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AMPLE VECTOR BUNDLES ON A RATIONAL SURFACE

TOSHIO HOSOH

Introduction.

On a complete non-singular curve defined over the complex number
field C, a stable vector bundle is ample if and only if its degree is
positive [3]. On a surface, the notion of the ίf-stability was introduced
by F. Takemoto [8] (see § 1). We have a simple numerical sufficient
condition for an iϊ-stable vector bundle on a surface S defined over C
to be ample; let E be an iϊ-stable vector bundle of rank 2 on S with
Δ(E) = cλ(E)2 - 4c2(#) ̂  0, then E is ample if and only if c,{E) > 0 and
c2(E) > 0, provided S is an abelian surface, a ruled surface or a hyper-
elliptic surface [9]. But the assumption above concerning Δ(E) evidently
seems too strong. In this paper, we restrict ourselves to the protective
plane P2 and a rational ruled surface Σn defined over an algebraically
closed field k of arbitrary characteristic. We shall prove a finer as-
sertion than that of [9] for an ίf-stable vector bundle of rank 2 to be
ample (Theorem 1 and Theorem 3). Examples show that our result is
best possible though it is not a necessary condition (see Remark (1) §2).

In § 1, we shall recall the definition of if-stable vector bundles and
their elementary properties proved by F. Takemoto [8].

In §2, we shall prove the following;
THEOREM 1. If E is an H-stable vector bundle of rank 2 on P2

with cλ(E) ̂  (—1/2)J(£7), then E is ample.
In § 3, we shall prove a similar sufficient condition for an ίf-stable

vector bundle of rank 2 on Σn to be ample (Theorem 3).
The author wishes to thank H. Umemura who called his attention

to this problem and gave him many suggestions.

§ 1. Preliminaries

Let k be an algebraically closed field of arbitrary characteristic.
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Throughout this paper, the ground field k will be fixed. Let E be a

vector bundle (i.e. a locally free sheaf) on a non-singular irreducible

protective algebraic variety X defined over k. We shall use the follow-

ing notation;

h\X,E)\ = dimk H%X,E); the dimension of W(X,E).

£7*: = HomOχ(£7, OΣ) the dual vector bundle of E.

χ(E): = 2]t (-l)W(X, E) the Euler-Poincare characteristic of E.

Ct(E); the i-th Chern class of E.

Let H be an ample line bundle (i.e. invertible sheaf) on X and s =

dimX. We recall the definition of iϊ-stable vector bundles [8].

DEFINITION. A vector bundle E on X is iϊ-stable if for every non-

trivial, non-torsion, quotient sheaf F of E,d(E,H)/r)E) < d(F,H)/r(F),

where d(F,H) = (cx(F), Hs~ι) with the intersection pairing ( , ) and where

r(F) is the rank of F.

The following lemma is an immediate consequence of the definition.

LEMMA (1.1). (1) A vector bundle is H-stable if and only if it is

H®n-stable for any natural number n.

(2) // L is a line bundle, then E is ΈL-stable if and only if E®L

is H-stable.

(3) // E is H-stable and d(E9H) ^ 0, then H\X,E) = (0).

We say that a vector bundle E is simple if any global endomorphism

of E is constant, i.e. H\X, End (E)) = k. We know that an ίf-stable

vector bundle is simple ([8] Corollary (1.8)). In the case of rank 2

vector bundles on P2, also the converse is true ([8] Proposition (4.1)), i.e.

LEMMA (1.2). Let E be a vector bundle of rank 2 on P2, then the

following conditions are equivalent

(1). E is simple. (2). E is Op\l)-stable.

There is a very usefull criterion for a rank 2 vector bundle to be

not simple ([7] Theorem 1.);

LEMMA (1.3). Let E be a vector bundle of rank 2 on Xy then the

following conditions are equivalent.

(1). E is not simple.

(2). There exists a line bundle L on X such that for Ef = E ® L,
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h°(X, E') Φ 0 and h\X, E'*) Φ 0.

Let E be a vector bundle on X,P(E) the protective bundle on X

associated to E and OP(E)(Ϊ) the tautological line bundle on P(E) i.e.

π*(OP(E)(ϊ)) = E,π being the natural projection of P(E) onto X. If L

is a line bundle on X, then the line bundle OP(E)(T) ® ττ*(L) is also the

tautological line bundle on P(E ® L) ^ P(£7). If M is a line bundle on

P(E),M is isomorphic to a line bundle 0^^,(1)®" ® π*(N) for some

integer w and some line bundle I V o n I (see EGA II. 4.1). A rational

ruled surface is isomorphic to Σn = P(Opί(—ri) 0 Opi) for some non-

negative integer n. We denote the projection from Σn to P1 by ττw.

The following lemma plays an important role in the sequel.

LEMMA (1.4) Let s be a section of the projection πn: Σn —> P1, then;

(1) // the self-intersection number (s, s) is non-positive, then (s, s)

= — n and the direct image πn*(OΣn(s)) is isomorphic to the the vector

bundle OPί{—n) Θ OP1.

(2) // the self-intersection number (s, s) is non-negative, then (s, s)

>̂ n and the direct image πn*(OΣn(s)) is generated by its global sections.

Proof. We have an exact sequence on Σn;

0 > OΣn > OΣn(s) > OΣn(s)\s > 0

Since Rιπn*(0Σn) = (β),πUOΣJ s Opi,πAOΣn(s)\s) = P\(s,s)) and πA0Σn(s))

= (OP1(—n) ΘOpi) ® Opi(a) for some integer α, we have the following

exact sequence;

0 > OP1 > (Opi(-n) Θ OP1) ® Opi(a) > Opi((s, s)) — • 0 ( * )

(1) If (s, s) ^ 0, then the exact sequence (*) is split because h\P\ Opi(t))

= 0 for t ^ 0. Hence we have

(Opi(-n) Θ OP1) ® OP1(α) = Opi((s, s)) Θ OP 1 .

This is possible if and only if a = 0 and OPi((s, s)) ^ OP i(—^), hence

(s, s) = —n and T Γ ^ O ^ S ) ) = OPi(—^) φ OPi.

(2) If (s, s) ^ 0, then OP1((s, s)) is generated by its global sections.

Hence we have that πn*(OΣn(s)) is generated by its global sections by virtue

of the exact sequence (*). This is possible if and only if a — n ^ 0.

On the other hand, OPi((s, s)) is isomorphic to Opi(2α — n) by (*), which
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implies (s, s) = 2α — n = 2(α — n) + ti ^ n.

The section on 27n corresponding to the exact sequence;

0 > OP1 > Opi(-n) Θ OP1 > Opi(-ri) > 0

is called a minimal section of Σn and denoted by M. Let JΫbe a fibre

of πn, then every divisor D on 2TO is linearly equivalent to aM + bN

where a = φ , N) and 6 = φ , M) + cm. A canonical divisor on Σn is

linearly equivalent to — 2M — (n + 2)N.

§ 2. Simple vector bundles on P2

Let .E7 be a vector bundle of rank r on P2 and ^ be a line on P2,

then the restriction E\£ of E to £ is isomorphic to a direct sum of line

bundles L/s (1 5g ΐ ^ r) [2] we set;

aE(S) = min {deg (LJ 1 ^ i ^ r}

Evidently the number Λf̂ (̂ ) is bounded above and below when t runs

through lines on P 2. Hence we set;

M(E): = max {̂ (̂̂ ) I is a line on P2}

m(£7): = min {aE{£) ^ is a line on P2}

If E is a vector bundle on P2, we put E(n) = £7 (g) OP2(1)®\

LEMMA (2.1) Lβί E be a vector bundle on P2,

(1) // M(E) ̂  - 1 , ίfeeπ h\P\E(l)) ^ h\P2,E).

(2) // M(£/) ̂  - 1 > m(£7), ίfeβn ^ ( P S ^ ί l ) ) < h\P2,E).

(3) // ¥(£7) ̂ -1 and h\P\E(ΐ)) = h\P2,E), then £7(1) is generated

by its global sections.

Proof. (1) Let t, be a line with α^(^) = M(£/), then there is the

following short exact sequence;

0 > Op ( - l ) > OP, > Oe > 0 ( * )

Tensor ing £7(1) with (*), we get the short exact sequence;

0 > E > £7(1) > £7(1)|, 0

and the long exact sequence of cohomologies;

> H\P2, £7) > H\P2, £7(1)) > H\£, £7(1) |,) > . . .

Since αr^^ί^) = aE{£) + 1 ^ 0, we have h\β,E(\)\e) = 0, whence h\P2,E(\))
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^ h\P\E).

(2) By (1), we have /^(P2, £7(1)) ^ h\P2,E). Let t be a line on P2

with α^(^) = M(£7), then as above we obtain the following long exact

sequence of cohomologies

> H\P\ £7(1)) > H\£, £7(1)1,) > H\P2, £7)

> H\P\E(D) > H\£,E(X)\e) = (0) .

If h\P\ £7(1)) = h\P2, £7), then H\P\ E) ^ H\P\ £7(1)). Thus ψ: H\P\ E(l))

-+ H°(£,E(T)\e) is surjective. By the way, let £' be a line on P2 with

aΈfJίr) = m(E) and x be the closed point of the intersection of £ and £',

then φ:H\£,EQ)\ί)-+EQ.)®k(x) is surjective since aE(1)(£) = ^ U ) + 1

^ 0. On the other hand φ': H\£',E(ΐ)\Λ -+ E(l) (x) k(x) is not surjective

because aE{χf<£
r) — aE(β') + 1 ^ — 1 . Furthermore we have the following

commutative diagram

H\P2, E(l)) ^Uκ\ί, £7(1) \£)

H\f, £7(1) | r ) -^-> £7(1)

On the one hand, ψ o ^ is surjective because so are φ and ψ. On the

other hand, ψΌφ' is not surjective because not so is ψ7. This is a con-

tradiction.

(3) Let x be any closed point of P2 and £ be a line passing through

a?. The assumptions α^W) ^ ra(£7) ^ - 1 and h\P2,E(l)) = h\P2,E) im-

ply that H°(P2,£7(l))^iϊ0U,£7(l)|,) is surjective and i ϊ 1 ^, £7(1) |,) >£7(1)

® fe(ίc) is surjective for any closed point x. By this and Nakayama7s

lemma £7(1) is generated by its global sections.

Let X be a scheme defined over k and £71?£72 vector bundles on X.

If Eλ is ample and £72 is generated by its global sections, then E1 ® £72

is ample ([4] Corollary 1.9.). We get therefore the following proposition

as a corollary to the above lemma.

PROPOSITION (2.2) Let E be a vector bundle on P2 with M(E) :> — 1,

then £7(α) is ample for any integer a ^ h\P2, £7) + 2.

Proof. Put b = h\P2,E), then by Lemma (2.1) we have;

b = h\P2,E) ^ ^(P2,£7(l)) ^ ^ h\P2

yE{b)) ^ 0 .
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Hence there must be an integer c (0 <; c ̂  b) such that hι(P\ E(c)) =

h\P2,E(c + 1)). By Lemma (2.1), E(c + 1) is generated by its global

sections. Hence E(ά) is ample for any integer a ^ b + 2 because OP2(^)

is ample for any integer n >̂ 1.

For a vector bundle E of rank 2 on a scheme we know that E* ^ E

<S>(detE)* ([6] Lemma 3.7). We shall use this fact in the next lemma.

If E is a vector bundle on P2, we identify the Chern class ct(E) of

E with an integer by its degree.

LEMMA (2.3) Let E be a simple vector bundle of rank 2 on P2, then;

(1) // cx(E) ̂  0, then H\P\E) = (0).

(2) // cx(E) ̂  - 6 , then H\P\E) = (0).

Proof. We have E* ^ E® (det#)* ^ #(c), where c = -^(£7). If

c ^ ) ^ 0, then JS7 can be regarded as a subsheaf of E*. Hence H\P\E)

c H°(P2,E*). If H\P\E) ψ (0), then H\P\E*) φ (0). This contradicts

to Lemma (1.3) and proves (1). The second assertion follows from (1)

by the Serre duality.

Let E be a vector bundle of rank 2 on a non-singular protective

surface S. Define an integer Δ(E) to be cλ(E)2 — 4c2(£r). It is easy to

see that —Δ(E) is the second Chern class of End(Z?). Hence, if L is

a line bundle on S, then Δ(E ® L) = ^(£7). For given two integers cx

and c2, let F(cu c2) be the set of all simple vector bundles of rank 2 on

P2 with ΐ-th Chern class ct (ί = 1,2). Then ί"(Cj, c2) is not empty if and

only if c = c\ — 4c2 is negative and is not equal to — 4([6] Theorem 4.6).

For a line bundle L on P2, we put F(cu c2)(L) = {E ® L; Ee F(clf c2)}.

If Cj is odd (resp. even), then for L = OP2(—(cx + l)/2)(resp. OP2(—CJ2)),

ίXίq, c2)(L) = F(— l,^ι) (resp. F(0,ra)) where 1 — 4tι = c\ — 4c2 (resp. —4m

= Ci — 4c2). F(—l,n)(resp. F(0,*m)) is not empty if and only if n >̂ 1

(resp. m ^ 2).

Now we can compute a lower bound of m( ) for simple vector

bundles of rank 2 on P2 with fixed Chern classes.

PROPOSITION (2.4) // E is in F(—l,ri) (resp. F(09m))9 then;

-n ^ m(E) ̂  M{E) ̂  - 1 (resp. -m + 1 ^ m(E) ̂  M(ί7) ^ 0) .

Proof. M(E) ̂  — 1 (resp. M(ί7) ^ 0) is obvious, because cx(E) = — 1

(resp. Ci(£7) = 0). The Riemann-Roch theorem asserts that for a vector

bundle Ef of rank 2 on P2,



AMPLE VECTOR BUNDLES 141

χ(E') = 2 + SCliE/) + β>{EΎ ~ 2C*{E>) .
Δ Δ

Applying this to E we have χ(E) = 1 — n (resp. 2 — m). On the other
hand, by Lemma (2.3) H°(P\ E) = H\P\ E) = (0). Thus we obtain
h\P2,E) = n — 1 (resp. m — 2). Let ^ be any line on P2, then we have
the following short exact sequence;

0 > E(-l) > E > E\t > 0

and the long exact sequence of cohomologies

> H\P\ E) > H\β, E\β) > H\P\ E(-l)) > -..

Since H\P\E(-l)) = (0) by Lemma (2.3), we obtain h\£,E\ύ^n-\
(resp. m — 2). Hence aE(S) ^ — n (resp. — m + 1) for any line i.

LEMMA (2.5) Let E be in F(—l,ri) (resp. ί\0,m)). We put 6 =
min {x H°(P2, E(x)) ψ (0)} (b is positive because cx{E{b)) must be positive
by Lemma (2.3)). Then E{a) is ample for any integer a ^ n — b2 + b
+ 1 (resp. m — b2 + 1).

Proof. First we shall prove that M(E(b)) ̂  0. Let L be the tauto-
logical line bundle on P(E(b))f then H°(P(E(b)), L) s H°(P2, E(b)) Φ (0).
Take a member D of the linear system |L|, then Supp CD) contains only
a finite number of fibres of the projection π: P(E(b)) —> P2. For if
otherwise, there is an effective divisor C on P2 such that D — π~\C)
> 0, i.e. flro(P(^(6)),L(8)π*(Opβ(-C))) Φ (0). Meanwhile this is isomor-
phic to H°(P2,E(b)®OP,(-C)). Thus by the definition of b,C must be
linearly equivalent to zero, which is not the case. Hence for a generic
line i on P2,D\π_1(£) is a section of the rational ruled surface π~\£) ~
P(E(b)\£). On the otherhand, the self-intersection number (D\π_U£), D\π_1(ί))π_He)

-c1(B(&))>0. Hence by Lemma (1.4), ( j ί W O ^ D I . J s B f f l l , is
generated by its global sections. This shows that M(E(b)) ;> 0.

The Chern classes of E(b — 1) are

cx(E(b - 1)) = 26 - 3 (resp. 2b - 2)

c2(E(b - 1)) = b2 - 36 + 2 + n (resp. b2 - 2b + 1 + m)

By the Riemann-Roch theorem, we obtain;

χ(E(b - 1)) = δ2 - n (resp. &2 + b — m)
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On the other hand H°(P2,E(b - 1)) = H2(P2,E(b - 1)) = (0). Hence we

have h\P2,E(b - 1)) = n - b2 (resp. m - b2 - 6).

Combining these results, by Proposition (2.2) E(b — l)(α') is ample

for any integer a1 ^ n — b2 + 2 (resp. m — b2 — b + 2), i.e. £7(α) is ample

for any integer a 7> n — b2 + b + 1 (resp. m — &2 + 1).

COROLLARY (2.6) // m(E) = — n (resp. — m + 1), £feβw;

(1) M(E) ^ - 1 .

(2) /^(P2, E(ά)) = n -1 - a (resp. m - 2 - a) for 0 <L a ^ n - 1

(resp. 0 rg α ^ m — 2).

(3) For <m integer a the following conditions are equivalent to each

other

i) E(a) is ample.

ii) a ;> n + 1 (resp. m).

iii) cSJEifl))^ -dl2)Δ(E(a)).

Proof. (3) ii) ^ iii). c^^ία)) = 2α - 1 (resp. 2α) and Δ(E(a)) =

l - 4 n (resp. -4m). Hence c^Eia))^ -(\β)Δ(E(a)) if and only if

α ^ w + 1 (resp. m).

ii) =̂> i). n + 1 ^ ^ — b2 + b + 1 (resp. m ^ m — b2 + 1) for any

6 ^ 1 . Hence E(a) is ample by Lemma (2.5).

i) =Φ ii). If ί7(α) is ample, then m(E(a)) = m(E) + a :> 1. Hence

a >̂ —m(E) + 1^ n + 1 (resp. m).

(1) In the proof of (3), b must be equal to 1. Hence MCE'(l)) ̂  0

as we have shown in the proof of Lemma (2.5), i.e. M(E) ^ — 1.

(2) By the assumption m(E) — —n (resp. — m + 1) and (1), we have

M(E(a)) ^ - 1 > m(E(a)) for 0 ^ a ^ w - 2 (resp. 0 ^ α ^ m - 3). Hence

by Lemma (2.1), we obtain;

h\P2,E) > h\P2,E(l)) > . > h\P2,E(n - 1))

(resp. h\P2,E) > h\P2,E(l)) > . > h\P2,E(m - 2))) .

Since /^(i*2* £?) = n — 1 (resp. m — 2), this shows the assertion.

In the proof of Corollary (2.6) (3), we did not use the assumption

m(E) = —n (resp. m(E) = —m + 1) to show iii) => i). Thus, we have

proved the following;

THEOREM 1. If E is a simple vector bundle of rank 2 on P2 with

cλ(E) :> — (1J2)Δ(E), then E is ample.

Remark (1) Theorem 1. is best possible in the following senses;
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i) For any integer n ^ 1, there exists a simple vector bundle E in

F(—l,ri) such that m(E) = —n, i.e. E(a) is ample if and only if c^Eia))

^ -{lj2)Δ{E{a)) (see Corollary (2.6) (3)).

ii) For any integers cx and c2, let F ^ , c2) be the set of all vector

bundles of rank 2 on P2 with its i-th Chern class being ct, then inf {m(E)

£7 in Ff{cλ,c^} — — oo i.e. for any integer α, there exists a vector bundle

E in jF'ίCi, c2) such that m(E) < a. Hence we can not drop the hypothesis

"simple".

For the construction of examples satisfying i) or ii), see [6] Theo-

rem 4.6, Theorem 3.13.

Remark (2) If E is a simple vector bundle of rank 2 on P2 with

Cι(E) ̂  -(l/2)J(£ r ), then E can be written in the form E'®L where E'

is generated by its global sections and L is a very ample line bundle,

hence if k is the complex number field C, E is positive in the sense of

Griffiths [1].

§ 3. Ha ^-stable vector bundles on a rational ruled surface.

For a non-negative integer n, let Σn be the rational ruled surface

P(OPi(—n) φ Opi), M a minimal section on Σn and iV a fibre of the pro-

jection πn: Σn -»P 1 . Then every line bundle on Σn is isomorphic to

OΣn(aM + &Λ7) for some integers a and &. We denote the line bundle

OΣn(aM + bN) by Lα,δ.

LEMMA (3.1) (1) La>b is ample if and only if a is positive and b

— na is positive.

(2) Lafb is generated by its glebal sections if and only if a is non-

negative and b — na is non-negative.

Proof. If Lα>δ is ample, then the intersection numbers (La>b,N) =

a and (La>b9M) — b~na are positive by the Nakai criterion. Conversely

if a is positive and b — na is positive, then the self-intersection number

(La>b,La>b) = — a2n + 2ab > —a2n + 2a2n = a2n ^ 0. Any curve C on Σn

is linearly equivalent to a'M + b'N for some non-negative integers af and

bf such that (a', &') 9̂  (0,0). Hence the intersection number (La.fb,C) =

a\La>h,M) + b'(Lath,M) = a\-na + b) + bfa is positive. Therefore La>b

is ample by the Nakai criterion.

(2) If La>b is generated by its global sections then the tensor pro-

duct La>b ®Lι>n+ι = La+hb+n+1 is ample since Lun+1 is ample by (1). Hence
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a + 1 is positive and — n(a + l) + b + n + lis positive i.e. a and b — na

are non-negative. Conversely if a and b — na are non-negative, then

Lα,δ is generated by its global sections. In fact, Lhn is generated by

its global sections and LOfl is so. Hence La>b = Lf£ ® Lff~na) is generated

by its global sections.

We denote the divisor a(M + nN) + βN by Haβ. Then the intersec-

tion numbers (Ha^β9 N) and (Haβ, M) are a and β respectively and Lemma

(3.1) (1) is restated as follows Haiβ is ample if and only if a > 0 and

β > 0. We also denote HU1 = M + (n + Ϊ)N by H, then H is very ample

and any irreducible member of the linear system \H\ is isomorphic to

the protective line P1. Let E be a vector bundle of rank r on Σn and

t be an irreducible member of the linear system \H\> then the restriction

E\t of E to ^ is isomorphic to direct sum L X 0 0 L r of line bundles

L/s on ^. We set;

: = min {deg Lt 1 ^ i ^ r}

and

r^(^); ^ is an irreducible member of \H\)

m(E) = min {aE(£) A is an irreducible member of

If E is a vector bundle on Σn and D is a divisor on Σn, we put

LEMMA (3.2) Let E be a vector bundle on Σn then;

(1) // MiE) ^ -n - 2, £ / ^ h\Σn,E) ^ h\ΣnyE(H)).

(2) If M(E) ^ -n-2> m(E)9 then h\Σn9 E) > h\Σn9 E(H)).

(3) 7/ m(E)^-n-2 and h\Σn,E) = h\Σn,E{H))9 then E(H) is

generated by its global sections.

Proof. The self-intersection number (if, if) is n + 2, so the proof

is similar to that of Lemma (2.1). Hence we omit it.

The following proposition can be proved as a corollary to Lemma

(3.2) and the proof is similar to that of Proposition (2.2).

PROPOSITION (3.3) If E is a vector bundle on Σn with M(E) ^ -n

— 2, then E(aH) is ample for any integer a ^ h\Σn9E) + 2.

For any integers α, b and c, we set
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Fn(a, b c): = {E E is a simple vector bundle of rank 2 on

Σn with c^ί?) = aM + bN and c2(E) = c}

/f L is a line bundle on 2*n, we also set;

Fn(a, b c)(L): = {E ® L # is in Fn(α, & c)}

Then for any integers α, & and c there exists a line bundle L on 2^ such

that;

(1) If a is even and b is even

Fn(a9 b c)(L) = Fn(0,0 r) where - 4 r = - α 2 n + 2αδ - 4c.

(2) If α is even and b is odd

Fn(a, b c)(L) = Fn(0, - 1 r) where - 4 r = - α 2 n + 2αδ - 4c.

(3) If α is odd and b is even

Fn(a, b c)(L) = Fn(—1,0 r) where — w - 4r = -a2n + 2ab - 4c.

(4) If a is odd and b is odd

Fn(a, b c)(L) = Fn(-1, - 1 r) where - n + 2 - 4r = - α 2 ^ + 2ab - 4c.

M. Maruyama ([6] Theorem 4.15) proved that;

(1) Fn(0,0 r) is not empty if and only if r ^ 2.

(2) Fw(0, — 1; r) is not empty if and only if r ΞΞ> 1.

(3) Fn(—l,0;r) is not empty if and only if r ^ 1.

(4) F w (—1, — 1; r) is not empty if and only if r ;> 1 when n Φ 0,

r ^ 2 when w = 0.

LEMMA (3.4) Let E be a simple vector bundle of rank 2 on Σn

with cx(E) = aM + &2V, then

(1) If a^O and b ^0, then H\Σn,E) == (0).

(2) // α ̂  - 4 and 6 ^ - 2 ( n + 2), ίfeen H\Σn9E) = (0).

Proof. The canonical line bundle on 2*n is isomorphic to the line

bundle L_2,_TO_2, so the proof is similar to that of Lemma (2.3).

We say that a set S of vector bundles on a fc-scheme X is bounded

if there exists an algebraic fc-scheme T and a vector bundle V on T x X

such that each E in S is isomorphic to Vt = V\t><z for some closed point

t in T.

THEOREM 2. For any integers α, & and c, Fn(α, δ c) is bounded.

Proof. It is sufficient to prove the theorem for — 1 ίg α, δ <J 0.
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We shall prove the theorem for Fn(0,0 r) only, since the other cases

are similar. By a theorem of Kleiman ([5] Theorem 1.13), it is sufficient

to show that there are integers m1 and m2 such that for any E in

Fn(0,0; r), i) h°(Σn,E) ^ m1 and ii) h°(£,E\£) ̂  m2 for a generic member

i of the linear system |£Γ|. By Lemma (3.4), h\Σn,E) = 0 for any E in

Fn(0,0;r). We now show ii). The Riemann-Roch theorem asserts that

for a vector bundle E' of rank 2 on ίn,

c(ffQ) ^(ffQ2 - 2c2(ffQ
2

Applying this to E in Fw(0,0 r), we have χ(E) = 2 — r. On the

other hand, by Lemma (3.4), h°(Σn,E) = h2(Σn,E) = 0. Thus we obtain

fe1 (Σn,E) = r — 2. Let ^ be a generic member of the linear system |JEΓ|,

then we have the following short exact sequence;

0 > E(-H) > E • E\e > 0

and the long exact sequence of cohomologies;

> H\Σnf E) > H\6, E\e) —> HKΣn, E(-H)) >

Since cx{E{-H)) = -2M - 2(w + l)N,h2(Σn,E(-H)) = 0 by Lemma (3.4).

Hence we obtain;

On the other hand, by the Riemann-Roch theorem for a vector bundle

of rank 2 on the protective line, we have;

h\£,E\£) - h\β,E\e) - 2 + degfaTO) = 2 .

Hence we obtain h°(£,E\£) <: r.

LEMMA (3.5) Let E be a simple vector bundle of rank 2 on Σn

with c,(E) = aM + bN such that -1 ^ α, b ^ 0. P^ί eZ = min {# fc°(^n, E(xH))

Φϋ] (d is positive by Lemma (3.4)). // there exist integers a and β

with a^hβ^l and 1/2 ^ β/a ^ n + 3 i/ n =̂ 0, 1/3 g β/a ^ 3 i/
ti = 0 such that E is Haiβ-stable, then M(E(dH)) ^ 0.

Proof. We shall prove the theorem for a = 0 and 6 = 0 only since

the other cases are similar. Let X be the protective bundle P(E(dH))

on Σn9 π: X —> ^ n the projection and L the tautological line bundle on X.

Let Όf be a member of the linear system \L\ on X, then Z)/ can be
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written in the form D' = D + π~\C) where D is an irreducible divisor

on X and C is an effective divisor on Σn i.e. C is linearly equivalent

to xM + yN (x^O, y^ 0). Put W = π*(Qzφ)) s E(dH - xM - yN).
Let £ be a generic member of the linear system \H\ on Σn, then D\π-H£)

is a section of the rational ruled surface π~\£) and the self-intersection

number φ | , - 1 ( l ) , X>|,-i(i)),-1(i) - (c^E^dH - xM - yN)), H) = 2d(n + 2) -

2(α + 2/). If 2d(n + 2) - 2(α + y) ^ 0, then α^(^) ^ 0 by Lemma (1.4).

Hence aEidH)(£) = α^(^) + a? + y ^ 0, therefore M(E(dH)) ^ 0. If 2d(w + 2)

- 2(ίc + i/)< 0, then aE,{£) = 2eZ(n + 2) - 2(a? + 2/) by Lemma (1.4).

Hence aE{dH)(£) = 2d(n + 2) - (x + y). We shall show that 2d(n + 2) ^

x + y. Now assume that 2d(n + 2) < x + y, then we shall show a con-

tradiction. Since h\Σn,E')φ0 and £" is iϊβf/Γstable, (cάEOfH.J =

2]8(d — a?) + 2<*(d(w + 1) - T/) > 0 by Lemma (1.1), hence /3d + αcZ(w + 1)

> βx + ay. We shall consider two cases i) β ^ a and iϊ) β ^ a separately.

i) Assume that β <̂  a. If ^ Φ 0, then 9̂d + α*Z(w + 1) ^ αrd(n + 2)

and βx + ay^ β(x + y), hence ^d(n + 2) > j8(ί» + y) > 2βd(n + 2). This

contradicts to 1/2 <: β/a. If n = 0, then 3^ ^ α. Hence βd + ad ^ 4βcZ

and βx + ay ^ β(x + y) > Aβd, therefore 4βd > 4βd. This is a contradic-

tion.

ii) Assume that β ^ a. Then /3d + αrd(w + 1) ^ ad(n + 3) + αcί(^ + 1)

= 2ad(n + 2), and βx + ay ^ α(α + i/) > 2αd(n + 2). Hence 2ad(n + 2)

> 2ad(n + 2), this is a contradiction.

For any integers a, b and c, we set

F°n(a, b; c): = {E in Fn(a, b; c); E is iϊα^-stable for some a and β with

1/2 ^ /3/α ^ n + 3 if n Φ 0, 1/3 ^ /3/α ^ 3 if n = 0} .

COROLLARY (3.6) (1) // £7 is in F°n(0,0;r) then E(rH) is ample.

(2) // E is in F°n(0, — 1; r) ίfcen E((r + 1)H) is ample.

(3) // E is in F°n(-l,0;r) then E((r + 1)H) is ample.

(4) If E is in F°n(-1, - 1 ; r) then E((r + 1)H) is ample.

Proof. The proof is similar to that of Corollary (2.6), so we omit it.

THEOREM 3. Let E be a simple vector bundle of rank 2 on Σn with

cγ(E) = aM + bN. Assume that E is Hayβ-stable for some a^l and

β^l such that 1/2 ^ β/a ^ n + 3 if n Φ 0, 1/3 ^ β/a ^ 3 if n = 0,

then the intersection numbers (cx(ί7),iV) = a,{c2(E),M) = b — na and)

(1) // a is even, b is even and a^2r,b — na^>2r where — 4r =
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Δ(E), then E is ample.

(2) // a is even, b is odd and a >̂ 2(r + 1), b — na ^ 2(r + 1) — 1

where —4cT = Δ(E), then E is ampe.

(3) // a is odd, b is even and a Ξ> 2(r + 1) — 1, b — na ^ 2(r + 1)

+ n where —n — 4r — Δ(E), then E is ample.

(4) If a is odd, b is odd and a ^ 2(r + 1) — 1, b — na ^ 2(r + 1)

+ n — 1 where —n + 2 — 4r = Δ(E), then E is ample.

Proof. We shall prove the case (1) only since the other cases are

similar. Let E be an iϊ^-stable vector bundle of rank 2 which satisfies

the conditions of (1), then E is written in the form Er{rH) <g) La,tb, where

E' is in F°n(0,0; r) and af = a/2 -r,b' = 6/2 - r(n + 1). E'(rH) is

ample by Corollary (3.6) and Lα,,δ, is generated by its global sections by

Lemma (3.1) because af = a/2 — r ^ 0 and bf — na' = 6/2 — r(w + 1) —

w(α/2 - r) = 1/2(6 - m - 2r) ^ 0, therefore E = S^riO <g> Lα,,δ, is ample.
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