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GAUSSIAN RANDOM FIELDS WITH PROJECTIVE INVARIANCE

AKIO NODA

§ 1. Introduction

We shall consider the class of Gaussian random fields Xa = {X(A)
A 6 Rn} such that E{X(A) - X(B)} = 0 and E{(X(A) - X(B))2} = |A - B\a

(0 < a < 2), where \A — B\ denotes the Euclidean distance between two
points A and B.

The correlation function of Xa under the condition X(P) = 0, which
is denoted by pa(A,B\P), is

Pa(A,B\P) = (IA - P\< + \B- P\« - \A - B\«)/2\A - P\«'2\B - P\«/2 .

Clearly, the equality

(*) Pa(TA,TB\TF) = Pa(A,B\P)

holds for a translation or an orthogonal transformation T on Rn. This
property corresponds to stationarity and isotropy of Xa (see [10]). More-
over, we have (*) when T is a similar transformation or an inversion
with center P. We shall call these properties protective invariance.

In §2, we shall show that protective invariance characterizes the
class of Xjs (Theorem 1) and that only the above mentioned transfor-
mations satisfy (*) unless a = n = 1 (Theorem 2).

In § 3, we shall apply projective invariance to the prediction problem
and get the new formulas. In particular, the two important properties
of Xa—non-deterministic property and Markov property—will be men-
tioned and be used in §4.

In §4, we shall consider the conditional correlation function of Xa.
For a closed set e in Rn, we calculate the conditional expectation of X(A)
relative to the σ-field generated by {X(P) P e e}, which is denoted by
μ(A I e). Then the conditional correlation function relative to e is defined
as follows:
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(A B\c)~ Ei(χ(A^ ~ ^A1 e))(X(B) - μ(B \ e))}
aK ' ' [E{(X(A) - μ(A\e)Y}E{(X(B) (B\e)y

We are interested in the problem to determine the transformation T on

Rn satisfying the following equality:

(**) PaiTA, TBI Te) = pa(A, B \ e) .

It is easy to see that translations, orthogonal transformations, similar

transformations and inversions with the center in e satisfy (**) (Theorem

3). We are able to determine T satisfying (**) in the case n = 1 (Theorem

4). There occurs a remarkable difference between the cases a = 1 and

a Φ 1, and this is due to Markov property. The case a = 1 in Theorem

4 corresponds to the principle of protective invariance of the Brownian

motion ([5]) which was the starting point of our study.

§2. Gaussian random field Xa with projective invariance

Let X = {X(A) A e Rn} be a Gaussian random field such that X(A)

— X(B) has mean 0 and variance r(A,B), where r(A,B) is a function

on Rn x Rn satisfying the following conditions:

ί
r(A, B) = r(B,A), r(A,A) = 0, r(A,B) > 0, and r is a function

of negative type, i.e. 2] cii^jT{Au Aj) < 0 for any At e Rn and any

at e R1 such that Σα«=0 (ΐ = 1,2, . . . , N).

We assume in the sequel that r{A,B) is continuous and

With the above assumptions we can speak of the probability law

only for the system of the differences {X(A) — X(B); A,B eRn}. There-

fore, we need to impose an additional condition, say X(P) = 0, in order

to determine X(A) uniquely. (In this section, by P we denote an arbi-

trarily fixed point in Rn.)

The covariance function of X is

E[X(A)X(B)\X(P) = 0] = (r(A,P) + r{B,P) - r(A,B))/2 ,

and the correlation function of X is defined by

p(A,B\P) =
r(A,P)1/2

) + r(B,P)-r(A,B)

X(P) = θl
J
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DEFINITION 1. We say that a transformation T on Rn leaves the
correlation function of X invariant if the equality

(3) p{TA,TB\TF) = p{A,B\F)

holds for any A,B in Rn. If all the translations, orthogonal transfor-
mations, similar transformations and inversions with center P leave the
correlation function of X invariant, we say X has protective invariance.

THEOREM 1. X has protective invariance if and only if

(4) r(A,B) = I const. |.| A - B\a (0 < a < 2) .

The proof of the "if" part is clear. The "only if" part is divided
into the following two lemmas.

LEMMA 1. Both translations and orthogonal transformations leave
the correlation function of X invariant if and only if r(A,B) depends
only on \A - B\, i.e. r(A9B) = r(\A - B\).

The proof of Lemma 1 is elementary, so is omitted.

LEMMA 2. // all the translations, orthogonal transformations and
similar transformations leave the correlation function of X invariant, then
(4) holds.

Proof. By Lemma 1, r(A,B) = r(\A — B\). We can easily show that
r(x) > 0 whenever x > 0. Without loss of generality, we can assume that
r(l) = 1. Since similar transformations leave the correlation function in-
variant, we have p(—b,ab\0) = ^(—1,^10) for any α, b > 0. By (2), we
have

^(-6,α6|0) = (rib) + r(ab) - r((a + l)b))/2r(b)1/2r(aby/2 ,

p(-l9a\0) = (1 + ria) - r(a

Hence,

- (r(a)r(ab))1/2}

= r(a)1/2r((a + 1)6) - (r(b)r(ab))ί/2r(a + 1) .

Therefore, r(ab) = r(a)r(b) yields r((a + l)δ) = r(a + l)r(b). By induction,
we see that r(nb) = r(n)r(b) for any integer n. This implies that r(qb)
= r(q)r(b) for any rational number q. It follows from the continuity of



68 AKIO NODA

r{x) that r(ab) = r(a)r(b) for any α, b > 0. Thus, r(x) = #α and the fact
that the condition (1) implies 0 < a < 2 is well known. (Q.E.D.)

The random field X which corresponds to r(A,B) = \A — B\a is de-
noted by Xa and the associated correlation function is denoted by pa as
in §1. Since X2 is a trivial random field, we shall consider only the
case 0 < a < 2 in the sequel.

We introduce a notation, y is the transformation group generated
by translations, orthogonal transformations, similar transformations and
inversions. T\D is the restriction of a transformation T to a subset D
of Rn. For a transformation T such that TA = TA on D for some
fe^r, we say T\D belongs to f\D.

THEOREM 2. // a transformation T leaves the correlation function
of Xa invariant, then T belongs to ZΓ unless n = a = 1. For n = a — 1,
Γi(_ββfp] αmZ Γ,CPj+00) belong to ^Ί(_oo,p] and ^ I C P , + 0 0 ) , respectively.

For the proof of Theorem 2, we use the following properties of pa.
On R2, fix Z? = (1,0) and P = (0,0) as the origin, and consider the vari-
able A = (r, θ) with the polar coordinates. Then, we have

Pβ(A,B\F) = (rα / 2 + r~a/2 - (r + r~ι - 2cosθ)a/2)/2 .

i) When r is fixed, pa is strictly increasing in 0 < θ < π.
ii) When 0(fg τr/2) is fixed, pa is strictly increasing in 0 < r < 1.

iii) When 0 = π, pa is strictly decreasing, identically 0 and strictly
increasing in 0 < r < 1 according as a > 1, # = 1 and a < 1.

iv) If α > 1, pa takes the minimal value 1 — 2α~1 at A = — B. If
α < 1, the minimal value of pa is 0.

Proof of Theorem 2. For T in Theorem 2, take the translation Γo

such that Γ0(TP) = P. Then, To o T leaves the correlation function in-
variant and fixes the point P. Therefore, we have only to prove Theorem
2 under the assumption TP = P.

The proof in the case n = 1 is simple. We show here only the case
n = 2. For a general n we can prove in a similar manner. On R2 we
use the polar coordinates (r,θ) with origin P.

When aΦl, we first claim that T\se^\s for a circle S = {r = α}.
We may assume that Γ(α, 0) = (a, 0). For T which does not fix the point
(α, 0), we find a transformation Tλ in 3Γ such that Tx(T(α, 0)) = (α, 0) and
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TJP = P, and consider 2\ o T instead of T. Under this assumption we

show that T(α, π) = (α, TΓ). When α > 1, <oα(A, (α, 0) | P)(=pa(TA, (α, 0) | P))

takes the minimal value only at (α, TΓ), SO we have T(a,π) = (α, TΓ). While,

when α < 1, we describe the contour {A />α(A, (α, 0) |P) = pa((a9 TΓ), (α, 0) | P)}

and see that it crosses itself just at (α, TΓ). Hence we have T(α, π) = (α, π)

by the fact that Γ is a homeomorphism and leaves the contour invariant.

Since (α, 0) and (α, π) are invariant under T, we see that T(a,π/2) is

either (α,τr/2) or (α,—τr/2) by using the properties (i),(ii) of pa. First

assume that T(α,τr/2) = (α,π/2). Since (α, 0) and (α, τr/2) are invariant

under Γ, so is (α, τr/4). Thus all the points (α, fcττ2"w) are invariant under

T (-2n < k < 2n n = 0,1,2, . . . ) . By the continuity of Γ, we have

T(a, θ) = (α, <9) for any point (α, ί) in S. On the other hand, if T(a, π/2)

— (α, —τr/2), we can prove that T(a,θ) = (α, — 0) by the similar argument.

Namely, we have proved that T\se3Γ\s.

For any rλ Φ r2, we can write T\{r=ri] (ri9θ) = (^,^(0)) with some r£

(i = 1,2). It is easy to show that gx(θ) = g2(θ). Therefore, T is expressed

in the form T(r,θ) — (f(r),g(θ)). Clearly, /(r) is either cr or c/r, and

r̂(̂ ) is either θ + θ0 or —0 + 0O (c and 0O are constants.). Thus we have

proved that Γ e J when a Φ 1.

When <x = 1, we see that T[£ e 3r{e for a half-line £ = {θ = θ0} by using

the fact that I is the contour {A p^A, (1, θ0 + π) | P) = 0}. We can write

T\{βmΦi)(r9θd = (fi(r),θd, where we set T{θ = ^} = {0 = 00 (ί = 1,2). It

is easy to show that /x(r) = /2(r) unless |0X — 02| = π. Therefore, T is

expressed in the form Γ(r, 0) = (/O), #(0)), so Γ must belong to P.

(Q.E.D.)

§ 3 . Prediction formulas and Markov property of Xa

For a closed set e in Rn, we set

= E[X(A)\X(P);Pee],

σ\A\e) = E{(X(A) - μ(A\e)γ} .

Let a point P o be chosen arbitrarily in e. Under the additional condition

X(P0) = 0, the conditional expectation μ(A \ e) relative to the (7-field gener-

ated by {X(P) Pee} is calculated.

Let T* be the inversion with respect to the unit sphere with center

Po. The simple application of protective invariance gives us the follow-

ing lemma.
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LEMMA 3. // the conditional expectation μ(A \ e) is expressed in the
form

with a signed measure dFA{P) on e depending on A, then we have

) IP - P o | IA - P o | - dί^(P) ,

I 2 » - IA - P0|-
2« σ\A | β) .

By virtue of Lemma 3 we can obtain the new formulas for

μ{T*A\T*e) and σ\T*A\ T*e)

from the known formulas for μ(A\e) and σ\A\e). For example, when
e is a spherical surface S and A is its center, T*S becomes a hyperplane.
So the simple formula

μ(A\S)= f X(P)dμ(P)
Js

(dμ is the uniform probability measure on S.)

gives us the prediction formulas relative to a hyperplane L.

Put A = (1,0, ,0), L = {(»„ -,£„); Xi = 0} and P - (0,a;2, ••,«„).
Then,

μ(A\L) = κ-

X f Z ( P ) | P - A\-*n+2-°dxz ••• dxn,

o\A\L) = Γ(n - 1 + |

When e is a half-space H, M. I. Fortus ([2]) gave the formula:

( 5 ) σ\A IH) = 2 - τ ( | . ) | A - £Γ|-/

Applying Lemma 3 to (5), we have

-"(R2 -\A- O\Ύ/2Γ(2 ~ a\rln + a) > 0

for Aeί",
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where Sf is the sphere {P; \P — O\ < R}. This implies the following
proposition.

PROPOSITION 1. Xa is non-deterministic. That is, σ(A | e) > 0 for any
e and any A&e.

We cite here the following two formulas from [2], [4] and [9] which
will be used in the next section.

Let H be the half-space {(x19 , xn) x1 < 0} and A = (1,0, , 0).
For a Φ 1 or for an even n,

μ(A\H) = π-^-ψ(^) sin

( 6 ) r .
X ί V

where

Nip) = f X(i-p, y))((p + I)2 + \y\2rn/2dy ,

and N(J) is the /-th derivative of
Next, let Sf be the sphere {P;\P - 0\<R} and A be any point of

£P. If a = 1 and w is odd, we have

((n-D/JO!

where S(r) = {P; \P — O\ = r} (r > i?) and c?̂  is the uniform probability
measure on S(f).

From these formulas we can see the following important property

of Xa.

PROPOSITION 2. Xa has Markov property if and only if a = 1 and
n is odd.

This proposition has been proved in [6] and [7]. Furthermore we
may expect that Xa has anti-Markov property for a Φ 1 or for an even
n. For an open set U in Rn we define a sub-σ-field Fill) by

F(U) = the smallest o -field for which all the X(A) (A e U) is

measurable.
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For each domain D in Rn, we introduce the following four sub-σ-fields

in order to explain anti-Markov property:

F~(D) = Πε>o^Φe)> where Dε means an ε-neighborhood of D.

F+(D) = n»o F((DC\).

dF(D) = Γ)ε>0F((dD)ε), where 3D means the boundary of D.

F+/-(D) = the smallest splitting field of F+(D) upon F~(D) (see [6]).

Following to Dym-McKean [1], we call the case F+/~(D) — F~(D) anti-

Markovian, while the case F+/~(D) = dFφ) is termed Markovian. For

an even n, it is known that Xx has anti-Markov property ([6]). For

n = 1 and <x ^ 1, Xα has anti-Markov property* We can prove this fact

by the use of the canonical representation of Xa due to Molchan-Golosov

[8], and we shall use it in the proof of Theorem 4.

§4. Invariance for the conditional correlation function of Xa

For a closed set e in Rn, we set

X(A) = μ(A\e) + σ(A\e)ζ(A\e) .

The conditional correlation function of Xa relative to e has been defined

in §1 by

We can easily show the following facts 1) — 4). In particular, 2) and

3) follow from the non-deterministic property.

1) pa(A,B\e) = 0 for A e e,

2) pa(A, AI e) = 1 for A <z e,

3) \Pa(A,B\e)\<l for A Φ B,

4) pa(A,B\e) is continuous in A and B on ec.

DEFINITION 2. We say a transformation T on 2?re leaves the con-

ditional correlation function of Xa relative to e invariant if the equality

(**) holds for any A,BeRn.

(**) P«(TA, TBI Te) = Pα(A, B\e) .

We note that for T satisfying (**), a transformation Tf such that

Γ'e = Te and T'|e<7 = Γ|eσ also satisfies the same equality (**).

THEOREM 3. For each e, 3Γ leaves the conditional correlation function
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of Xa relative to e invariant, provided that as to inversions we consider
only the inversions with the center in e.

Theorem 3 is an easy consequence of Theorem 1 and the following
simple lemma.

LEMMA 4. // a transformation T leaves the conditional correlation
function relative to e invariant, then for each ef containing e T leaves
the conditional correlation function relative to er invariant.

LEMMA 5. For an open ball if in Rn

y if a transformation T leaves
the conditional correlation function relative to 6?° invariant and if
is also an open ball, then T\<? belongs to ZΓ\<?.

We note that in the case n = 1 the condition that T^ is an open
ball is always fulfilled.

Proof of Lemma 5. Let O be the center of £f and R be the radius.
Assuming that TO = O, T£f = £f and T leaves the conditional correlation
function relative to SPC invariant, we shall prove that T is an orthogonal
transformation on $f. Once this is established, we can prove Lemma 5
as follows. For T in Lemma 5, we find To in 9~ such that T0(TO) == O
and T0(T^) = &. Then To o T satisfies the hypotheses of the above as-
sertion, so T0oT is an orthogonal transformation on S?. Hence T\^e^\^.

For the proof of the above assertion, we calculate pa(A,O\S?c) =
paQA — O\) explicitly by using the prediction formulas (5), (6) and (7)
cited in § 3. Then we can show that (dlda)p£ά) < 0 in 0 < a < ε, hence
βa is strictly decreasing in (0, ε), where ε is some sufficiently small posi-
tive number. Therefore, for any A in some sufficiently small neighbor-
hood of 0, pa(\TA - O|) = pa{\A - O\) yields \TA - O\ = \A - O\.

We denote by TU) the transformation in &~ such that TU)A = 0,
TU)SP = £P. The transformation TiTΛ) o TO Γ ^ has the same properties
as T, so we have \TiTA)(TB) - O\ = \TU)B - O\ for small \TU)B - O\.
On the other hand we can show that

\TU)B -0\ = R2\A- B\ {\A - Of \B - Of

+ R* - 2 \A - O\ \B - O\ R2 cos (Z.A0B)}~1/2 .

From the equalities:

\TA - O\ = \A - O\ , \TB - O\ = \B - O\
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and

\TσA)(TB)-O\ = \TU)B-O\,

we see that cos (Z.TA-O-TB) = cos (Z.AOB). Hence T is an orthogonal

transformation on a sufficiently small neighborhood of O. Repeating

this argument, it can be seen that T is an orthogonal transformation

on ST. (Q.E.D.)

Let n = 1. For a closed set e in R\ put ec = 1J* ̂ i> where J/s are

the connected components of the open set ec.

THEOREM 4. If T leaves the conditional correlation function relative

to e invariant, then in the case aφl, T\eG belongs to &*\βσ. While, in

the case a = 1, T\It belongs to &ΊIt for every i.

Proof. For each ΐ, T leaves the conditional correlation function

relative to If invariant by Lemma 4. So we have T\Ite^\It by Lemma

5. In the case a = 1, the proof is completed. But in the case aΦl,

we must show that T\eCeSr\eG. For any intervals It and Ijy we shall

show that if T\Ii is the identical transformation, so is T\Ir Then we

see that T\IiUIje^\IiΌIj by the fact that T|z< e ̂ ~|/4. It follows from

arbitrariness of It and Iό that T\ece$~\ec.

By considering Toe^ such that T0Ii = (-1,0) and TJj = (α, oo)

(α > 0), we may prove the above assertion for /̂  = (—1,0) and Iά = (α, oo).

Thus we assume that T leaves the conditional correlation function rela-

tive to ((—1,0) U (α, oo))01 invariant, that Γ|(_lf0) is the identity, and that

2Ί(α,co)( e ̂ Ί(αfββ)) is not the identity. Then, we show that these assump-

tions contradict the anti-Markov property of Xa. Put Γ(α, oo) = (b, c).

We show only the case b > a. All other cases are shown similarly.

Consider the transformation T' such that

T'X = -T|(-α/M)U(α,(α/δ)c)(|-^) fθΓ Xβ ( - 1 , 0 ) U (6, C) .
a \ o /

This transformation Ύf leaves the conditional correlation function relative

to (-00, -1] U [0, b] U [c, 00) invariant, T belongs to ST on (6, c) and T

is the identity on (-1,0). Put T\b,c) = (δ^Cx). Then we see that bjb

> bja. Next consider T" such that T" leaves the conditional correlation

function relative to (— oo, — 1] U [0, 6J U [c19 oo) invariant, Ύ" belongs to

F on (fej,^) and Ύ" is the identity on (—1,0). Then we see that b2/b1
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> b/a if we put T"(buc^ = (b2,c2). Repeating this procedure, we have

the following equalities: for any Ae(—1,0) and any δ e (α, oo),

Pβ(A,B\(-oo, -1] U [0,α]) = Pa(A,TB\(-™, -1] U [0,6] U [c, oo))

= Pa(A, T'TB\(-oo, - 1 ] U [0, 6J U [c19 oo))

= pa{A, T 'TTSK-cx), - 1 ] U [0, 62] U [c2, oo))

= Pa(A, Γ<»> Γ Γ T B K - o o , - 1 ] U [0, bn] U [cn, oo))

From the fact that

pl(A, BI e) = 1 - o\A \ e U {β})(7"2(A | e) for A, E g e ,

the π + 2nd member of the above equalities is dominated by

(l -
\

a\A I ( - o o , - 1 ] u [Q, ft,] u [Cn, oo) U {Bn})

σ\A I ( - c o , - 1 ] U [0, bn] U [cn f oo))

σ 2 ( A | ( - o o , - l ] U [ 0 , 6 J )

where Bn = T(7i) T'TTB. Letting 6W -^ oo, we prove

<72(A|(-σo, - 1 ] U [0, 6n]) > σ 2(A|(-oo, - 1 ] U [0, oo)) .

Consequently, we obtain pa(AyB\( — oo, — 1] (J [0,α]) = 0 for any A e (—1,0)

and any B e (α, oo), and this fact contradicts the anti-Markov property

of Xa. (Q.E.D.)
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