ••-,& for Xk{T) such that *(?*) = Π& (1 < i < r).

Let ϊr:H*-^Rr be the corresponding mapping for this choice of basis.

Then

f F(ψ(cx'))d(T'A/T'k)
J T'A/T'k

= r(Γθf F(ιMi,
J Rr

f F(nx'))d(T'A/rk)
er (z)k\ J T'JT'*[coker

Now, by Lemma 6, we can apply a theorem of Fubini type ([8, Lemma

3.2.1]) to the integral

I = ί F(t)dt
JRr
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= ί d(HA/Hk) ί F(ψ((cxOx)d(rA/Tk) .
J HA/Hk J T'AjT'uT'AjT'u

Now, as %' runs over TA, ψ'(x') runs over Rr, so ψ(x) = ψ'G/0 for some

y eTf

A. Hence, by the invariance of the measure d(TA/Tk), we have

= f d(HA/Hk) f F(φ(x'))d(T'A/T'k)
J HA/HIC J T'A/T'k

= . l(Tl, Ί ( f
[coker (OΛJ V «r

and by axiom (A2), the last factor is τ(H). Hence equating the two ex-

pressions for /, we have

Propositions (2), (3) have given two expressions involving r(ίf*);

T(H)T(T) _ r(g)[coker

τ(£Γ*) [coker

These imply

= r (D [coker

τ(Γ0

Notice that since we have the same sequence (1): 0 > M > T —λ—>

T > 0 for every point v e Vk9 the only part of the above expression

that depends on v, is r(H), since of course the sequence (H) involves

ίί(v). Hence, whenever H(v) satisfies the axioms A(l)-A(3), we have (2).

Notice also that we have not yet made use of Axiom A(4).

§3. A consequence of axiom (A4)

The sequence (H) gives rise to the exact sequence 0 — > Ho > Hf

—ί-> T > 0, of connected groups. By axiom (A4) and the theorem of

Ono [7, 2.2.1], we have TA = κ((H*)A)Tk,

<c((H*)A) ΠTk =

PROPOSITION 4. For the exact sequence (H): 0 -> H -> H* -> T -• 0

we have r(H) = 1.
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Proof. Since

r(H) = !3V*(gί)Γ t]
V~ ; W5J)nΓ t:«(fff)] '

the remarks above show that it suffices to prove that

Let x = (&„) e fΓf, such that α" = tc(x) e *(#!) Π Tk. Then ΛΓ 1 ^') is an
algebraic set, defined over fc, hence each of its irreducible components
is defined over some finite extension k'jk, which we may take a Galois
extension. The irreducible components of κ~\x") are cosets of Ho, and
by altering (xυ) suitably, we can suppose that each xv lies in the same
coset of Ho. Hence, this particular coset is an algebraic variety, defined
k', with a fcυ-rational point, for every v, so is it also defined over kv.
By Chebotarev density for k, we conclude that in fact, this coset is defined
over k. This coset, being a principal homogeneous space for Ho, which
is defined over k, with a /^-rational point, for every v, must therefore
contain a fc-rational point, by the axiom (A4) for Ho. Hence κ(Hf) Π Tk

= κ{H%) and r(H) ~ 1. Summarising, we have

THEOREM 1. For the stabilisers H(v),H(v) of a point veVk9 for
which H(v) satisfies the axioms (A1)-(A4),

τ(H(v)) r(Γ0

This is independent of the point v.

§ 4. A decomposition of the theta series

For the convenience of the reader, we recall now how to rewrite
the integral for IP(Φ) so as to make the Tamagawa numbers explicit
[9, p. 14]. Let μ be a relatively invariant measure on the (left) for GΛ,
invariant on the right by Gk. The convergence of IP{Φ) implies that for
every stabiliser H(v) of a point v e Vk, the quotient H(v)A/H(v)k has a
finite volume for a suitable relatively invariant measure. In particular,
it is also true for GA/Gk. Hence H(y)A is unimodular and the quotient
space G/H(v) has a relatively invariant gauge form.

Further, let us normalize μ so that μ(GA/Gk) = 1. We express IP(Φ)
as a sum of similar integrals over the different GΛ-orbits in Vk. If U
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is one such orbit, the Witt condition (§ 5) allows one to identify UA =
GA/H(y)A, Uk = Gk/H(v)k, for veϋk. Since H(v),G are unimodular,
gauge forms dg,dh on them give rise to a G-invariant gauge form Θ
on Z7. Moreover, since G is connected, Θ is unique up to a scalar
multiple in k. Denoting the measures one obtains from them, with
respect to suitable convergence factors, by \θ\A,\dg\A,\dh\A etc., we have

Γ i ( ^ y f Φ\Θ\A = f Φ(P(g)v)dμ(g)

= f

Hence

τ/G)

where β = the collection of G^-orbits in Vk.
To obtain the equality of tempered distributions, it suffices to show

(i) Gk,Gk have the same orbits in Vk

_ τλ(H(ω))

TX(G)

§ 5. Properties of absolutely admissible representations

Let G be a connected, simply connected, semi-simple group, defined
over k. We have mentioned that (G, p) is admissible over k if the theta
series Θ(G, £, Φ, 5r) is LMntegrable over for every Φ. It is called absolutely
admissible over k if it remains admissible over any finite algebraic ex-
tension of k. In the paper "Geometry of Absolutely Admissible Repre-
sentations" [3], Igusa studies in detail the orbits in the principal subset.
The principal subset Yf of V is defined as follows: let Ω be a universal
domain containing k, Ω[Vψ, the ring of invariants. It turns out that
this is generated by algebraically independent homogeneous polynomials f19

- 9 /N with coefficients in k. Let / denote the corresponding morphism
V -> ΩN, then each fibre f~\i) contains a principal orbit Z7(ΐ). The union
of all U(i) is called the principal subset of V.

The results of [3], can be summarised:

THEOREM (Igusa)

( i ) every orbit of G in the principal subset, which is defined over
k, has a k-rational point.
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(ii) in every one of these orbits, the Witt condition holds. Namely,
for each ξ e V'k and every field extension L ZD K z> k, all the points of Vf

κ

which are in the orbit of ξ under GL are in fact in the orbit of ξ under
Gκ.

(iii) if p does not contain the third fundamental representation of
Sp6 as an irreducible constituent, the stabiliser of every point of Yr is
simply connected, with its radical unipotent.

Since connected unipotent groups are cohomologically trivial, it fol-
lows from (iii) above and Kneser [5] that the axioms (A1)-(A4) are
satisfied for (G, β) and points v e V'k. The axioms are also satisfied for
the point (0), which is never in V'k, but has stabiliser G.

In fact, the axioms (Al), (A3) are trivially satisfied, since the stabi-
lisers are connected. However, it is often bothersome to prove this and
it is possible to check (A3) by exhibiting some torus T which contains
Ker π and which leaves the point fixed, hence Ker π c T c H(v)Q. Sum-
marising, by the above, Theorem 1 and §4, we have

THEOREM 2. Let (G, p) be an absolutely admissible representation of
G which factors through an ίsogeny G —%• G. Suppose that p does not
contain the third fundamental representation of Sp6. Then the two
tempered distributions I~,ΓP are equal.

Remark. It is expected that Igusa's theorem on the stabilisers will
be true even outside V, so that in that case, we have the stronger
result

lp(φ) = ip(φ) , for all Φ e S(VA) .
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