
H. Umemura
Nagoya Math. J.
Vol. 59 (1975), 107-134

STABLE VECTOR BUNDLES WITH NUMERICALLY TRIVIAL
CHERN CLASSES OVER A HYPERELLIPTIC SURFACE

HIROSHI UMEMURA

In [17], Weil studied the space of representations of certain Fuchsian
groups as a generalization of Jacobian variety. The theory of stable
vector bundles over a curve developed by Mumford, Seshadri and others
are the theory of unitary representations of Fuchsian groups. The moduli
space of stable vector bundles over a curve is the space of the irreducible
unitary representations of a Fuchsian group. The moduli space is studied
in detail. Recently Mumford (unpubished) and Takemoto [12] introduced
the notion of ίf-stable vector bundle over a non-singular protective
algebraic surface. In this paper, we study the space of the irreducible
unitary representations of the fundamental group of a hyperelliptic
surface. Our view point is based on the theory of iϊ-stable vector bundles
of Takemoto [12] and [13]. We deal only with hyperelliptic surfaces.
Our results should be generalized to the vector bundles over some other
surfaces (See §3). Our main results are as follows:

1° An ίf-stable vector bundle with numerically trivial Chern classes
over a hyperelliptic surface is defined by an irreducible unitary re-
presentation of the fundamental group.

2° The space of irreducible unitary representations gives the local
moduli if degree > 2 with some additional assumption (see Theorem
(2.18) for a precise statement).

3° There are many iJ-semi-stable vector bundles which can not be a
limit of ίf-stable bundles. In certain case, it is impossible to deform
an iϊ-stable bundle of certain rank r with numerically trivial Chern
classes to any iϊ-semi-stable vector bundle which is not iϊ-stable.

Our theory can be regarded as a generalization of the Picard scheme.
2° shows the space of irreducible unitary representation of the funda-
mental group sometimes gives finer result than the Picard scheme.
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§ 1. JBΓ-stable vector bundles

We recall the definition and some basic results on iϊ-stable vector
bundles (for the proof see Takemoto [12]). We assume that all schemes,
which we call varieties, are reduced and of finite type over the complex
number field C.

DEFINITION (1.1). Let S be a non-singular protective surface. Let
H be an ample line bundle on S. Let E be a vector bundle i.e. a locally
free sheaf of finite rank on S. We say that E is iϊ-stable (resp. iϊ-stable)
if we have

<

r(E) r(F)
(resp. <)

for any torsion free quotient (VModule F of E with r(E) > r(F) where
cx( ) is the first Chern class, r( ) is the rank and ( ) denotes the inter-
section number.

If we fix the line bundle H and the numerical Chern classes c19c2

and if r = 2, the coarse moduli space of ίf-stable vector bundles E with
cx(E) = Cj, c2(E) = c2, exists (Maruyama [4], see also Theorem (2.16)).

Let S be the universal covering space of S. Let G be the funda-
mental group of S hence G acts on S and the quotient space S/G is
isomorphic to S. Given a representation p: G —> GL(r, C), we can as-
sociate a vector bundle E to this representation.

PROPOSITION (1.2). If p is a unitary representation, Ep is H-serni-
stable for any ample line bundle H on S. If p is an irreducible unitary
representation, Ep is H-stable for any ample line bundle H on S.

Proof (essentially due to F. Takemoto). Let H be an ample line
bundle on S. Assume that p is an irreducible unitary representation.
We show that Ep is ίί-stable. We remark that a vector bundle is H-
stable if and only if it is 2ϊ<8>m-stable for one positive integer m. Hence
we may replace H by H®m. Let Cm be a generic hyperplane section of
the linear system \H®m\. Then, taking m sufficiently big, we have, by
the Lefschetz theorem, the map ^(Cm) -^> π^S) is surjective (Bott [2]).
Hence the unitary representation poi^ is irreducible. The restriction
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EήCm of Ep to Cm is associated to the irreducible unitary representation

hence by Narasimhan and Seshadri [8] Ep]Cm is stable. It follows that

Ep is iϊ®m-stable. This is what we had to show. When p is a unitary

representation, the proof of ίf-semistability of Ep is the same as above,

in fact easier.

PROPOSITION (1.3). Let S be a non-singular protective surface. Let

T be a variety. Let E be vector bundle over T x S such that for any

(closed) point t, the restriction Et of E to t x S has numerically trivial

Chern classes and is HΓstable for some ample line bundle Ht on S. Then

the set of points {teT\Et is defined by an irreducible unitary represen-

tation} is closed.

Proof. Let G be the fundamental group of S. Let glf g2, , g4 be

a set of generators of G. Let p be a representation of G. Then it

determines a point (ρ(gd> p(g2)> , p(QΪΪ) e GL(r9 C)e. It follows easily

all the representations of degree r of G (not the isomorphism classes)

form a closed analytic subset W c GL(r9 C)\ The intersection U =

W Π U(r, CY is a compact subset of W. This is the set of all unitary

representation of G. Let F be the family of vector bundles over S x W

i.e. the restriction Fw of F to S x w is the vector bundle associated to

the representation corresponding to w. Consider the set M — {(w, k) e W

X T I H o m ί f ^ , ^ ) Φ 0}. Then M is a closed subset of W x T. If we

consider the projection pr Γ (M Π U x Γ), then this is a closed subset of

T since U is compact. Proposition now follows if we notice the follow-

ing fact; Let Ex be an iϊ-semi-stable bundle and E2 an iϊ-stable bundle

such that E1 and E2 have the same numerical Chern classes and r{E^) =

r(E2). If Horn (E19 E2) Φ 0, then Ex is isomorphic to E2.

PROPOSITION (1.4). Let S be a compact complex manifold. Let px

and p2 be unitary representations of the fundamental group of S. We

denote by EPl, EP2 the vector bundles associated to the unitary represen-

tations pλ and p2. Then the vector bundle EP1 is isomorphic to EP2 if and

only if the representations px and p2 are equivalent.

Proof. See Seshadri [10].
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§2. Moduli space of //-stable vector bundles with trivial Chern classes
over hyperelliptic surfaces

We need some results on hyperelliptic surfaces. For the detail we

refer to Suwa [11].

(2.1.1) A hyperelliptic surface S is, by definition, an elliptic surface

free from singular fibres over an elliptic curve with the first Betti number

b.iS) = 2.

(2.1.2) Let K be the canonical bundle of a hyperelliptic surface S. Then

according to Suwa [11], such surfaces are classified into four types:

I) K®2~OS (K*OS)
II) K®*~OS (K*OS)

III) K®* ~ Os (K®2 * Ot)
IV) K®« ~ Os (K®2, K®* of Os).

The hyperelliptic surface has an abelian variety as an unramified

covering space of degree 2,3,4 or 6 according as S is of type I, II, III

or IV. Let d(S) be the minimal positive integer such that K®d(S) is iso-

morphic to Os.

We quote

THEOREM (2.1.3) (Suwa [11] p. 473). Any hyperelliptic surface can

be expressed as the quotient space of an abelian variety A by the group

generated by an automorphism g5 of A. The period matrix of A and

the automorphism gδ are given as follows

I) i) ί1 ° τ °) iϊ) ί
I} ° Vo l o J ' n ) Vo l i J

gb:(u,ζ)ι >(u + h-0 >

II) ii) ί1 ° τ °) ii) ί1 °
U) } Vo i o (?)' 11} Vo l i d - ^ (

g5: (u, ζ) i > (u + i, p2ζ) , p = exp (πi/3) ,

πi) iϋ) Λ o * o\ iϋ) A ° *m ) } Vo l o J9 m ) Vo l κi +

IV)
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where τ and ω denote arbitrary constants with non-zero imaginary parts.

The parameters τ, ω in the case I and τ in the other cases give the

local moduli of hyperelliptic surfaces. They form complex analytic

families of hyperelliptic surfaces and the parameters τ, ω and τ are

effective and complete.

In any case of seven types above, we denote by gi9 1 < i < 4, the

i-th column vector of the period matrix. Then {g19 g2, g39 gi9 g5} is a set

of generators of the fundamental group.

(2.1.4) If we put G = π^S) and H = the normal subgroup of G generated

by 9i, g2> Qz and gA, then H is isomorphic to Z 0 4 and we get an exact

sequence

0 • H > G > Gf > 1 .

( * ) II
Z®4

The quotient group Gf is generated by gδmodH and of order 2,3,4,6

according as S is of type I, II, III, IV.

LEMMA (2.1.5). Suppose that S is of type I i), then we have follow-

ing relations

(0) gi>g2>g3 wnd #4 commute each other.

(a) gxgh = g5gi (b) g2gδ = gδg^

(c) g3gδ = g5g5 (d) g,gδ = gδgιx

(e) gl = gλ.

Any other relation is deduced from the above relations.

Proof. It is trivial that g19 g2, gZJ g± and gδ satisfy the condition (0),

(a), (b), (c), (d) and (e). Conversely consider the group Γ generated γ19γ2,

73, f4 and γδ such that TΊ, ft, ^ fa and γδ satisfy the relations above. Let

N' be a subgroup of Γ generated by γί9 γ2, γ3, γA. N' is a normal subgroup.

We have

0 • N' • Γ > Γ/N' > 1 .

But the relations above also determine the cocycle of the extention above.

For the same reason we have following lemmae.

LEMMA (2.1.6). // S is of type I ii), then we have following relations
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(0) 0i,02,03 and g4 commute each other.

(a) gxg, = 050i (b) g2gδ =

(c) 0305 = ΛftΛ"1 (c) 0405 =

(e) $ = &

oί/^er relation is deduced from the above relations.

LEMMA (2.1.7). // S is of type II i), then we have following relations

(0) 019 029 03 cw&d #4 commute each other.

(a) 0i05 = 050i (b) . 0 2 0 5 = 0502"
10Γ1

(C) 0305 = 0503 (d) 0405 = 0502

(e) 03

5 = 0i

Any other relation is deduced from the above relations.

LEMMA (2.1.8). // S is of type II ii), then we have following relations

(0) 0i, 02,03 and 04 commute each other.

(a) 0!05 = 050i (b) 0 2 0 5 = 0502-
104-

1

(C) 0305 = 050302"1 (d) 0405 = 0502

(e) gl = 0i

Any other relation is deduced from the above relations.

LEMMA (2.1.9). If S is of type III i), then we have following relations

(0) 01,02,03 and 04 commute each other.

(a) 0!0
5
 = 0501 (W 0205 = 050Γ

1

(C) 0305 = 0503 (d) 0
4
05 = 0502

(e) gt = 0i

Any other relation is deduced from the above relations.

LEMMA (2.1.10). // S is of type III ii), then we have following relations

(0) 01,02,03 and 04 commute each other.

(a) 0105 = 0501 (b) 0
2
05 = 050Γ

1

(C) 0305 = 05030Γ
1
 (d) 0405 = 0502

(e) gt = 0i

Any other relation is deduced from the above relations.
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LEMMA (2.1.11). // S is of type IV, then we have following relations

(0) g19 g2, #3 and gA commute each other.

(a) gxgδ = gδgλ (b) g2gδ = gδg2g4

(c) g3gδ = gδg3 (d) g,gδ = gδg^

(e) flrj = gx.

Any other relation is deduced from the above relations.

LEMMA (2.2) (Oda). Let A be an abelian variety. Let E be a vector

bundle of rank r over A and p: Hι(A9ΩA) -» Hι(A, Ω\ (g) End E) be the

linear map induced by the canonical inclusion 0 —> OA —• End E. Let

a(E) eH\A9Ω\® EndZ?) be the fundamental class of E. If a(E) is in

(l/r)p(H2(A,Z) C[Hι(A9Ω)d)> then there exists a line bundle L on A such

that L"1 (x) r%E is homogeneous, where rA is the multiplication by r.

Proof. Let π:Cn-*A be the universal covering space of A. Let

Γ be the fundamental group of A. Hence Cn/Γ ~ A. Since H%Cn, π*ΩA)

= 0 i > 1, we have

where the left hand side is the i-th cohomology group of Γ-module

H°(Cn, π*ΩA) (see Mumford [7]). For the same reason,

W(Γ, H°(Cn, π*(ΩA ® End E))) ~ H\A9 Ω\ ® End E) .

Let pu{z) be a 1-cocycle for Γ with coefficients in H°(Cn

9 GL(r9 Ocn)) defining

E. Then a(E) corresponds to the cocycle — d log pu(z) = —dpu(z) pu(z)~ι.

Hence from the hypothesis and Weil [18], there exists a 1-cocycle φa{z) for Γ

with coefficients in H\Cn, 0%n) such that -d log pu(z) = - ( l / r ) d log φa(z)Ίr

in i ϊ^Γ, JΪO(CW, 7r*(fii (x) End ΐ7)). It is easy to see that r*(-(l/r)d log pβ(«))

is integral i.e. — (l/r)d\ogφa(z) eHι(Cn

9π*Ω\) corresponds to an element

of the subset H\Ar

9 Z) Π H\A'9 Ω\) of H\A'9Ω\) where Γ CrΓ and A7

= CnlΓf. By Weil [18], there exists a line bundle L on A7 defined by a

1-cocycle ^ for Γ7 with coefficients in H\Cn, 0%n) such that d log ^(«) =

(l/r)d log ptt(ί2), w e Γ'. Hence — d log pu(z) = — d log φ'u{z)Ir9 u e Γ'. If we

consider the vector bundle L"1 (x) ̂ *ί7 on A', this vector bundle is defined

by the 1-cocycle φ'u(z)~ιpu(z) for Γ with coefficients in H°(Cn

9 GL(r9 Ocn)).

Then -dlogφ'u(z)pu(z) = 0 in ίίHA7, π>*(Ω\.® End (L' 1 (x)ί7)). Hence
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L"1 ® φ*E has a connection (see Atiyah [1]). By the theorem of Matsu-

shima [5], L"1 <g) ^*i? is homogeneous.

COROLLARY (2.3). Let A be an abelian variety of dimension 2 and

E an H-stable vector bundle. If cλ = 0, c2 = 0, then E is a line bundle.

Proof. Since an iϊ-stable vector bundle i.e. dimiϊo(A, End 2?) — 1,

by the Riemann-Roch theorem, the canonical linear map £P(A,fii)—>

H\A, Ω\®ΈnάΈ) is an isomorphism. Hence there exist an isogeny

φ: Ar —> A and a line bundle L such that L~ι (g) φ*E is homogeneous. Since

the first Chern class of E is trivial, we can take L ~ OA,. On the other

hand, by Takemoto [13], φ*E is the direct sum of p*iϊ-stable bundles.

By Morimoto [6], φ*E is the direct sum of line bundles which are alge-

braically equivalent to 0. Hence E is the direct image of a line bundle

on A'. Therefore the rank should be one.

COROLLARY (2.4) (Oda). Let A be an abelian variety of Dimension

2. Let E be an H-stable vector bundle of rank r with (r — l)c\ — 2rc2

= 0. Then there there exist an isogeny φ: A/' —• A and a line bundle L

on Af such that φ*L ~ E.

Proof. Similar to the proof of Corollary (2.3).

LEMMA (2.5). Let A be an abelian variety of Dimension 2. Let E

be a vector bundle on A. Then,

(1) The second Chern class of End E— — (r — l)c{ + 2rc2 where cuc2

denote the first and the second Chern class of E.

(2) // E is simple, then {r - l)c\ - 2rc2 < 0.

Proof. (2) follows from the Riemann-Roch theorem for End E. (1)

is trivial.

LEMMA (2.6). Using the notation of Theorem (2.1.3), let E be an

H-stable vector bundle of rank r over the hyperelliptic surface S. If E

has the numerically trivial Chern classes, then π*E is the direct sum of

line bundles which are algebraically equivalent to 0, where π: A —> S is

the natural projection.

Proof. We prove the lemma when S is of type I. The proofs for
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other cases are similar. By Takemoto [13], π*E is either τr*iϊ-stable or

isomorphic to E1@3*Eι where E1 is a ττ*iϊ-stable over A. If π*E is

ττ*iϊ-stable, then ττ*£7 is line bundle by Lemma (2.3). Hence we may

assume π*E ~ E1(B SfE^ We claim that E1 has numerically trivial Chern

classes. We put rx — rank Ex. Let g: C2 —> C2 be a linear automorphism

of the universal

(u,ζ)ι >(u,ζ)

covering space of A. We denote by g the automorphism of A induced

by g. Putting E2 = gfE, let c> be the ΐ-th Chern class of E19 1 < i < 2.

Then, from the hypothesis E ~Eλ® g*El9 we get

Cι + g*cx = 0 , (c^g*^) + 2c2 = 0 ,

since a translation of a line bundle is algebraically equivalent to itself.

It follows — (cD + 2c2 = 0. Let Eλ = L(Hyά) (see Mumford [7], p. 20).

Then it also follows H + (J -l)E(β - l ) = ° H e n c e Π = (J o) * I n

view of Lemma (2.3), it is sufficient to show a = 0. If α =£ 0, the index

of L would be 1 since H has 1 positive eigen-value and 1 negative one

(see Mumford [8] and Umemura [15]). Hence by the Riemann-Roch

theorem, c\ < 0. Hence c2 > 0 since — (cf) + 2c2 = 0. (r — ϊ)c\ — 2rc2 =

(r — l)(Cχ — 2c2) + 2c2 = 2c2 > 0 contradicting to Lemma (2.5). Hence a

should be 0.

COROLLARY (2.7). Using the notation of Lemma (2.6), we assume

that E has numerically trivial Chern classes. Then r \ d(S) and there exist

an unramίfied covering of degree d(s)\r of S and a line bundle on it

such that E is isomorphic to the direct image of the line bundle.

Proof. r\d(S) is an immediate consequence of Lemma (2.6). We

prove the last assertion under the hypothesis that S is of type II and

E is of rank 2. In this case we notice that A = S p e c ί θ ^ ^ O By

Lemma (2.6), H°(A, Hom (π*E, π*E)) ~ 0J.O H\S, Hom (E, E ® X®*)) has

dimension > 2. Hence we have Hom (E, E (g) K) Φ 0, Hom (E, E ®K) or

Hom (£7, E ® K®z) Φ 0 since Hom (E, E) = C. It follows that Hom (E,

E(8)K®2) Φ 0. Since E is stable, E ~E® K®2. Hence by Takemoto [13],

the Corollary follows. The proofs are same for other cases.

LEMMA (2.8). Using the notation of Theorem (2.1.3), let p be a
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linear representation of degree r of the fundamental group H of the
Abelian variety A. Let L be the line bundle defined by the represen
tation p. Then the pull-back g£L is defined by the representation p': H
-> GL(r, C) g —> pig^gg^1) where gδ is the automorphism of A induced by gδ.

Proof. The lemma is an immediate consequence of the following
commulative diagram:

H x C2 > C2

I 1
H x c2 > σ

where horizontal arrows are the action of H on the universal covering
space C\ the left vertical arrow sends (g, x) e H x C2 to (g^gg^1, gδx) and
the right vertical arrow is the action of gδ on the universal covering
space C2 of the hyperelliptic surface S.

LEMMA (2.9). Using the notation of Theorem (2.1.3), let L be a line
bundle over a hyperelliptic surface S. Then L is homologically equivalent
to 0 if and only if it is numerically equivalent to 0.

Proof. If a line bundle is homologically equivalent to 0, then general-
ly it is numerically equivalent to 0. Hence we assume that L is nu-
merically equivallent to 0. We prove this for a hyperelliptic surface of
type I i). In other cases, the proofs are similar. Let us consider the
pull-back π*L over A. Over an abelian variety, the numerical equivalence
coincides with the homological equivalence. Hence there exists a unitary
representation p of degree 1 of the fundamental group G of A such that
π*L is associated with p. We put ρ(gj = a, p(g2) = β, p(g3) = γ, p(g4) =
δ' where a,β,γ and δ are complex numbers with \a\ = \β\ = \γ\ = \δ\ = 1.
By Lemma (2.1.5) and Lemma (2.8), g£π*L is given by the unitary
representation p'ip'igd = or, pXg2) = β~\ p'(g£) = γ9 p'(gj = δ~K Since π*L
is isomorphic to gfπ*L, we conclude β = ±1, δ — ± 1 . If we put p"(gd

p»(gd = a, p"{g2) = β, p"(g3) = r, p'\gd - δ, p"{gδ) = e with ε2 = α , then

by Lemma (2.1.5) p" defines a unitary representation of degree 1 of the
fundamental group G of S. Since there are two such ε's, there are two
line bundles on S defined by unitary representations such that there
pull-backs over A are isomorphic to <p*L, Hence L should be one of
them and defined by a unitary representation. Hence L is homologically
equivalent to 0.
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Let us determine all the irreducible unitary representation of the

fundamental group G of a given hyperelliptic surface S. Let p be an

irreducible unitary representation of degree r of the fundamental group

G of S. Then by Proposition (1.2) and Corollary (2.7), r devides d(S).

Hence it is sufficient to consider only such r. We put r s = d(S). Since

the subgroup H, the fundamental group of the abelian variety A, is com-

mutative we can diagonalies the restriction of p to H. Hence we may

assume

(Pι(9i)
0

1 < i < 4. If E denotes the vector bundle defined by the representation

p, then π*E is the direct sum of the line bundle Lt defined by the re-

presentation pi of the fundamental group of A. Since gfπ*E is isomor-

phic to π*E, by Lemma (2.8), we conclude

pj(g) = Piigϊ^ggt1), l < i < r

Pi(g) = Pi(9δr99l) -

Hence we proved

PROPOSITION (2.10). The irreducible unitary representation is normal-

ized as follows

(Pι(9ί)

p(9ΰ =

l < i < 4 , s r = d(S) where px is a representation of degree 1 of the

fundamental group H of the abelian variety.

THEOREM (2.11). The irreducible unitary representation of the fun-

damental group G of S are classified as follows. (We give the values of

generators gι,g2>9z>9δ and gb of G. All the matrices below are unitary.)

Case I i). S is of type I i).

r = 1. p(g,) = a , p(g2) = ± 1 , p(g2) = γ ,

p(g5) = ε with \a\ = \γ\ = 1 and ε2

= ± 1

— a
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^ 1 or ί ^ 1 .

is wo irreducible unitary representation of degree > 2.

Case I ii). S is o/ type I ii).

r = 1. (̂flTi) = a , (̂flTa) = 1 , p(g3) = p , ^Qfc) = ± 1 ,

p(g5) = ε with \a\ = \γ\ = 1 and ε2 = a .

.,), , ω - c 0);

j8 τί= 1 or d Φ ± 1 .

is ^0 irreducible unitary representation of degree > 2.

Case H i ) . S is of type I I i).

r = 1. ptoi) = a , <o(#2) = ^(ίfc) = j8 , p(g3) = 7 , <0(05) = ε

Witt \a\ = |]3| = |e| = 1, β3 = a, jS8 = 1 .

r = 3.

There is no other irreducible representation.

Case II ii). S is of II ii).

r = 1. (̂ffO = a , 10(02) = 1 , p(gj = r , ^(#4) =

= e , witt \a\ = \γ\ = 1 and ε3 = a

/a 0 0\ //3 0 0\
= 0 a 0 , p(g2) = 0 ^ ί " 1 0

\0 0 a \0 0
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p(g5) =

ΐ

o
0

0
1

0

0
γβ-

0

0

0

1

-1

α\

0

0

0
0

r<

|

0

0

]8 ^ 1 or δ Φ 1 .

There is no other irreducible unitary representation.

Case III i). S is of type III i).

= p(gd = ± 1 ,

= I7Ί = |e | = 1 and ε4 = a

r = 2. -e p
p.

| α | = IJ-I = 1 , β2 = δ2 =

r = 4.

1, ε2 = α, and β φ δ

>β 0 0 0\

0 3-1 0 01

0 0 β-1 ol '
0 0 0 δ'

5 0 0 0̂

β 0 0

o a-1 o
0 0 0 £

βiίfeβr or β Φ ±1 or δ Φ ±1 .

There is no other irreducible unitary representation.

Case III ii). S is of type III ii).

T = 1 . /?(^i) = α , /t>(flr2) =

with \a\ = Irl = 1 αwcZ ε4 = α .

r = 2
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r — 4.

with \a\ = I7Ί = 1, ε2 = α:

X) 0 0 γβ-

/O 0 0
[ 1 0 0 0

lo l o o
H) 0 1 0

either β2 Φ 1 or β Φ δ~ι or δ Φ 1.

There is no other irreducible unitary representation.

Case IV. S is of type IV.

T = 1. p(9ι) = or, p(#2) = piffΰ = 1 > p(βs)'= T >
with \a\ = |rl = 1

with

ρ(9ι) =

p(&) =

with

or δ

\a\

f
f
\of
\ol«l

φl

0
α
0

0

r
0
0
0
1

=

Irl = !> β

Ύ
a]

0/

lrl = i . i5

Φ 1, £3 =

, Λ ^0

!2 = δ2 = 1,

1 c»d s3 = a .

0 0\
βδ 0 ,
0 i/

0 0 \

0 ^- 'δ- 1 /

ε2 = a and ιeiίfeer /3
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r = 6.

β 0 0 0
0 βδ 0 0
0 0 δ 0
0 0 0 β~ι

0
0
0
0

Q-lS-l 0

0
0
0
0

p(9s) = rh

with

(a)

0
1
0
0
0

a\ —

0 0 0 0 β-'δ

. o o o o o δ-1

δ 0 0 0 0 0
o β-1 o o o o

_ o o j δ - ^ - 1 o o o
~ 0 0 0 δ-1 0 0

0 0 0 0 β 0
.0 0 0 0 0 ^δJ

0 0 0 0 α
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

|/31 = Ifl = |δ| = 1, except for following two cases

δ, β3 = 5 3 = 1 ( b ) jθ2 = δ 2 = 1 .

There is no other irreducible unitary representation.

Proof. The theorem follows easily from Lemma (2.1.5), (2.1.6), (2.1.7),

(2.1.8), (2.1.9), (2.1.10), (2.1.11), (2.8) and Proposition (2.10).

THEOREM (2.12). Using the notation of Theorem (2.1.3), let E be

an H-stable vector bundle with numerically trivial Chern classes over S.

Then E is defined an irreducible unitary representation of the fundamental

group G of the hyperellίptίc surface S.

Proof. If E is of rand 1, the Theorem is nothing but Lemma (2.9).

We prove the theorem under the assumption that S is of type III i) and

r = 2. Proofs are similar in other case (in fact easier if r = d(S)). By

Lemma (2.6), π*E is the direct sum of line bundles which are algebrai-

cally equivalent to 0, where π: A —> S is the natural projection. We put

S' = S/(gl). Then we have a commutative diagram:
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where p and p' are the natural projections. We put π*E = Lx 0 L2.

Since &%*# ~ π*E, g*Lx φ &*L2 ~ L2 0 L2. It follows gfLx ~ L2 or gfL,

~ L2. We shall show that we never have the first case gfL1 ~ Lx hence

gf L2 ~ L2. If it were so, by the descent theory of Grothendieck there

would be line bundles L[ L'2 over S such that π*Lί ~ Lx and π*L'2 ~ L2.

Hence TΓ*^ ~ π*(Lί 0 Z/2). Taking π*, E ®E ®K®E ®K®2 ®E <g)K®3

~ (Lί 0Z/2) 0 (Li®LQ®K® (Lί 0Lζ) ® K® 20 ( L J 0 L 0 ® Z®3. Hence E

would be the direct sum of line bundles. This contradicts to the H-

stability of E. We conclude L2 ^ gfLx and gfL, - Lx Hence TΓ*^ - Lx

0 gfLx, with ^ L j ^ Lj and ^fLj - Lx. By Lemma (2.8), τr*£7 is defined

by the following unitary representation p of the fundamental group H

of A:

and pAg^gtgf) = p^gd for any 1 < i < 4 and pAg^gig,) ψ p^gd for some

i. In view of Lemma (2.1.9), we conclude:

with

|α| = Irl = 1, i92 = <52 = 1 and β ψ δ .

If we put (̂̂ 5) = L QJ ε2 = or, ̂  is extended to a unitary representation

of the fundamental group G of S. Since there are two ε's satisfying

ε2 = a, it follows there are two non-isomorphic vector bundle Eίf E2 over

S such that π*E ~ ^*J^X 2̂  π*£72. Hence E should be one of them.

q.e.d.

COROLLARY (2.13). Using the notation of Theorem (2.1.3), let E be

an H-stable vector bundle with numerically trivial Chern classes. Let

Cn be a generic hyperplane section of nH. Then the restriction En of

E to Cn is stable if n is sufficiently big.

Proof. By Theorem (2.12), E is defined by an irreducible unitary

representation p of G. By Lefschetz theorem, the canonical homomor-
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phism i*: TΓ^CJ —> ^(S) = G is surjective if w is sufficiently big (see Bott

[2]). Hence the unitary representation po%^ is irreducible. Since En is

associated to this representation, by Seshadri [10], En is stable.

COROLLARY (2.14). Using the notation of Theorem (2.1.3), let E be

an H-stable vector bundle over S. Then the following are equivalent.

(1) E is defined by an irreducible unitary representation of the funda-

mental group G.

(2) E is defined by a unitary representation of the fundamental group G.

(3) E is defined by a linear representation of the fundamental group G.

(4) E has an integrable connection.

(5) E has a connection.

(6) The Chern classes of E are numerically trivial.

Proof. The implications (1) ̂ > (2) ̂  (3) m> (4) •=> (5) •=> (6) follow from

the general theory. (6) •=> (1) follows from Theorem (2.12).

THEOREM (2.15). Using the notation of Theorem (2.1.3), let Fr(S)

be the set of isomorphism classes of H-stable vector bundles of rank r

with numerically trivial Chern classes over S. Then Fr(S) has a complex

analytic structure. More precisely,

Case I i). S is of type I i).

If r = l, Fr(S) ~ *Pic° S ]} pic° S \J Pic° S ]} pic° S

~ C/(l,r/2) [J C/(l,τ/2) \J C/(l,τ/2) \J C/(l,τ/2).

// r = 2, Fr(S) ̂  C/(l, τ) X P\ω), P\ω) = P1 - {Ql9 Q2, Q3, Q4},

where p: C/(l,ω) —> P1 is a double covering of P1 defined by a divisor of

degree 2 over C/(l,ω) and p is ramified at QlfQ2>Q3 and Q4,

If r Φ 1,2, Fr(S) is empty.

Case I ii). S is of type I ii).

// r = 1, Fr(S) ~ Pic0 S U Pic0 S ~ C/(l, τ/2) ]} C/(l, τ/2).

// r = 2, ίVGS) ^ αti elliptic surface over Δf = P 1 — 2 points i.e.

Fr(S) is a non-compact complex manifold of dimension 2 m t t surjective

map p: Fr(S) -> A'. Here p is a proper morphίsm and p~\x) a C/(l,r)

/or a general point x e Δf.

If r φl, 2, Fr(S) is empty.

* IJ denotes disjoint union.
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Case H i ) . S is of type II i).

// r = 1, Fr(S) ~ Pic0 S LJ Pic0 S ]} Pic0 S

~ C/(l,r/3) U C/(l,r/3) LI

// r = 3, F r = C/(l,τ) x J', where Δr is a non-singular and non-

complete curve.

If r Φ 1, 3, Fr(S) is empty.

Case II ii). S is of type II ii).

If r = lf F7(S) ~ Pic0 S ~ C/(l, τ/3).

If r = 3, Fr(S) is an elliptic surface with the general fibre C/(l,r)

over a non-complete curve.

If r Φ 1,3, Fr(S) is empty.

Case III i). S is of type III i).

If r = 1, Fr(S) - Pic0 S U P^0 S ~ C/(l, τ/4) [J C/(l, r/4).

// r = 2, Fr(S) - Pic0 S' U Pic0 S' ~ C/(l, τ/2) ]J C/(l, r/2),

// r = 4, Fr(^) — C/(l, τ) x J7/, where Δ" is a non-singular and non-

complete curve.

If r Φl, 2,4, Fr(S) is empty.

Case III ii). S is of type III ii).

// r = 1, JPVGS) ̂  Pic0 S - C/(l, τ/4).

// r = 2, Fr(S) - Pic 0 ^ LI C/(l,r/2), where S' ~ A/(gl).

If r = 4, Fr(S) is an elliptic surface with the general fibre C/(l,τ)

owr a non-complete curve.

If rφ 1,2,3,4 Fr(S) is empty.

Case IV. S is of type IV.

// r = 1, Fr(S) ̂  Pic0 S - C/(l, τ/6).

// r = 2, Fr(S) - Pic0 S' [J Pic0 ^ - C/(l, r/3) LI C/(l, r/3),

// r = 3, Fr(S) - Pic0 S" JJ Pic0 iS7/ LJ Pic0 S"

- C/(l,r/2) IJ C(/l,r/2) 1J

If r = 6, ίVGS) is an elliptic surface with the general fibre C/(l,τ)

ot er a non-complete curve.

If r Φ 1,2,3,6, Fr(S) is empty.
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Proof. Case I i). If r = 1, a line bundle e Fr(S) is defined by a
unitary representation, pig,) = or, <o(#2) = ±1, (̂#3) = γ, p(g,) = ±1, ̂ (#5)
- ε with ε2 = or. This shows Fr(S) = Pic°£ [] Pic°S ]J Pic0 S U Pic°S and
Pic°>S~ C/(l,τ/2).

If r = 2, Theorem (2.11) shows that such a bundle £7 is defined by
an irreducible unitary representation

= (J Jj) with /32 or ̂ 2 ̂  1 .

Remark that this normalization of irreducible unitary representation is
not unique since representation

also defines E. These representations are equivalent. But this normali-
zation shows that E is the direct image of a line bundle L of degree 0
over A. The condition β2 or δ2 Φ 1 shows that if L - p*!^ ® pfL2, Lf2

A? OCa where v% is the projection from A = C/(l,α>) X C/(l,r) = d x C2

onto the i-th factor. Let W be the set of fixed points on A with respect
to the action of g*. Then Fr(S) = A - W(gf). Since the action of gf
of A is given by

Cλ x C2 > d X C2

(x,y)\—>(x, -y) ,

the result follows.
By Theorem (2.11) and Theorem (2.12), or simply by Corollary (2.7),

Fr(S) is empty if r Φ 1,2.
Case I ii). If r = 1, the proof is similar to the Case I i). Hence

we omit it.
If r = 2, the proof is similar to the Case I i) but delicate. Hence

we give it. Let A be the dual abelian variety of A. Then g5 induces
an automorphism 5̂* on A. Let W be the set of fixed points on A with
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respect to the action of the cyclic group (gf). Then Fr(S) — A — W/(gf)

by Theorem (2.11). We determine the variety A/(gf). To do this, we

write down the abelian variety A, the automorphism gf and the sub-

variety W explicitly. A is given by the period matrix (~ * ί Jj.

To see this, let B: C2 X C2 —> C be an TMinear pairing B((xl9 x29 (y19 y2))

— (1/Imτ)x1yι + (1/Imω)x2y2, (x19 x2), y19 y2) e C2. Then it is easy to see

that B satisfies the following:

1° B is complex linear on (x19x2) and complex anti-linear on (y19y2).

2° B is non-degenerate.

3° If we put ivaB — β9β is integral on Uλ x J72, where Ux is the

lattice defined by the column vectors of the period matrix

( Λ -, \ ) of A and U2 is the lattice defined by the column
\u ± 2 ω/ /I 0 r A
vectors of the period matrix ί^ ^ ^ 2 J .

4° Ux and U2 are dual lattices under β.

Hence by Mumford p. 86 [7], A is given by the period matrix (Λ ? Λ *)•

Let us now describe the automorphism gf. Since a translation Tχy xeA

induces the identity on A, we may assume g5 is given by gb: (u9 ζ) —*

(x19 —x2) using the notation above. By Mumford p. 85 [7], the line bundle

corresponding to the point (y19 y2) e A (or the universal covering space of

A) is given by the representation

C

exp (-2πiβ(ίu19 u2), (y19 y2))) .

Hence the automorphism (x19 x2) ^ (x19 — x2) of A induces, the automor-

phism (y19y2) •-> (yϊ9 —y2) on A. We regard the abelian variety A~

C/{(l,0),(0, l),(τ, 0), ( ,̂ ft>)} as an elliptic surface over an elliptic curve

C/(l,<y) by considering the projection p2:C
2—> C Then A has trivial

functional and homological invariants. But A is not a basic elliptic sur-

face. Let TΓ7: A —• C/(l,ft>) be this fibration, then the action of the cyclic

group (gf) preserves this fibration i.e. the diagram

«>) > CIO-, α>)

V i > -V
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The fixed points should be contained in the fibres of [0], [1/2], [ω/2] and
[ω/2 + 1/2] where [a] denotes the image of a e C into C/(l, ω). The points
of the fibres over [0] and [1/2] are really fixed but the points over [ω/2]
and [ω/2 + 1/2] are not fixed. The action of gf on π~\[ω/2J) and
π~\[ω/2 + 1/2]) is the addition by [1/2] on the elliptic curve C/(l,r).
Hence W = π̂ CtO]) U π~\[l/2'\). Let us consider the quotient space Ά/(g*).
It has a fibration A/(gf) —• P1 = the quotient space of the elliptic curve
with respect to the action y^>—y. Let P19P2,P3 and P4 be images of
[0], [1/2], [ω/2], [ω/2 + 1/2] in P1.

A > Ά/g*

A

It is not difficult to see that the fibration π is not singular at Pλ and P2

and is singular at P3 and P4. The homological and functional invariants
of A/{gf) is trivial. The general fibre C/(l,τ) is patched by the trans-
lation T[1/2] on C/(l,r) when we consider small circles around P3 and P4.
We proved -FV(S) is an elliptic surface with general fibre C/(l, r) over
P1 — 2 points and has two singular fibres.

Case H i ) . S is of type II i).
If r = 1, the proof is similar to the Case I i).
If r = 3, the proof is similar to the Case I i).

Case II ii). S is of type II ii).
If r = 1, the proof is similar to the Case I i).
If r = 2, the proof is similar to the Case I ii) but much easier since
the assertion in this case is weaker. Of course we can determine the
surface explitly as in the Case I ii) but we do not use it in the sequel.

Crse III i). S is of type III i).
If r = 1, the proof is similar to the Case I i), r = 1.
If r = 2, the proof is similar to the Case I i), r = 2 or r = 1.
If r = 3, the proof is similar to the Case I i), r = 2.

Case III ii). S is of type III ii).
If r = 1, the proof is similar to the Case I i), r = 1.
If r = 2, the proof is similar to the Case I ii), r = 2.
If r = 4, the proof is similar to the Case I ii), r = 2.
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Case IV. S is of type IV.
If r = 1, the proof is similar to the Case I i), r = 1.
If r = 2, the proof is similar to the Case III i), r = 2.
If r == 3, the proof is similar to the Case III i), r = 2.
If r = 6, the proof is similar to the Case I i), r = 2.

Hence we omit them.

THEOREM (2.16). Fr(S) is the coarse moduli space for H-stable vector

bundles of rank r with numerically trivial Chern classes over S. More

pricίsely, let T be a variety and if we are given a vector bundle E over

T x S such that the restriction Et of E on t x S is H-stable of rank r

with numerically trivial Chern classes for any (closed) point teT, then

there exists a morphism φ: T —»Fr(S) such that Et is isomorphic to the

vector bundle corresponding to φ(t)eFr(S).

Proof. Our proof depends on the following

LEMMA (2.17). Using the notation above, for any closed point teT,

there exist an etale neighbourhood Ut of t and a line bundle L over

Ut X S' such that Et is isomorphic to the restriction on t x S of the

direct image of L> where Sr is a covering space of degree r of S uniquely

determined by r.

Proof. We prove the lemma under the assumption that S is of type

I i), r = 2. The proofs in other cases are similar. Since the problem

is local, we may assume T affine. Let K be the canonical bundle of S.

We denote by K the pull back pfK over SxT. Then AxT =

Svec(OAxTΦK). Let F be a coherent sheaf on A x T. Then p2*F -

ΉO(A1< T, F) since T is affine. On the other hand, let / : A x T -> S X T

be the covering map. We have

H°(A x T, /* End E) = H\S x TJ*f* End E)

= ei-o H\S x T, Horn (E9 E <g> X®*)) .

Since dimc H\S, Horn (Et,, Et, ® K®1) = 1 for any point V e T, p2* Horn (£7,

E (x) KΘί) is locally free and of rank 1. Hence if we take a sufficiently

small open neighbourhood Ut of t, p2* Horn (Ey E ® K®1) ~ OUt. We may

assume T = Ut. By the flat base change theorem,

p2* Horn (#, E (x) X®i) ® k(t) ~ Horn (Et, Et ® K®1) - C .
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Hence there exists an element g of Horn (E, E ® X) such that g induces
an isomorphism on the fibre of t. Hence there exists an open neighbour-
hood Ut of t such that g induces a non-zero homomorphism gt, e Horn (Et,,
Et,®K) for any t'eUt. Since Et. and Et,®K are ίf-stable and have
the same numerical Chern classes, gv is an isomorphism by Takemoto
[12]. We may assume T — Ut. If we compose g itself, we get

= E. g2 is an isomorphism. Since H\S x T,

Horn (E, E)) ~ H°(T, Oτ), g2 is nothing but the multiplication by an ele-
ment feH°(T,O$). If we take an etale neighbourhood Ut of t such that
VT is a regular function, H°(A x Ut, End t*E) ~ OUt[X]/X2 - 1. This
shows f*E ~ Lx 0 L2. If we put L = L19 then L satisfies the condition.

q.e.d.

Proof of Theorem (2.16). We give the proof under the assumption
that S is of type I i), r = 2. By the Krull-Remack theorem and Lemma
(2.6), the restriction LA, of L on the fibre A x £', £'e Z7ί is algebraically
equivalent to 0. Hence there exists a morphism ψUt: Ut-^ A such that
LA, is isomorphic to the line bundle corresponding to ψσ/(i0 for any
f eUt. ψσ/ does depend on the choice the etale neighbourhood Ut and
L. But the composition of the natural projection with ψUt :Ut~* A-+
Ά/(g£) is independent of the choice of Ut and L. Hence we get a
morphism T —> ^(S) satisfying the condition of the theorem. The proofs
in other cases are similar hence we omit them.

THEOREM (2.18). If r >2 and r\d(S), Fr(S) gives local moduli for
S i.e. the map S —> Fr(S) locally separates the points of the local moduli
space for S. If S is neither of type I i) nor I ii), ί\(S) gives local moduli
for S.

Proof. Assume that S is of type I i), r = 2. By Suwa [11], the
hyperelliptic surfaces of the type I i) are completely and effectively
parametrized by r and ω. Let S9S' be hyperelliptic surfaces of type I
i). Suppose that F2(S) and F2(S') are isomorphic. By Theorem (2.15),
F2(S) ~ C/(l, r) X P 1 -4 points determined by ω, F2(S') ~ C/(l, τθ X P1 - 4
points determined by ω''. Let φ: F2(S)-*F2(S') be an isomorphism. Let xeP1

— 4 points determined by ω. Then the fibre C/(l, τ) X x should be mapped
onto a fibre by φ since Pι — 4 points is not complete. Hence we get a
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morphism φ': P1 — 4 points determined by ω-»P2 — 4 points determined by
ω' which makes the following diagram commutative,

F2(S) - > F2(S')

WI'
P — *4 points determined by ω — > Pλ — 4 points determined by ω' ,

where p, p' are the projections. It follows that C/(l, τ) ~ C/(l, τ'), C/(l, ω)
~ C/(l,ωO, since the ramified covering C/(l,ω) (resp. C/(l,α/)) is deter-
mined by 4 points where it ramifies. Hence S >-» JF̂GS) gives local moduli.

Assume now that S is of type I ii), r = 2. Let S and S' be hyper-
elliptic surface of type I ii). By Theorem (2.15) F2(S) (resp. F2(S')) is
isomorphic to an elliptic surface over Δ (resp. Δf) which is P1—2 points.
The elliptic surface F2(S) has 2 singular fibres. Let φ be an isomor-
phism of elliptic surfaces F2(S) and F2(S'). Then as in the Case I ii),
φ preserves the fibration hence it maps the singular fibres to the singular
fibres. It follows that φ induces an isomorphism of P1—4 points determined
by ω and P1 — 4 points determined by ω''. Therefore C/(l, τ) ̂  C/(l, τ') and
C/(l,ω)- C/(l,ωO Hence F2(S) gives local moduli for S.

The proof in other cases is similar and really is simpler since those
surfaces are parametrized by one parameter τ.

Remark (2.19). If S is of type I i) or of I ii). ί\GS) does not give
local moduli. F^S) is essentially the Picard scheme of g. Hence Fr(S),
r > 2 that can be regarded as a generalization the Picard scheme gives
the finer result than the Picard scheme.

COROLLARY (2.20). Any H-semi-stable vector bundle of rank 2 with
numerically trivial Chern classes over S which is not H-stable can not
be a limit of H-stable vector bundles of rank 2 with numerically trivial
Chern classes if 2 Φ d(S) (See Definition (2.21)). There exists for any
hyperelliptic surface S an H-semi-stable vector bundles of rank r over
S which can not be a limit of H-stable vector bundles if r > 2.

Before we give proof we need

DEFINITION (2.21). Let E be an iϊ-semi-stable with numerically
trivial Chern classes. We say that E is a limit of ίί-stable vector bundles
with numerically trivial Chern classes if there exist an irreducible variety
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T, a locally free sheaf F over S X T and two points t0, tλ e T such that
F£o ~ E and F ? ί is ίf-stable. We remark, then Ft is ίf-stable on an open
dense set T since ίf-stability is an open condition (see Maruyama [4]).

LEMMA (2.22). Let S denote a hyper elliptic surface as always. Let
E be an H-semί-stable vector bundle of rank 2 with numerically trivial
Chern classes. Then the restriction Ew of E on any non-singular curve
C on S is semi-stable.

Proof. Let A be the abelian variety in Theorem (2.1.3). We use
the notation of Definition (2.21). First of all we remark that π*E is
homogeneous i.e. π*E ~ T*π*E for any xeA. In fact, if E is H-stable,
π*E is the direct sum of line bundles which are algebraically equivalent
to 0 hence homogeneous. If E is not iϊ-stable but iϊ-semi-stable, then
π*E is not ίf-stable but ίf-semi-stable. It follows from Proposition (5.2)
Takemoto [12] that π*E is homogeneous. Hence we conclude easily from
Morimoto [6] that π*EιC' is semi-stable for any non-singular curve C on
A. If we consider the fibre product C = C XSA. C is an unramified
covering of degree d(S) of C. Since π*Eιc is semi-stable, E[C is semi-
stable, q.e.d.

Proof of Corollary (2.20). Assume r \ d(S), then there is no iϊ-stable
vector bundle of rank r with numerically trivial Chern classes over S.
No semi-stable vector bundle can be a limit of iϊ-stable vector bundles
of rank r with numerically trivial Chern classes over S. There does exist
an ΐf-semi-stable vector bundle of rank r with numerically trivial Chern

classes over S, for example Os 0 0 O#. Now we assume r\d(S) and

r φ d(S). Consider the iϊ-semi-stable E = Os 0 0 0^. We show that
E is not a limit of Zf-stable bundles of rank r. Assume that E is a
limit of ίf-stable vector bundles of rank r with numerically trivial Chern
classes, we shall show this leads to a contradiction. We use the same
notation as in Definition (2.21). If we take a generic hyperplane section
C of S, then, by the Lefschetz theorem, we get a family of semi-stable
vector bundles Ftιc, teU over C where, U is an open subset of T con-
taining the point ί0, since the stability is an open condition. Moreover
we assume, by Theorem (2.12), that if Ft is iϊ-stable, then Ftιc is stable.
Let M(C,r) denote the moduli space of the semi-stables vector bundles
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of rank r and of degree 0 over C. Then we get a morphism φ: U ->
M(C,r) such that F4 ~ the vector bundle corresponding to φ(t)eM(C,r).
C is so determined that Ft is ff-stable if and only if φ(t) is a stable
point of M(C,r). As in the proof of (2.16), we get a morphism ψ: Fr(S)
—»Λί(C, r) such that the restriction to C of the vector bundle correspond-
ing to a point u e Fr(S) is isomorphic to the vector bundle corresponding
to the point ψ(u) eM(C,r). We may assume ψ(u) is stable for any
ueFr(S). Under our hypothesis r\d(S), r ψ d(S), Fr(S) is complete by
Theorem (2.15). Hence ψ(Fr(S)) is a closed subset of M(C,r). If we
denote by Us the subset of the points t of U such that Ft is iϊ-stable,
then φ(Us) c ψ(Fr(S)). Hence ?(E7) c φ(Us) c ψ(Fr(S)). It follows that
Z? is fί-stable. This is a contradiction. It should be remarked that we
use only the hypothesis that the restriction Eιc is semi-stable.

Assume now r = d(S). We must show that there exist an fί-semi-
stable vector bundle of rank r with numerically trivial Chern classes
which is not limit of fί-stable vector bundles. We show that the vector

bundle E = Os 0 0 Os can not be a limit of ίf-stable vector bundles.
Assume that E were a limit of iϊ-stable vector bundles parameterized
by T as in Definition (2.21). Take a generic hyperplane section C as
above. We would get a morphism φ: T -*M{C,R). On the other hand,
under our hypothesis an fί-stable vector bundle Ef of rank r, with trivial
Chern classes is a direct image of a line bundle over A which is alge-
braically equivalent to 0. Hence we have a family of ίf-semi-stable
vector bundle over S parametrized by A and this parametrization con-
tains all the ίf-stable vector bundles of rank r with numerically trivial
Chern classes (cf. proof of Theorem 2.15). We get a morphism ψ: A ->
M(C,r). It would follow as above, φ(T) c <p(Ts) c ψ(A). Hence there
would be a line bundle L over A such that L is algebraically equivalent
to 0 and such that E[C and the restriction to C the direct image π*L
over S correspond to the same point of the moduli space M(C,r). Hence
π*L{C would have a filtration 0 = Go c Gx c Gr = π*L]C where Gt is a
sub-vector bundle of rank i of Gi+1 with Gi+1/Gt ~ Oc. This is impossible.

Let E be an ίf-semi-stable vector bundle of rank 2 with numerically
trivial Chern classes. We assume that E is not iϊ-stable. By Lemma
(2.22) the restriction E[C is semi-stable. By the remark above, E is not
a limit if fί-stable vector bundles. q.e.d.
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§ 3. Final remarks

In view of § 1, it seems interesting to study the irreducible unitary
representations of the fundamental group of an algebraic variety. But
it very often happens that there is no irreducible unitary representation
of degree > 2 of the fundamental group. Concerning this, we ask

PROBLEM 1. Under what hypothesis is the condition that a vector
bundle is defined by an irreducible unitary representation open?

We ask

PROBLEM 1'. If WiV, Q) = 0 for i > 1, then is the condition above
open? Here V is the universal covering space of the variety.

Over a variety V such that the condition above is open, the theory
or irreducible unitary representation of the fundamental group seems
interesting if it is not empty (see Proposition (1.3)).
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