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A RELATION BETWEEN ORDER AND DEFECTS
OF MEROMORPHIC MAPPINGS OF Cn INTO PN(C)

JUNJIRO NOGUCHI

1. Introduction

Let / be a meromorphic mapping of the w-dimensional complex
plane Cn into the iV-dimensional complex protective space PN(C). We
denote by T(r,f) the characteristic function of / and by N(r, f*H) the
counting function for a hyperplane H c PN(C).1} The purpose of this
paper is to establish the following results.

THEOREM 1. Let f: Cn —> PN(C) be a meromorphic mapping of finite
order p which is not a positive integer. Then for any N + 1 hyperplanes
Hμ c PN(C)9 μ = 0,1, , N, in general position

(1.1) K(f) = Πm Σf-o^fr,/*gJ ;> k(p) f

where k(p) is a positive constant depending only on p and satisfies

(1.2) hip) > 2

In case 0 ^ p < 1, we shall also obtain

THEOREM 2. The positive constant k(p) in (1.1) satisfies

(1.3) k{p) ^ 1 - p for 0 ^ p < l .

Remark. When p takes values near 0, the evaluation (1.3) is better
than (1.2). On the other hand (1.2) is better than (1.3) when p is close
to 1.

From these theorems we have readily

Received December 7, 1974.
1) Throughout the present paper we only consider hyperplanes H such that f*H

do not contain the origin.
2) As usual, Γ( ) stands for the gamma-function.
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COROLLARY. // a meromorphic mapping f:Cn-> PN(C) admits N + 1
hyperplanes in general position whose defects are equal to one, then the
order of f is infinite or a positive integer.

In case n = N — 1, the existence of the positive lower bound k(p)
in (1.1) was first proved by R. Nevanlinna [7, Chap. Ill] and he posed
the problem to determine the best possible value of k(p). In the same
case Theorem 1 was proved by Edrei-Fuchs [1] and they determined the
correct value of k(p) for 0 ^ p < 1 in [2]. In case n = 1 and N :> 1,
Toda [10] obtained the evalution (1.2) and moreover Ozawa [8] obtained
the correct value of k(p) for p < 1.

One notes that k(p) may be determined independently of the dimen-
sion n.

The author is very thankful to Professors N. Toda and H. Fujimoto
for their helpful advices and to Professors K. Niino and M. Ozawa for
their valuable suggestions.

2. Notation

Let (z19 , zn) be the natural coordinate system in Cn and set

= {l|2| |<r},

A(r) = A Π B(r) for a subset A a Cn ,

d° = -*_(3 - a) ,
4π

χ = ((W log || z \fY~x , η = dc log || 21|2 Λ χ .

For a positive divisor D on Cre not containing the origin, set

n(t, D)=\ χ, N(r, D) = Γ n(t'D) dt .
J D(t) Jθ t

In case n — 1, w(t, D) is the number of elements of D in Z?(t) with
counting multiplicities. Let L denote the hyperplane bundle over Pn(C)
and ω the positive definite curvature form of L arising from an hermitian
metric h in L. For a meromorphic mapping f:Cn-+PN(C) which is
holomorphic at the origin, the characteristic function is defined by

Γ(r,/)= Γ4 -̂
Jθ t J B(t)
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It is noted that the pull-back form f*ω is a differential form with coef-
ficients belonging to Lfoc which is closed and positive in the sense of
currents (cf. Lelong [6]) and that Γ(r, /) is independent of the curvature
form ω of L, up to an O(l)-term (cf. Griffiths-King [3]).

Let S(r) be a real, non-negative and increasing function of r ^ 0.
Then IϊϊnlogS(r)/logr is called the order of S(r). In particular the

r-»oo

order of Γ(r,/) (N(r,D) resp.) is called the order of / (D resp.). Let U
be an open set in PN(C) such that L\Ό ̂  U x C Then the restriction
σ\u of a global holomorphic section σ eH%PN(C),L) is naturally regarded
as a holomorphic function in U and similarly ^ as a positive smooth
function in Z7. The length of σ is defined by

\ h\u )

which is independent of the local trivialization, L\n = U X C. For a
hyperplane H in PN(C), choose always a global section σ e H°(PN(C),L)
so that the divisor (σ) is equal to H and \σ\ <; 1, and set

m(r ,H) = f log

Now the following is well-known (Nevanlinna's first main theorem):

(2.1) T(r, f) = N(r, f*H) + m(r9 H) + log f*\σ\ (0)

provided that f*H $ 0.
In case JV = 1, / is a meromorphic function in Cn. Let (/)0 and

(/)„ denote respectively the divisors of zeros and poles of / and suppose
that (/)0 U (JO. 3 0. Then (2.1) yields that

(2.2)
Γ(r, /) = N(r, (/) J + ί log+ |/ | 7 + 0(1)

JdB(r)

= iV(r, (/)„) + ί log+ -ί-jy + 0(1),
J 3B(r) f\

where log+ s = max {0, log s} for s ^ 0. We return to the general case,
JV ^ 1. We set for a hyperplane i ϊ

which is called the defect of H.
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3. An estimate for canonical functions

For an entire function F in Cn, we set

M(r,F) = max|F(z)| .

LEMMA 1. Let F be an entire function. Then for r < R

(3.1) T(r, F) + 0(1) ^ log M(r, F) ^ * " ( r / ^ {T(R, F) + 0(1)} .
( 1 — r/C)

Proof. The first inequality follows from (2.2). We prove the second.
Let Aut(B(R)) denote the group of holomorphic automorphisms of B(R).
For zoeB(R), there is an element γ{ , z0) e Aut(B{R)) with γ(z0, z0) = 0.
We define

χ(z, zQ) = φ{z, zo)
n-1

φ, z0) = dc log \\γ(z, zo)\\2 A χ(z, z0) .

Since the isotropy subgroup of Aut(B(R)) at the origin consists of unitary
transformations of the coordinates, these differential forms are independent
of the choice of γ(-,z0). Note that χ(z,0) = χ(z) and 57(2,0) = η(z). Since
loglFo^.,^)-1! is plurisubharmonic in a neighborhood of B(R),

(3.2) ^ f log |For(z,z,Y ι\η{z) = f log \F(z)\v(z,z0)
J 3B(R) J 3B(R)

log* \F(z)\v(z,z,).f
SB(R)

Let logM(r,F) = log |ί\20)| with zoedB(r). By a unitary transformation
of the coordinates, we can carry z0 to (r,0, •••,0). Therefore we may
assume that z0 = (r,0, ,0). Let us take γ(z9z0) as follows:

By an elementary calculation we have

d'log||r(«,«0)||
2 = , p

g ~ p , Bd'log«r(2,
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and so φ,z0) ^ {1 - (r / R)2}φ) / (1 - r/R)2n. Combining this with (3.2)
and (2.2), we obtain the required inequality. Q.E.D.

Let I be a complex line in Cn through the origin and F£(u) denote
the restriction of F on L From Lemma 1 it follows that for every &,

(3.3) order of Flu) ^ order of F(z) .

Let D be a positive divisor on Cn not containing the origin and suppose
that for an integer q

(3.4)
tq"

Then according to Lelong [5, Theorem 5] (see also Stoll [9]), there exists
an entire function F such that (F) = D, F(0) = 1, all the partial deriva-
tives of log F of order <Ξ q vanish at the origin, the order of F is not
greater than max {g, order of D} and

log \F(z)\ ^ A(n, q)\\\z\\« J""" n { ^ ) dt

(3.5)

+

where A(n, q) is a constant depending only on n and q. Such a func-
tion F is called the canonical function of genus q associated with the
divisor D.

Let D be a positive divisor on Cn not containing the origin, whose
order is less than q + 1. Then (3.4) is satisfied. Let F be the canonical
function of genus q associated with D, £ a complex line in Cn through
the origin and suppose that Fe(u) does not vanish for all ue I = C
Then by (3.3), F£{u) = eF(u) where P(u) is a polynomial of degree ^ q.
Since all the derivatives of log F of order <̂  q vanish at the origin and
F(0) = 1, P(u) = 0 and then F£(u) = 1. Regarding t as a point of Pn'\C)
in the natural manner, we see

LEMMA 2. Let E = { ^ Θ P ^ C C ) : ^ Z> = #}, (̂  D = intersection of £
and D with counting multiplicities). Then E is an analytic subset and
for £eE, F£ = l and for 6 & E, F£ coincides with the Weierstrass prod-
uct of genus q associated with S D.

Remark. It follows from (3.3) that Γ dn(t, £ D)/tq< < oo.
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Proof. The first two assertions follow immediately from the above
arguments. We show the last. Let Π(u) denote the Weierstrass product
of genus q associated with £D. Noting that the orders of Π(u) and
F£(u) are less than q + 1, we have

Flu) = ePWΠ(u) ,

where P(u) is a polynomial of degree <̂  q. For the same reason as
above, Piu) = 0. Q.E.D.

Let us set

1 c2π

2π Jo \teie - 1|

Then by Edrei-Fuchs [1, p. 303] we have for 0 < β < 1

(3.6) Γ φitψ-'dt < £. .
Jo ψκ ~ Γ4(3/4) sin (πβ)

LEMMA 3. The above canonical function F satisfies

(3.7) f log+ \F\ η S 4- Γ %{\m &t + -f- Γ n(t>
JsBM 2 Jo t 2 Jo

Furthermore in case q = 0 we have

DUt .(3.8) f log* | F | V£ Γ n«>DUt + r Γ n«>
JdB(r) JO t Jr t2

Proof. First we show (3.7). From Lemma 2 and Edrei-Fuchs [1, p. 302]
we obtain for ueSePn~\C) with \\u\\ = r

Γ
2ττJo

log+ -i- Γ log+ / m
27r Jo | F / π β ΐ < ? )

r

From Nevanlinna's first main theorem and F/0) = 1 it follows that

(3.9) 1 Γ log+ \Fe{ueiθ)\ dθ ̂  N(r,£-D) + r* Γ n{t>/'D) φ(±λdt .
π Jo Jo tq+1 \r /

Letting λ(i) denote the standard volume form on Pn~\C) defined by χ,
we have
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.10) ί l o g + \F\η=[ W - i - Γ log+ \Flzeu)\dθ ,

where ze£ and ||z|| = r. Since n(t,D) = \n(t, £-D)λ(£) by definition,

using Fubini's theorem we get (3.7) from Lemma 2, (3.9) and (3.10).

In case q = 0 we have by Lemma 2 and Hayman [4, p. 28]

log \Fe(u)\ £ Γ n{t'β'Ό)dt + r Γ ^ i ^ - d ί
Jθ t J r t2

for ue£ePn"\C) with | |^ | | = r. Then the rest of the proof is similar

to the above. Q.E.D.

4. Representation of meromorphic mappings

In this section let us fix a homogeneous coordinate system (w0 wN)

in PN(C). Then we may take

h = Σ I^IVI^Γ if w* ̂  0 ,

A meromorphic mapping / : Cn —> PN(C) is represented as

(4.2) / = ( / 0 ; ; A ) ,

where /^ are entire functions and codim {/0 = = /y = 0} ̂  2. If

/ = ('/0 TV) is another representation of /, then there is an entire

function g such that % = e9fμ for all μ. By (4.1) and (4.2) we have

r / N \l/2 / N \l/2

(4.3) T{r,f) = log ( Σ IΛI2) 7 - log ( Σ IΛ(0)|2)
J dB(r) \μ = 0 / \μ = 0 /

provided that 2]f=olΛ(O)|2 Φ 0, i.e., / is holomorphic at the origin.

LEMMA 4. Let f: Cn —> PN(C) be a meromorphic mapping of order

< q + 1 and suppose that f*{wμ = 0}, μ = 0, , N do not contain the

origin. Then f is represented as

f=(F0;Fie

pi; . FNep"),

where each Fμ is the canonical function of genus q associated with

f*{wμ = 0} if f*{wμ = 0} Φ φ, or = 1 if f*{wμ = 0} = φ and Pμ are poly-

nomials in z19 -,zn of degree ^ q.
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Proof. By the assumption and (2.1) the orders of f*{wμ = 0} are
less than q + 1. Thus we may take the canonical functions Fμ of genus
q associated with f*{wμ = 0} (if f*{wμ = 0} = φ, we take Fμ = ΐ). f is
represented as

(4.4) f=(F0;F1e^; - - - FNe'») ,

where gμ are entire functions. Hence it suffices to show that the order
of eg*9 say egi, is less than q + 1. From (4.4), (4.1) and (2.1) it follows
that

(4.5) f log+

J 3B(r)

Noting that log+ ab <^ log+ a + log+ 6, we have

ί log+ \e'*\η ^ ί log+ ^-e^ η + ί log+ \FQ\η
J ΘB(r) JdB(r) F2 J dB(r)

+ f log+ - 1 - ^ .

From (2.2),

f log+JUssf log+IF.Î  + Od).

So we see that

f log* |e" | 7 ^ Γ(r, /) + Γ(r, Fo) + Γ(r, Fx) + 0(1) .

As the orders of /, Fo and ίΊ are less than q + 1, so is that of βαi.
Q.E.D.

5. Proof of Theorem 1

First we take a homogeneous coordinate system (w0 wx w^)
in PN(C) so that iϊΛ = {wμ = 0}. Let q denote the largest integer not
exceeding p. By Lemma 4, / is represented as

f = (F0;Fie

p>; •• ; F N έ p " ) .

By (4.3) and Lemma 4 we see that

T(r,/) ^ Σ f log+ |*VI? + Σ f 1(>g+ \e?'\η + 0(1)
/«=0 J 3B(r) μ = l J dB{r)

^ Σ f log+lί1,!);
/ί=θj 95(r)
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Now we apply Lemma 3 to this. Setting n(t) = 2f=o n(t, f*Hμ) and

N(r) = Γn(t)dt/t, we get from (3.7)
Jo

2Γ(r,/) ^ N(r) + r* Γ n{t)t^-ιφiL

Similarly to Edrei-Fuchs [1, §4] this inequality yields

2 - K(f) ^ K(f)p Γ
Jo

From this and (3.6) we deduce that

K(f) > 2Γ4(3/4)lsinτrlol
π2p + Γ4(3/4)|sin

Hence we have (1.2). Q.E.D.

6. Proof of Theorem 2

As in the previous section, / may be represented as

f = (F0;c1F1; .. ;cNFN) ,

where cμ are non-zero constants. By (4.3) we have

\ μ \ η
3B(r)

Using the same notation n(t) and N(r) as in section 5, we have by

Lemma 3

r, /) ^ N(r) + rΓ ^-dt + 0(1) .
J r t

In view of integration by parts this implies

(6.1) T(r,f)^rΓ *Άit + 0(1) .
Jr t

Noting that the order of N(r) is p, by Hayman [4, Lemma 4.7] we can

take a sequence 'r\oo for an arbitrarily small ε > 0 such that

(6.2) Nit) ^ (ΛΛ'+ Ni'r) for t ^ V .

From (6.1) and (6.2) we get
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T{r, f) ^ V-"-W(V) Γ f+°-2dt + 0(1)
J 'r

N('r) + 0(1) .
1 - , - e

Thus K(f) ^ 1 - p - ε. Letting ε -* 0, we deduce (1.3). Q.E.D.
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