AMPLE VECTOR BUNDLES ON A RATIONAL SURFACE

TOSHIO HOSOH

Introduction.

On a complete non-singular curve defined over the complex number field C, a stable vector bundle is ample if and only if its degree is positive [3]. On a surface, the notion of the H-stability was introduced by F. Takemoto [8] (see §1). We have a simple numerical sufficient condition for an H-stable vector bundle on a surface S defined over C to be ample; let E be an H-stable vector bundle of rank 2 on S with $\Delta(E)=c_{1}(E)^{2}-4 c_{2}(E) \geqq 0$, then E is ample if and only if $c_{1}(E)>0$ and $c_{2}(E)>0$, provided S is an abelian surface, a ruled surface or a hyperelliptic surface [9]. But the assumption above concerning $\Delta(E)$ evidently seems too strong. In this paper, we restrict ourselves to the projective plane P^{2} and a rational ruled surface Σ_{n} defined over an algebraically closed field k of arbitrary characteristic. We shall prove a finer assertion than that of [9] for an H-stable vector bundle of rank 2 to be ample (Theorem 1 and Theorem 3). Examples show that our result is best possible though it is not a necessary condition (see Remark (1) §2).

In $\S 1$, we shall recall the definition of H-stable vector bundles and their elementary properties proved by F. Takemoto [8].

In §2, we shall prove the following;
Theorem 1. If E is an H-stable vector bundle of rank 2 on \boldsymbol{P}^{2} with $c_{1}(E) \geqq(-1 / 2) \Delta(E)$, then E is ample.

In §3, we shall prove a similar sufficient condition for an H-stable vector bundle of rank 2 on Σ_{n} to be ample (Theorem 3).

The author wishes to thank H. Umemura who called his attention to this problem and gave him many suggestions.

§ 1. Preliminaries

Let k be an algebraically closed field of arbitrary characteristic.

[^0]Throughout this paper, the ground field k will be fixed. Let E be a vector bundle (i.e. a locally free sheaf) on a non-singular irreducible projective algebraic variety X defined over k. We shall use the following notation;

$$
\begin{aligned}
h^{i}(X, E) & :=\operatorname{dim}_{k} H^{i}(X, E) ; \text { the dimension of } H^{i}(X, E) . \\
E^{*}: & =\operatorname{Hom}_{o_{X}}\left(E, O_{X}\right) ; \text { the dual vector bundle of } E . \\
\chi(E) & :=\sum_{i}(-1)^{i} h^{i}(X, E) ; \text { the Euler-Poincaré characteristic of } E . \\
c_{i}(E) & ; \text { the } i \text {-th Chern class of } E .
\end{aligned}
$$

Let H be an ample line bundle (i.e. invertible sheaf) on X and $s=$ $\operatorname{dim} X$. We recall the deflnition of H-stable vector bundles [8].

Definition. A vector bundle E on X is H-stable if for every nontrivial, non-torsion, quotient sheaf F of $E, d(E, H) / r) E)<d(F, H) / r(F)$, where $d(F, H)=\left(c_{1}(F), H^{s-1}\right)$ with the intersection pairing (,) and where $r(F)$ is the rank of F.

The following lemma is an immediate consequence of the definition.
Lemma (1.1). (1) A vector bundle is H-stable if and only if it is $H^{\otimes n}$-stable for any natural number n.
(2) If L is a line bundle, then E is H-stable if and only if $E \otimes L$ is H-stable.
(3) If E is H-stable and $d(E, H) \leqq 0$, then $H^{0}(X, E)=(0)$.

We say that a vector bundle E is simple if any global endomorphism of E is constant, i.e. $H^{0}(X$, End $(E))=k$. We know that an H-stable vector bundle is simple ([8] Corollary (1.8)). In the case of rank 2 vector bundles on \boldsymbol{P}^{2}, also the converse is true ([8] Proposition (4.1)), i.e.;

Lemma (1.2). Let E be a vector bundle of rank 2 on P^{2}, then the following conditions are equivalent
(1). E is simple. (2). E is $O^{P^{2}(1)-s t a b l e . ~}$

There is a very usefull criterion for a rank 2 vector bundle to be not simple ([7] Theorem 1.);

Lemma (1.3). Let E be a vector bundle of rank 2 on X, then the following conditions are equivalent.
(1). E is not simple.
(2). There exists a line bundle L on X such that for $E^{\prime}=E \otimes L$,
$h^{0}\left(X, E^{\prime}\right) \neq 0$ and $h^{0}\left(X, E^{\prime *}\right) \neq 0$.
Let E be a vector bundle on $X, \boldsymbol{P}(E)$ the projective bundle on X associated to E and $O_{P(E)}(1)$ the tautological line bundle on $P(E)$ i.e. $\pi_{*}\left(O_{P(E)}(1)\right) \cong E, \pi$ being the natural projection of $P(E)$ onto X. If L is a line bundle on X, then the line bundle $O_{P(E)}(1) \otimes \pi^{*}(L)$ is also the tautological line bundle on $\boldsymbol{P}(E \otimes L) \cong \boldsymbol{P}(E)$. If M is a line bundle on $\boldsymbol{P}(E), M$ is isomorphic to a line bundle $O_{P(E)}(1)^{\otimes n} \otimes \pi *(N)$ for some integer n and some line bundle N on X (see EGA II. 4.1). A rational ruled surface is isomorphic to $\Sigma_{n}=\boldsymbol{P}\left(O_{P_{1}}(-n) \oplus O_{P_{1}}\right)$ for some nonnegative integer n. We denote the projection from Σ_{n} to \boldsymbol{P}^{1} by π_{n}.

The following lemma plays an important role in the sequel.
Lemma (1.4) Let s be a section of the projection $\pi_{n}: \Sigma_{n} \rightarrow \boldsymbol{P}^{1}$, then;
(1) If the self-intersection number (s, s) is non-positive, then (s, s) $=-n$ and the direct image $\pi_{n^{*}}\left(O_{\Sigma_{n}}(s)\right)$ is isomorphic to the the vector bundle $O_{P 1}(-n) \oplus O_{P 1}$.
(2) If the self-intersection number (s, s) is non-negative, then (s, s) $\geqq n$ and the direct image $\pi_{n^{*}}\left(O_{\Sigma_{n}}(s)\right)$ is generated by its global sections.

Proof. We have an exact sequence on Σ_{n};

$$
\left.0 \longrightarrow O_{\Sigma_{n}} \longrightarrow O_{\Sigma_{n}}(s) \longrightarrow O_{\Sigma_{n}}(s)\right|_{s} \longrightarrow 0
$$

Since $R^{1} \pi_{n^{*}}\left(O_{\Sigma_{n}}\right)=(0), \pi_{n^{*}}\left(O_{\Sigma_{n}}\right) \cong O_{P^{1}}, \pi_{n^{*}}\left(\left.O_{\Sigma_{n}}(s)\right|_{s}\right) \cong \boldsymbol{P}^{1}((s, s))$ and $\pi_{n^{*}}\left(O_{\Sigma_{n}}(s)\right)$ $\cong\left(O_{P_{1}(}(-n) \oplus O_{P^{1}}\right) \otimes O_{P_{1}}(\alpha)$ for some integer a, we have the following exact sequence;

$$
0 \longrightarrow O_{P^{1}} \longrightarrow\left(O_{P_{1}}(-n) \oplus O_{P_{1}}\right) \otimes O_{P_{1}}(a) \longrightarrow O_{P_{1}}((s, s)) \longrightarrow 0 \quad(*)
$$

(1) If (s, s) $\leqq 0$, then the exact sequence (*) is split because $h^{1}\left(\boldsymbol{P}^{1}, O_{P_{1}}(t)\right)$ $=0$ for $t \geqq 0$. Hence we have;

$$
\left(O_{P_{1}}(-n) \oplus O_{P_{1}}\right) \otimes O_{P_{1}}(a) \cong O_{P_{1}}((s, s)) \oplus O_{P^{1}}
$$

This is possible if and only if $a=0$ and $O_{P 1}((s, s)) \cong O_{P 1}(-n)$, hence $(s, s)=-n$ and $\pi_{n^{*}}\left(O_{\Sigma_{n}}(s)\right) \cong O_{P 1}(-n) \oplus O_{P 1}$.
(2) If $(s, s) \geqq 0$, then $O_{P 1}((s, s))$ is generated by its global sections. Hence we have that $\pi_{n *}\left(O_{\Sigma_{n}}(s)\right)$ is generated by its global sections by virtue of the exact sequence $(*)$. This is possible if and only if $a-n \geqq 0$. On the other hand, $O_{P 1}((s, s))$ is isomorphic to $O_{P 1}(2 a-n)$ by (*), which
implies $(s, s)=2 a-n=2(a-n)+n \geqq n$.
The section on Σ_{n} corresponding to the exact sequence;

$$
0 \longrightarrow O_{P^{1}} \longrightarrow O_{P_{1}}(-n) \oplus O_{P^{1}} \longrightarrow O_{P_{1}}(-n) \longrightarrow 0
$$

is called a minimal section of Σ_{n} and denoted by M. Let N be a fibre of π_{n}, then every divisor D on Σ_{n} is linearly equivalent to $a M+b N$ where $a=(D, N)$ and $b=(D, M)+a n$. A canonical divisor on Σ_{n} is linearly equivalent to $-2 M-(n+2) N$.

\S 2. Simple vector bundles on \boldsymbol{P}^{2}

Let E be a vector bundle of rank r on \boldsymbol{P}^{2} and ℓ be a line on \boldsymbol{P}^{2}, then the restriction $\left.E\right|_{\ell}$ of E to ℓ is isomorphic to a direct sum of line bundles L_{i} 's ($1 \leqq i \leqq r$ [2]; we set;

$$
\alpha_{E}(\ell)=\min \left\{\operatorname{deg}\left(L_{i}\right) ; 1 \leqq i \leqq r\right\}
$$

Evidently the number $\alpha_{E}(\ell)$ is bounded above and below when ℓ runs through lines on \boldsymbol{P}^{2}. Hence we set;

$$
\begin{aligned}
M(E): & =\max \left\{\alpha_{E}(\ell) ; \ell \text { is a line on } \boldsymbol{P}^{2}\right\} \\
m(E): & =\min \left\{\alpha_{E}(\ell) ; \ell \text { is a line on } \boldsymbol{P}^{2}\right\}
\end{aligned}
$$

If E is a vector bundle on P^{2}, we put $E(n)=E \otimes O_{P_{2}}(1)^{\otimes n}$.
Lemma (2.1) Let E be a vector bundle on \boldsymbol{P}^{2}, then;
(1) If $M(E) \geqq-1$, then $h^{1}\left(\boldsymbol{P}^{2}, E(1)\right) \leqq h^{1}\left(\boldsymbol{P}^{2}, E\right)$.
(2) If $M(E) \geqq-1>m(E)$, then $h^{1}\left(\boldsymbol{P}^{2}, E(1)\right)<h^{1}\left(\boldsymbol{P}^{2}, E\right)$.
(3) If $M(E) \geqq-1$ and $h^{1}\left(\boldsymbol{P}^{2}, E(1)\right)=h^{1}\left(\boldsymbol{P}^{2}, E\right)$, then $E(1)$ is generated by its global sections.

Proof. (1) Let ℓ be a line with $\alpha_{E}(\ell)=M(E)$, then there is the following short exact sequence;

$$
\begin{equation*}
O \longrightarrow O_{P^{2}}(-1) \longrightarrow O_{P^{2}} \longrightarrow O_{\ell} \longrightarrow 0 \tag{*}
\end{equation*}
$$

Tensoring $E(1)$ with (*), we get the short exact sequence;

$$
\left.0 \longrightarrow E \longrightarrow E(1) \longrightarrow E(1)\right|_{\ell} \longrightarrow 0
$$

and the long exact sequence of cohomologies;

$$
\cdots \longrightarrow H^{1}\left(\boldsymbol{P}^{2}, E\right) \longrightarrow H^{1}\left(\boldsymbol{P}^{2}, E(1)\right) \longrightarrow H^{1}\left(\ell,\left.E(1)\right|_{\ell}\right) \longrightarrow \cdots
$$

Since $\alpha_{E(1)}(\ell)=\alpha_{E}(\ell)+1 \geqq 0$, we have $h^{1}\left(\ell,\left.E(1)\right|_{\ell}\right)=0$, whence $h^{1}\left(\boldsymbol{P}^{2}, E(1)\right)$
$\leqq h^{1}\left(\boldsymbol{P}^{2}, E\right)$.
(2) By (1), we have $h^{1}\left(\boldsymbol{P}^{2}, E(1)\right) \leqq h^{1}\left(\boldsymbol{P}^{2}, E\right)$. Let ℓ be a line on \boldsymbol{P}^{2} with $\alpha_{E}(\ell)=M(E)$, then as above we obtain the following long exact sequence of cohomologies;

$$
\begin{aligned}
\cdots & \longrightarrow H^{0}\left(\boldsymbol{P}^{2}, E(1)\right) \longrightarrow H^{0}\left(\ell,\left.E(1)\right|_{\ell}\right) \longrightarrow H^{1}\left(\boldsymbol{P}^{2}, E\right) \\
& \longrightarrow H^{1}\left(\boldsymbol{P}^{2}, E(1)\right) \longrightarrow H^{1}\left(\ell,\left.E(1)\right|_{\ell}\right)=(0) .
\end{aligned}
$$

If $h^{1}\left(\boldsymbol{P}^{2}, E(1)\right)=h^{1}\left(\boldsymbol{P}^{2}, E\right)$, then $H^{1}\left(\boldsymbol{P}^{2}, E\right) \cong H^{1}\left(\boldsymbol{P}^{2}, E(1)\right)$. Thus $\varphi: H^{0}\left(\boldsymbol{P}^{2}, E(1)\right)$ $\rightarrow H^{0}\left(\ell,\left.E(1)\right|_{\ell}\right)$ is surjective. By the way, let ℓ^{\prime} be a line on \boldsymbol{P}^{2} with $\alpha_{E}\left(\ell^{\prime}\right)=m(E)$ and x be the closed point of the intersection of ℓ and ℓ^{\prime}, then $\psi: H^{0}\left(\ell,\left.E(1)\right|_{\ell}\right) \rightarrow E(1) \otimes k(x)$ is surjective since $\alpha_{E(1)}(\ell)=\alpha_{E}(\ell)+1$ $\geqq 0$. On the other hand $\psi^{\prime}: H^{0}\left(\ell^{\prime},\left.E(1)\right|_{\ell^{\prime}}\right) \rightarrow E(1) \otimes k(x)$ is not surjective because $\alpha_{E(1)}\left(\ell^{\prime}\right)=\alpha_{E}\left(\ell^{\prime}\right)+1 \leqq-1$. Furthermore we have the following commutative diagram;

On the one hand, $\psi \circ \varphi$ is surjective because so are φ and ψ. On the other hand, $\psi^{\prime} \circ \varphi^{\prime}$ is not surjective because not so is ψ^{\prime}. This is a contradiction.
(3) Let x be any closed point of P^{2} and ℓ be a line passing through x. The assumptions $\alpha_{E}(\ell) \geqq m(E) \geqq-1$ and $h^{1}\left(\boldsymbol{P}^{2}, E(1)\right)=h^{1}\left(\boldsymbol{P}^{2}, E\right)$ imply that $H^{0}\left(\boldsymbol{P}^{2}, E(1)\right) \rightarrow H^{0}\left(\ell,\left.E(1)\right|_{\ell}\right)$ is surjective and $H^{1}\left(\ell,\left.E(1)\right|_{\ell}\right) \rightarrow E(1)$ $\otimes k(x)$ is surjective for any closed point x. By this and Nakayama's lemma $E(1)$ is generated by its global sections.

Let X be a scheme defined over k and E_{1}, E_{2} vector bundles on X. If E_{1} is ample and E_{2} is generated by its global sections, then $E_{1} \otimes E_{2}$ is ample ([4] Corollary 1.9.). We get therefore the following proposition as a corollary to the above lemma.

Proposition (2.2) Let E be a vector bundle on \boldsymbol{P}^{2} with $M(E) \geqq-1$, then $E(a)$ is ample for any integer $a \geqq h^{1}\left(\boldsymbol{P}^{2}, E\right)+2$.

Proof. Put $b=h^{1}\left(\boldsymbol{P}^{2}, E\right)$, then by Lemma (2.1) we have;

$$
b=h^{1}\left(\boldsymbol{P}^{2}, E\right) \geqq h^{1}\left(\boldsymbol{P}^{2}, E(1)\right) \geqq \cdots \geqq h^{1}\left(\boldsymbol{P}^{2}, E(b)\right) \geqq 0 .
$$

Hence there must be an integer $c(0 \leqq c \leqq b)$ such that $h^{1}\left(\boldsymbol{P}^{1}, E(c)\right)=$ $h^{1}\left(\boldsymbol{P}^{2}, E(c+1)\right) . \quad$ By Lemma (2.1), $E(c+1)$ is generated by its global sections. Hence $E(a)$ is ample for any integer $a \geqq b+2$ because $O_{P_{2}}(n)$ is ample for any integer $n \geqq 1$.

For a vector bundle E of rank 2 on a scheme we know that $E^{*} \cong E$ $\otimes(\operatorname{det} E) *([6]$ Lemma 3.7). We shall use this fact in the next lemma.

If E is a vector bundle on P^{2}, we identify the Chern class $c_{i}(E)$ of E with an integer by its degree.

Lemma (2.3) Let E be a simple vector bundle of rank 2 on \boldsymbol{P}^{2}, then;
(1) If $c_{1}(E) \leqq 0$, then $H^{0}\left(\boldsymbol{P}^{2}, E\right)=(0)$.
(2) If $c_{1}(E) \geqq-6$, then $H^{2}\left(\boldsymbol{P}^{2}, E\right)=(0)$.

Proof. We have $E^{*} \cong E \otimes(\operatorname{det} E)^{*} \cong E(c)$, where $c=-c_{1}(E)$. If $c_{1}(E) \leqq 0$, then E can be regarded as a subsheaf of E^{*}. Hence $H^{0}\left(\boldsymbol{P}^{2}, E\right)$ $\subset H^{0}\left(\boldsymbol{P}^{2}, E^{*}\right)$. If $H^{0}\left(\boldsymbol{P}^{2}, E\right) \neq(0)$, then $H^{0}\left(\boldsymbol{P}^{2}, E^{*}\right) \neq(0)$. This contradicts to Lemma (1.3) and proves (1). The second assertion follows from (1) by the Serre duality.

Let E be a vector bundle of rank 2 on a non-singular projective surface S. Define an integer $\Delta(E)$ to be $c_{1}(E)^{2}-4 c_{2}(E)$. It is easy to see that $-\Delta(E)$ is the second Chern class of End (E). Hence, if L is a line bundle on S, then $\Delta(E \otimes L)=\Delta(E)$. For given two integers c_{1} and c_{2}, let $F\left(c_{1}, c_{2}\right)$ be the set of all simple vector bundles of rank 2 on \boldsymbol{P}^{2} with i-th Chern class $c_{i}(i=1,2)$. Then $F\left(c_{1}, c_{2}\right)$ is not empty if and only if $c=c_{1}^{2}-4 c_{2}$ is negative and is not equal to -4 ([6] Theorem 4.6). For a line bundle L on \boldsymbol{P}^{2}, we put $F\left(c_{1}, c_{2}\right)(L)=\left\{E \otimes L ; E \in F\left(c_{1}, c_{2}\right)\right\}$. If c_{1} is odd (resp. even), then for $L=O_{P_{2}}\left(-\left(c_{1}+1\right) / 2\right)$ (resp. $O_{P_{2}}\left(-c_{1} / 2\right)$), $F\left(c_{1}, c_{2}\right)(L)=F(-1, n)($ resp. $F(0, m))$ where $1-4 n=c_{1}^{2}-4 c_{2}$ (resp. $-4 m$ $\left.=c_{1}^{2}-4 c_{2}\right) . \quad F(-1, n)($ resp. $F(0 ; m)$) is not empty if and only if $n \geqq 1$ (resp. $m \geqq 2$).

Now we can compute a lower bound of $m($) for simple vector bundles of rank 2 on \boldsymbol{P}^{2} with fixed Chern classes.

Proposition (2.4) If E is in $F(-1, n)$ (resp. $F(0, m)$), then;

$$
-n \leqq m(E) \leqq M(E) \leqq-1 \quad(\text { resp. }-m+1 \leqq m(E) \leqq M(E) \leqq 0)
$$

Proof. $M(E) \leqq-1$ (resp. $M(E) \leqq 0)$ is obvious, because $c_{1}(E)=-1$ (resp. $c_{1}(E)=0$). The Riemann-Roch theorem asserts that for a vector bundle E^{\prime} of rank 2 on P^{2},

$$
\chi\left(E^{\prime}\right)=2+\frac{3 c_{1}\left(E^{\prime}\right)}{2}+\frac{c_{2}\left(E^{\prime}\right)^{2}-2 c_{2}\left(E^{\prime}\right)}{2} .
$$

Applying this to E we have $\chi(E)=1-n$ (resp. 2-m). On the other hand, by Lemma (2.3) $H^{0}\left(\boldsymbol{P}^{2}, E\right)=H^{2}\left(\boldsymbol{P}^{2}, E\right)=(0)$. Thus we obtain $h^{1}\left(\boldsymbol{P}^{2}, E\right)=n-1$ (resp. $m-2$). Let ℓ be any line on \boldsymbol{P}^{2}, then we have the following short exact sequence;

$$
\left.0 \longrightarrow E(-1) \longrightarrow E \longrightarrow E\right|_{\ell} \longrightarrow 0
$$

and the long exact sequence of cohomologies;

$$
\cdots \longrightarrow H^{1}\left(\boldsymbol{P}^{2}, E\right) \longrightarrow H^{1}\left(\ell,\left.E\right|_{\ell}\right) \longrightarrow H^{2}\left(\boldsymbol{P}^{2}, E(-1)\right) \longrightarrow \cdots
$$

Since $H^{2}\left(\boldsymbol{P}^{2}, E(-1)\right)=(0)$ by Lemma (2.3), we obtain $h^{1}\left(\ell,\left.E\right|_{\ell}\right) \leqq n-1$ (resp. $m-2$). Hence $\alpha_{E}(\ell) \geqq-n$ (resp. $-m+1$) for any line ℓ.

Lemma (2.5) Let E be in $F(-1, n)$ (resp. $F(0, m)$). We put $b=$ $\min \left\{x ; H^{0}\left(\boldsymbol{P}^{2}, E(x)\right) \neq(0)\right\}$ (b is positive because $c_{1}(E(b))$ must be positive by Lemma (2.3)). Then $E(a)$ is ample for any integer $a \geqq n-b^{2}+b$ +1 (resp. $m-b^{2}+1$).

Proof. First we shall prove that $M(E(b)) \geqq 0$. Let L be the tautological line bundle on $\boldsymbol{P}(E(b))$, then $H^{0}(\boldsymbol{P}(E(b)), L) \cong H^{0}\left(\boldsymbol{P}^{2}, E(b)\right) \neq(0)$. Take a member D of the linear system $|L|$, then $\operatorname{Supp}(D)$ contains only a finite number of fibres of the projection $\pi: \boldsymbol{P}(E(b)) \rightarrow \boldsymbol{P}^{2}$. For if otherwise, there is an effective divisor C on \boldsymbol{P}^{2} such that $D-\pi^{-1}(C)$ >0, i.e. $H^{0}\left(\boldsymbol{P}(E(b)), L \otimes \pi^{*}\left(O_{P_{2}}(-C)\right)\right) \neq(0)$. Meanwhile this is isomorphic to $H^{0}\left(\boldsymbol{P}^{2}, E(b) \otimes O_{P_{2}}(-C)\right)$. Thus by the definition of b, C must be linearly equivalent to zero, which is not the case. Hence for a generic line ℓ on $P^{2},\left.D\right|_{\pi-1(\ell)}$ is a section of the rational ruled surface $\pi^{-1}(\ell) \cong$ $\boldsymbol{P}\left(\left.E(b)\right|_{\ell}\right)$. On the otherhand, the self-intersection number $\left(\left.D\right|_{\pi-1(\ell)},\left.D\right|_{\pi-1(\ell)}\right)_{\pi-1(\ell)}$ $=c_{1}(E(b))>0$. Hence by Lemma (1.4), $\left.\left(\left.\pi\right|_{\ell}\right)_{*}\left(O_{\pi-1 \ell)}\left(\left.D\right|_{\pi-1(\ell)}\right)\right) \cong E(b)\right|_{\ell}$ is generated by its global sections. This shows that $M(E(b)) \geqq 0$.

The Chern classes of $E(b-1)$ are;

$$
\begin{aligned}
& c_{1}(E(b-1))=2 b-3 \quad(\text { resp. } 2 b-2) \\
& c_{2}(E(b-1))=b^{2}-3 b+2+n \quad\left(\text { resp. } b^{2}-2 b+1+m\right)
\end{aligned}
$$

By the Riemann-Roch theorem, we obtain;

$$
\chi(E(b-1))=b^{2}-n \quad\left(\text { resp. } b^{2}+b-m\right)
$$

On the other hand $H^{0}\left(\boldsymbol{P}^{2}, E(b-1)\right)=H^{2}\left(\boldsymbol{P}^{2}, E(b-1)\right)=(0)$. Hence we have $h^{1}\left(\boldsymbol{P}^{2}, E(b-1)\right)=n-b^{2}\left(\right.$ resp. $\left.m-b^{2}-b\right)$.

Combining these results, by Proposition (2.2) $E(b-1)\left(a^{\prime}\right)$ is ample for any integer $a^{1} \geqq n-b^{2}+2$ (resp. $m-b^{2}-b+2$), i.e. $E(a)$ is ample for any integer $a \geqq n-b^{2}+b+1$ (resp. $m-b^{2}+1$).

Corollary (2.6) If $m(E)=-n$ (resp. $-m+1$), then;
(1) $\quad M(E) \geqq-1$.
(2) $h^{1}\left(\boldsymbol{P}^{2}, E(\alpha)\right)=n-1-a$ (resp. $\left.m-2-a\right)$ for $0 \leqq a \leqq n-1$ (resp. $0 \leqq a \leqq m-2$).
(3) For an integer a the following conditions are equivalent to each other;
i) $E(a)$ is ample.
ii) $\quad a \geqq n+1$ (resp. m).
iii) $\quad c_{1}(E(a)) \geqq-(1 / 2) \Delta(E(a))$.

Proof. (3) ii) \Leftrightarrow iii). $\quad c_{1}(E(a))=2 a-1 \quad$ (resp. 2a) and $\Delta(E(a))=$ $1-4 n$ (resp. $-4 m$). Hence $c_{1}(E(a)) \geqq-(1 / 2) \Delta(E(a))$ if and only if $a \geqq n+1$ (resp. m).
ii) \Rightarrow i). $\quad n+1 \geqq n-b^{2}+b+1 \quad$ (resp. $m \geqq m-b^{2}+1$) for any $b \geqq 1$. Hence $E(a)$ is ample by Lemma (2.5).
i) \Rightarrow ii). If $E(a)$ is ample, then $m(E(a))=m(E)+a \geqq 1$. Hence $a \geqq-m(E)+1 \geqq n+1$ (resp. m).
(1) In the proof of (3), b must be equal to 1 . Hence $M(E(1)) \geqq 0$ as we have shown in the proof of Lemma (2.5), i.e. $M(E) \geqq-1$.
(2) By the assumption $m(E)=-n$ (resp. $-m+1$) and (1), we have $M(E(a)) \geqq-1>m(E(a))$ for $0 \leqq a \leqq n-2$ (resp. $0 \leqq a \leqq m-3$). Hence by Lemma (2.1), we obtain;

$$
\begin{aligned}
& h^{1}\left(\boldsymbol{P}^{2}, E\right)>h^{1}\left(\boldsymbol{P}^{2}, E(1)\right)>\ldots>h^{1}\left(\boldsymbol{P}^{2}, E(n-1)\right) \\
& \quad\left(\text { resp. } h^{1}\left(\boldsymbol{P}^{2}, E\right)>h^{1}\left(\boldsymbol{P}^{2}, E(1)\right)>\ldots>h^{1}\left(\boldsymbol{P}^{2}, E(m-2)\right)\right) .
\end{aligned}
$$

Since $h^{1}\left(\boldsymbol{P}^{2}, E\right)=n-1$ (resp. $m-2$), this shows the assertion.
In the proof of Corollary (2.6) (3), we did not use the assumption $m(E)=-n$ (resp. $m(E)=-m+1$) to show iii) \Rightarrow i). Thus, we have proved the following;

THEOREM 1. If E is a simple vector bundle of rank 2 on \boldsymbol{P}^{2} with $c_{1}(E) \geqq-(1 / 2) \Delta(E)$, then E is ample.

Remark (1) Theorem 1. is best possible in the following senses;
i) For any integer $n \geqq 1$, there exists a simple vector bundle E in $F(-1, n)$ such that $m(E)=-n$, i.e. $E(a)$ is ample if and only if $c_{1}(E(a))$ $\geqq-(1 / 2) \Delta(E(a))$ (see Corollary (2.6) (3)).
ii) For any integers c_{1} and c_{2}, let $F^{\prime}\left(c_{1}, c_{2}\right)$ be the set of all vector bundles of rank 2 on \boldsymbol{P}^{2} with its i-th Chern class being c_{i}, then $\inf \{m(E)$; E in $\left.F^{\prime}\left(c_{1}, c_{2}\right)\right\}=-\infty$ i.e. for any integer a, there exists a vector bundle E in $F^{\prime}\left(c_{1}, c_{2}\right)$ such that $m(E)<a$. Hence we can not drop the hypothesis "simple".

For the construction of examples satisfying i) or ii), see [6] Theorem 4.6, Theorem 3.13.

Remark (2) If E is a simple vector bundle of rank 2 on \boldsymbol{P}^{2} with $c_{1}(E) \geqq-(1 / 2) \Delta(E)$, then E can be written in the form $E^{\prime} \otimes L$ where E^{\prime} is generated by its global sections and L is a very ample line bundle, hence if k is the complex number field C, E is positive in the sense of Griffiths [1].

§ 3. $\boldsymbol{H}_{\alpha, \beta}$-stable vector bundles on a rational ruled surface.

For a non-negative integer n, let Σ_{n} be the rational ruled surface $\boldsymbol{P}\left(O_{P_{1}}(-n) \oplus O_{P_{1}}\right), M$ a minimal section on Σ_{n} and N a fibre of the projection $\pi_{n}: \Sigma_{n} \rightarrow \boldsymbol{P}^{1}$. Then every line bundle on Σ_{n} is isomorphic to $O_{\Sigma_{n}}(a M+b N)$ for some integers a and b. We denote the line bundle $O_{\Sigma_{n}}(a M+b N)$ by $L_{a, b}$.

Lemma (3.1) (1) $L_{a, b}$ is ample if and only if a is positive and b - na is positive.
(2) $L_{a, b}$ is generated by its glebal sections if and only if a is nonnegative and $b-n a$ is non-negative.

Proof. If $L_{a, b}$ is ample, then the intersection numbers $\left(L_{a, b}, N\right)=$ a and $\left(L_{a, b}, M\right)=b-n a$ are positive by the Nakai criterion. Conversely if a is positive and $b-n a$ is positive, then the self-intersection number $\left(L_{a, b}, L_{a, b}\right)=-a^{2} n+2 a b>-a^{2} n+2 a^{2} n=a^{2} n \geqq 0$. Any curve C on Σ_{n} is linearly equivalent to $a^{\prime} M+b^{\prime} N$ for some non-negative integers a^{\prime} and b^{\prime} such that $\left(a^{\prime}, b^{\prime}\right) \neq(0,0)$. Hence the intersection number $\left(L_{a, b}, C\right)=$ $a^{\prime}\left(L_{a, b}, M\right)+b^{\prime}\left(L_{a, b}, M\right)=a^{\prime}(-n a+b)+b^{\prime} a$ is positive. Therefore $L_{a, b}$ is ample by the Nakai criterion.
(2) If $L_{a, b}$ is generated by its global sections then the tensor product $L_{a, b} \otimes L_{1, n+1}=L_{a+1, b+n+1}$ is ample since $L_{1, n+1}$ is ample by (1). Hence
$a+1$ is positive and $-n(a+1)+b+n+1$ is positive i.e. a and $b-n a$ are non-negative. Conversely if a and $b-n a$ are non-negative, then $L_{a, b}$ is generated by its global sections. In fact, $L_{1, n}$ is generated by its global sections and $L_{0,1}$ is so. Hence $L_{a, b}=L_{1, n}^{\otimes a} \otimes L_{0,1}^{\otimes(b-n a)}$ is generated by its global sections.

We denote the divisor $\alpha(M+n N)+\beta N$ by $H_{\alpha, \beta}$. Then the intersection numbers $\left(H_{\alpha, \beta}, N\right)$ and $\left(H_{\alpha, \beta}, M\right)$ are α and β respectively and Lemma (3.1) (1) is restated as follows; $H_{\alpha, \beta}$ is ample if and only if $\alpha>0$ and $\beta>0$. We also denote $H_{1,1}=M+(n+1) N$ by H, then H is very ample and any irreducible member of the linear system $|H|$ is isomorphic to the projective line \boldsymbol{P}^{1}. Let E be a vector bundle of rank r on Σ_{n} and ℓ be an irreducible member of the linear system $|H|$, then the restriction $\left.E\right|_{\ell}$ of E to ℓ is isomorphic to direct sum $L_{1} \oplus \cdots \oplus L_{r}$ of line bundles L_{i} 's on ℓ. We set;

$$
\alpha_{E}(\ell):=\min \left\{\operatorname{deg} L_{i} ; 1 \leqq i \leqq r\right\}
$$

and

$$
\begin{aligned}
M(E) & =\max \left\{\alpha_{E}(\ell) ; \ell \text { is an irreducible member of }|H|\right\} \\
m(E) & =\min \left\{\alpha_{E}(\ell) ; \ell \text { is an irreducible member of }|H|\right\}
\end{aligned}
$$

If E is a vector bundle on Σ_{n} and D is a divisor on Σ_{n}, we put $E(D)=E \otimes O_{\Sigma_{n}}(D)$.

Lemma (3.2) Let E be a vector bundle on Σ_{n} then;
(1) If $M(E) \geqq-n-2$, then $h^{1}\left(\Sigma_{n}, E\right) \geqq h^{1}\left(\Sigma_{n}, E(H)\right)$.
(2) If $M(E) \geqq-n-2>m(E)$, then $h^{1}\left(\Sigma_{n}, E\right)>h^{1}\left(\Sigma_{n}, E(H)\right.$).
(3) If $m(E) \geqq-n-2$ and $h^{1}\left(\Sigma_{n}, E\right)=h^{1}\left(\Sigma_{n}, E(H)\right.$, then $E(H)$ is generated by its global sections.

Proof. The self-intersection number (H, H) is $n+2$, so the proof is similar to that of Lemma (2.1). Hence we omit it.

The following proposition can be proved as a corollary to Lemma (3.2) and the proof is similar to that of Proposition (2.2).

Proposition (3.3) If E is a vector bundle on Σ_{n} with $M(E) \geqq-n$ -2 , then $E(a H)$ is ample for any integer $a \geqq h^{1}\left(\Sigma_{n}, E\right)+2$.

For any integers a, b and c, we set;

$$
\begin{aligned}
F_{n}(a, b ; c):= & \{E ; E \text { is a simple vector bundle of rank } 2 \text { on } \\
& \left.\Sigma_{n} \text { with } c_{1}(E)=a M+b N \text { and } c_{2}(E)=c\right\}
\end{aligned}
$$

If L is a line bundle on Σ_{n}, we also set;

$$
F_{n}(a, b ; c)(L):=\left\{E \otimes L ; E \text { is in } F_{n}(a, b ; c)\right\}
$$

Then for any integers a, b and c there exists a line bundle L on Σ_{n} such that;
(1) If a is even and b is even
$F_{n}(a, b ; c)(L)=F_{n}(0,0 ; r)$ where $-4 r=-a^{2} n+2 a b-4 c$.
(2) If a is even and b is odd
$F_{n}(a, b ; c)(L)=F_{n}(0,-1 ; r)$ where $-4 r=-a^{2} n+2 a b-4 c$.
(3) If a is odd and b is even $F_{n}(a, b ; c)(L)=F_{n}(-1,0 ; r)$ where $-n-4 r=-a^{2} n+2 a b-4 c$.
(4) If a is odd and b is odd
$F_{n}(a, b ; c)(L)=F_{n}(-1,-1 ; r)$ where $-n+2-4 r=-a^{2} n+2 a b-4 c$.
M. Maruyama ([6] Theorem 4.15) proved that;
(1) $F_{n}(0,0 ; r)$ is not empty if and only if $r \geqq 2$.
(2) $F_{n}(0,-1 ; r)$ is not empty if and only if $r \geqq 1$.
(3) $F_{n}(-1,0 ; r)$ is not empty if and only if $r \geqq 1$.
(4) $F_{n}(-1,-1 ; r)$ is not empty if and only if $r \geqq 1$ when $n \neq 0$, $r \geqq 2$ when $n=0$.

Lemma (3.4) Let E be a simple vector bundle of rank 2 on Σ_{n} with $c_{1}(E)=a M+b N$, then
(1) If $a \leqq 0$ and $b \leqq 0$, then $H^{0}\left(\Sigma_{n}, E\right)=(0)$.
(2) If $a \geqq-4$ and $b \geqq-2(n+2)$, then $H^{2}\left(\Sigma_{n}, E\right)=(0)$.

Proof. The canonical line bundle on Σ_{n} is isomorphic to the line bundle $L_{-2,-n-2}$, so the proof is similar to that of Lemma (2.3).

We say that a set S of vector bundles on a k-scheme X is bounded if there exists an algebraic k-scheme T and a vector bundle V on $T \times X$ such that each E in S is isomorphic to $V_{t}=\left.V\right|_{t \times X}$ for some closed point t in T.

Theorem 2. For any integers a, b and $c, F_{n}(a, b ; c)$ is bounded.
Proof. It is sufficient to prove the theorem for $-1 \leqq a, b \leqq 0$.

We shall prove the theorem for $F_{n}(0,0 ; r)$ only, since the other cases are similar. By a theorem of Kleiman ([5] Theorem 1.13), it is sufficient to show that there are integers m_{1} and m_{2} such that for any E in $F_{n}(0,0 ; r)$, i) $h^{0}\left(\Sigma_{n}, E\right) \leqq m_{1}$ and ii) $h^{0}\left(\ell,\left.E\right|_{\ell}\right) \leqq m_{2}$ for a generic member ℓ of the linear system $|H|$. By Lemma (3.4), $h^{0}\left(\Sigma_{n}, E\right)=0$ for any E in $F_{n}(0,0 ; r)$. We now show ii). The Riemann-Roch theorem asserts that for a vector bundle E^{\prime} of rank 2 on Σ_{n},

$$
\chi\left(E^{\prime}\right)=2+\frac{\left(2 M+(n+2) N, c_{1}\left(E^{\prime}\right)\right)}{2}+\frac{c_{1}\left(E^{\prime}\right)^{2}-2 c_{2}\left(E^{\prime}\right)}{2}
$$

Applying this to E in $F_{n}(0,0 ; r)$, we have $\chi(E)=2-r$. On the other hand, by Lemma (3.4), $h^{0}\left(\Sigma_{n}, E\right)=h^{2}\left(\Sigma_{n}, E\right)=0$. Thus we obtain $h^{1}\left(\Sigma_{n}, E\right)=r-2$. Let ℓ be a generic member of the linear system $|H|$, then we have the following short exact sequence;

$$
\left.0 \longrightarrow E(-H) \longrightarrow E \longrightarrow E\right|_{\ell} \longrightarrow 0
$$

and the long exact sequence of cohomologies;

$$
\cdots \longrightarrow H^{1}\left(\Sigma_{n}, E\right) \longrightarrow H^{1}\left(\ell,\left.E\right|_{\ell}\right) \longrightarrow H^{2}\left(\Sigma_{n}, E(-H)\right) \longrightarrow \cdots
$$

Since $c_{1}(E(-H))=-2 M-2(n+1) N, h^{2}\left(\Sigma_{n}, E(-H)\right)=0$ by Lemma (3.4). Hence we obtain;

$$
h^{1}\left(\ell,\left.E\right|_{\ell}\right) \leqq r-2 .
$$

On the other hand, by the Riemann-Roch theorem for a vector bundle of rank 2 on the projective line, we have;

$$
h^{0}\left(\ell,\left.E\right|_{\ell}\right)-h^{1}\left(\ell,\left.E\right|_{\ell}\right)=2+\operatorname{deg}\left(c_{1}\left(\left.E\right|_{\ell}\right)\right)=2
$$

Hence we obtain $h^{0}\left(\ell,\left.E\right|_{\ell}\right) \leqq r$.
Lemma (3.5) Let E be a simple vector bundle of rank 2 on Σ_{n} with $c_{1}(E)=a M+b N$ such that $-1 \leqq a, b \leqq 0$. Put $d=\min \left\{x ; h^{0}\left(\Sigma_{n}, E(x H)\right)\right.$ $\neq 0\}$ (d is positive by Lemma (3.4)). If there exist integers α and β with $\alpha \geqq 1, \beta \geqq 1$ and $1 / 2 \leqq \beta / \alpha \leqq n+3$ if $n \neq 0,1 / 3 \leqq \beta / \alpha \leqq 3$ if $n=0$ such that E is $H_{\alpha, \beta}$-stable, then $M(E(d H)) \geqq 0$.

Proof. We shall prove the theorem for $a=0$ and $b=0$ only since the other cases are similar. Let X be the projective bundle $\boldsymbol{P}(E(d H))$ on $\Sigma_{n}, \pi: X \rightarrow \Sigma_{n}$ the projection and L the tautological line bundle on X. Let D^{\prime} be a member of the linear system $|L|$ on X, then D^{\prime} can be
written in the form $D^{\prime}=D+\pi^{-1}(C)$ where D is an irreducible divisor on X and C is an effective divisor on Σ_{n} i.e. C is linearly equivalent to $x M+y N(x \geqq 0, y \geqq 0)$. Put $E^{\prime}=\pi_{*}\left(O_{X}(D)\right) \cong E(d H-x M-y N)$. Let ℓ be a generic member of the linear system $|H|$ on Σ_{n}, then $\left.D\right|_{\pi^{-1(\ell)}}$ is a section of the rational ruled surface $\pi^{-1}(\ell)$ and the self-intersection number $\quad\left(\left.D\right|_{\pi-1(\ell)},\left.D\right|_{\pi-1(\ell)}\right)_{\pi-1(\ell)}=\left(c_{1}(E(d H-x M-y N)), H\right)=2 d(n+2)-$ $2(x+y)$. If $2 d(n+2)-2(x+y) \geqq 0$, then $\alpha_{E^{\prime}}(\ell) \geqq 0$ by Lemma (1.4). Hence $\alpha_{E(d H)}(\ell)=\alpha_{E^{\prime}}(\ell)+x+y \geqq 0$, therefore $M(E(d H)) \geqq 0$. If $2 d(n+2)$ $-2(x+y)<0$, then $\alpha_{E}(\ell)=2 d(n+2)-2(x+y)$ by Lemma (1.4). Hence $\alpha_{E(d H)}(\ell)=2 d(n+2)-(x+y)$. We shall show that $2 d(n+2) \geqq$ $x+y$. Now assume that $2 d(n+2)<x+y$, then we shall show a contradiction. Since $h^{0}\left(\Sigma_{n}, E^{\prime}\right) \neq 0$ and E^{\prime} is $H_{\alpha, \beta}$-stable, $\left(c_{1}\left(E^{\prime}\right), H_{\alpha, \beta}\right)=$ $2 \beta(d-x)+2 \alpha(d(n+1)-y)>0$ by Lemma (1.1), hence $\beta d+\alpha d(n+1)$ $>\beta x+\alpha y$. We shall consider two cases i) $\beta \leqq \alpha$ and ii) $\beta \geqq \alpha$ separately.
i) Assume that $\beta \leqq \alpha$. If $n \neq 0$, then $\beta d+\alpha d(n+1) \leqq \alpha d(n+2)$ and $\beta x+\alpha y \geqq \beta(x+y)$, hence $\alpha d(n+2)>\beta(x+y)>2 \beta d(n+2)$. This contradicts to $1 / 2 \leqq \beta / \alpha$. If $n=0$, then $3 \beta \geqq \alpha$. Hence $\beta d+\alpha d \leqq 4 \beta d$ and $\beta x+\alpha y \geqq \beta(x+y)>4 \beta d$, therefore $4 \beta d>4 \beta d$. This is a contradiction.
ii) Assume that $\beta \geqq \alpha$. Then $\beta d+\alpha d(n+1) \leqq \alpha d(n+3)+\alpha d(n+1)$ $=2 \alpha d(n+2)$, and $\beta x+\alpha y \geqq \alpha(x+y)>2 \alpha d(n+2)$. Hence $2 \alpha d(n+2)$ $>2 \alpha d(n+2)$, this is a contradiction.

For any integers a, b and c, we set;

$$
\begin{aligned}
F_{n}^{0}(a, b ; c):= & \left\{E \text { in } F_{n}(a, b ; c) ; E \text { is } H_{\alpha, \beta} \text {-stable for some } \alpha \text { and } \beta\right. \text { with } \\
& 1 / 2 \leqq \beta / \alpha \leqq n+3 \text { if } n \neq 0,1 / 3 \leqq \beta / \alpha \leqq 3 \text { if } n=0\} .
\end{aligned}
$$

Corollary (3.6) (1) If E is in $F_{n}^{0}(0,0 ; r)$ then $E(r H)$ is ample.
(2) If E is in $F_{n}^{0}(0,-1 ; r)$ then $E((r+1) H)$ is ample.
(3) If E is in $F_{n}^{0}(-1,0 ; r)$ then $E((r+1) H)$ is ample.
(4) If E is in $F_{n}^{0}(-1,-1 ; r)$ then $E((r+1) H)$ is ample.

Proof. The proof is similar to that of Corollary (2.6), so we omit it.
Theorem 3. Let E be a simple vector bundle of rank 2 on Σ_{n} with $c_{1}(E)=a M+b N$. Assume that E is $H_{\alpha, \beta}$-stable for some $\alpha \geqq 1$ and $\beta \geqq 1$ such that $1 / 2 \leqq \beta / \alpha \leqq n+3$ if $n \neq 0,1 / 3 \leqq \beta / \alpha \leqq 3$ if $n=0$, then the intersection numbers $\left(c_{1}(E), N\right)=a,\left(c_{2}(E), M\right)=b-n a$ and;
(1) If a is even, b is even and $a \geqq 2 r, b-n a \geqq 2 r$ where $-4 r=$
$\Delta(E)$, then E is ample.
(2) If a is even, b is odd and $a \geqq 2(r+1), b-n a \geqq 2(r+1)-1$ where $-4 r=\Delta(E)$, then E is ampe.
(3) If a is odd, b is even and $a \geqq 2(r+1)-1, b-n a \geqq 2(r+1)$ $+n$ where $-n-4 r=\Delta(E)$, then E is ample.
(4) If a is odd, b is odd and $a \geqq 2(r+1)-1, b-n a \geqq 2(r+1)$ $+n-1$ where $-n+2-4 r=\Delta(E)$, then E is ample.

Proof. We shall prove the case (1) only since the other cases are similar. Let E be an $H_{\alpha, \beta}$-stable vector bundle of rank 2 which satisfies the conditions of (1), then E is written in the form $E^{\prime}(r H) \otimes L_{a^{\prime}, b^{\prime}}$ where E^{\prime} is in $F_{n}^{0}(0,0 ; r)$ and $a^{\prime}=a / 2-r, b^{\prime}=b / 2-r(n+1) . \quad E^{\prime}(r H)$ is ample by Corollary (3.6) and $L_{a^{\prime}, b^{\prime}}$ is generated by its global sections by Lemma (3.1) because $a^{\prime}=a / 2-r \geqq 0$ and $b^{\prime}-n a^{\prime}=b / 2-r(n+1)-$ $n(a / 2-r)=1 / 2(b-n a-2 r) \geqq 0$, therefore $E=E^{\prime}(r H) \otimes L_{a^{\prime}, b^{\prime}}$ is ample.

References

[1] Griffiths, P., Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis, papers in honor of K. Kodaira, Univ. of Tokyo press (1969) 185-251.
[2] Grothendieck, A., Sur la classification des fibrés holomorphes sur la sphére de Riemann, Amer. J. Math., 79 (1957) 121-138.
[3] Hartshorne, R., Ample vector bundles on curves, Nagoya Math. J., 43 (1971) 73-89.
[4] -, Ample subvarieties of algebraic varieties, Lecture notes in Math., Springer, 156 (1970).
[5] Kleiman, S., Les theoremes de finitude pour le foncteur de Picard, SGA 6, exposé 13.
[6] Maruyama, M., On a family of algebraic vector bundles, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, (1973) 95-146.
[7] Schwarzenberger, R. E. L., Vector bundles on algebraic surfaces, Proc. London Math. Soc., (3) 11 (1961) 601-622.
[8] Takemoto, F., Stable vector bundles on algebraic surfaces, Nagoya Math. J., 47 (1972) 29-48.
[9] Umemura, H., Some results in the theory of vector bundles, Nagoya Math. J., 52 (1973) 97-128.

[^0]: Received August 30, 1974.

