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HIDA-CRAMER MULTIPLICITY THEORY FOR

MULTIPLE MARKOV PROCESSES AND

GOURSAT REPRESENTATIONS

LOREN D. PITT

I. Introduction.

This work grew out of an attempt to prove the false result that an

w-ple Markov process in the sense of Hida (1960) or Levy (1956a) has

multiplicity one. Instead we proved the representation theorem (Theo-

rem III. 1.) that a centered Gaussian process x(t) is w-ple Markov iff it

can be written in the form

(LI) x(t) = Σ

where A(t) = {α<(ί)}<1Blf...fn is a Gaussian martingale with

(1.2) sp {x(s): 8 < t] = sp {α*(s): s < t and 1 < i < n}

and A(t) and {#*(£)} satisfy some non-degeneracy condition. We also show

(Corollary IV. 13.) that for any Gaussian martingale Ait) with simple

left innovation spectrum, continuous £*(£) may be found so that the

process x(t) given in (I.I) will satisfy (1.2).

Together these results show that the only restrictions of the possible

spectral type of an w-ple Markov process is that it has multiplicity M < n.

These constitute our main results on w-ple Markov processes and the

remainder of the paper is devoted to studying the implications that a

process x(t) admits a "Goursat" representation of the form (I.I).

Section II contains preliminaries on multiplicity theory and Gaussian

martingales. In Section III, we prove the basic Theorem III. 1 mentioned

above and derive analogous results for the covariance functions. Sec-

tion IV developes the basic theory of Goursat representations. IV. 3
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gives criteria which imply multiplicity one and is closely related to the
work of Levy in (1951) and (1956b). IV. 4 is devoted to deriving a con-
dition on e(t) which implies the equality (1.2). As a consequence we
obtain Corollary IV. 13 mentioned earlier. The final Section V discusses
the implications of smoothness properties of x(t) on the multiplicity of
A(t). Roughly stated we show that if x(t) has k continuous derivatives
then A(t) has multiplicity no greater than n — k.

It is a pleasure to acknowledge the influence of the recent papers
by V. Mandrekar (1974) and M. Hitsuda (1973). I received copies of these
during the preparation of the present manuscript and because of insights
obtained, the present work was greatly enhanced. Specifically Mandrekar
proved independently the basic Theorem III. 1, under a very mild tech-
nical condition. The terminology "Goursat representation" is Mandrekar's
as is part of Lemma IV. 1. Hitsuda's main results are special cases of
the present Corollary IV. 9 and Theorem IV. 12, which when combined
with our earlier versions lead directly to the present general formulations.

II. Preliminaries.

II. 1. Notations and multiplicity.
We will write x(t) for a centered real Gaussian process with 0 < t

< oo, and A(t) = {ty(i)}i.i,...fn will denote a centered w-variate Gaussian
process which we view as a column vector. We adopt standard matrix
notation and denote transposes with *'s. Thus, if e(t) — {e<(t)}«=i,...f»
and /(t) = {/i(t)}<βif...f» are vector functions while G(t) = (&/ί)) is an
nxn matrix function we write e*(t)G(t) fit) — Σ β4(t)flr^(t)/i(t), and
β*(ί)A(t) = 2] e<(i)ty(t) will denote the inner product.

We consider x(t) as a curve in the Hubert space L\Ω) of square
integrable random variables with inner product ζxlf x2} = Exλx2 and norm
||#||2 = Ex2. Similarly A(t) is considered as a vector curve with compo-
nent functions α^t) e L\Ω). Corresponding to A(t) we denote the closed
subspaces of L2(Ω):

, t) = sp {at(έ) s < t, 1 < i < n} .

= V ^ ( A , t) ,
t

If ^f(A,0 + ) = {0} we call A(t) regular. £t(A) denotes the orthogonal
projection onto 2>f(A,t). Similarly we define J^(x, t), Jf(x), and $t{x).

The operator function \βt{A), 0 < t < oo} is monotonically non-
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decreasing, but in general £t(A) is neither left nor right continuous.
Because of this £t(A) fails to be a spectral resolution of the identity on
3f(A) with the usual definition, but in his fundamental paper [1] Cramer
has shown how the usual multiplicity theory for a spectral resolution
extends to the present case. The only feature of this extension that we
wish to emphasize is that innovation (discrete) spectrum splits into left
and right parts and we may speak of left and right innovation multi-
plicities. Cramer shows that the left innovation multiplicity of A(t) =
{a,i(t)}i = 1, , n is bounded by n and if A(t) is left continuous there is
no left innovation spectrum. We also mention that we will deviate slightly
from the now standard usage and we will refer to the Hida-Cramer
multiplicity M of {A(t)} as the maximum of the left innovation multi-
plicity L, the right innovation multiplicity R and the continuous multi-
plicity C rather than the usual max {L + R, C}.

II. 2. Gaussian martingales.

Let A(t) be a centered w-variate Gaussian process and write δt =
A(t) is a martingale provided

(II.l) £sA(t) = A(s) for s < t

or equivalently, if

= 0<^(r), [α/t)

f or r < s < t and 1 < i, j < n .

With the martingale A(t) we associate the structure matrix

(Π.3) G(t) = {giό{t)) = «(**(«), α,(t)» .

Then

<α<(s), α/ί)> = flTi/min (s, t))

and G(t) determines the covariance structure of the process A(t). One
easily checks that for t > s

(II.4) G(ί) - G(s) = E[A(f) - A(s)][A(t) - A(β)]* ,

and thus G(£) is a non-decreasing function of non-negative matrices.
Conversely any such function G(t) is the structure matrix of some
martingale A(ί).

A(t) is regular iff G(0 + ) = 0 and more generally, dim^(A,0 + ) =
rankG(0 + ). A(t) will be called non-singular if the matrix G(t) is non-
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singular for each t. From (II.4) we observe that A(t) has left and right
hand U limits at each t and that the points of left (right) discontinuity
for Ait) coincide with the points of left (right) discontinuity for Git).

The multiplicity theory for Gaussian matingales and the theory of
stochastic "Wiener" integrals is well known and is presented in various
degrees of completeness in a number of sources, e.g. Mandrekar (1968),
Rosenberg (1964) and Rozanov (1958). Unfortunately our requirements
do not allow the usual normalization of assuming Git) is right continuous.
In the remainder of this section we briefly describe the necessary modifica-
tions in the existing theory.

For each point t at which G(t + ) Φ Git) we adjoin an ideal point
t+ to the interval [0, oo) which is greater than t but with t+ < s for
each real s > t. The resulting set I is naturally ordered and the struc-
ture matrix Git) induces a non-negative matrix valued measure Gidt) on
the order σ-field 38 of /. Similarly the martingale Ait) induces an n-
variate Gaussian random measure Aidt) on $3 with covariance measure
Gidt), i.e.

EAiJx)A*iJ2) = G(Λ Π J2) for Jl9J2e0 .

We will write U{G) for the U space of vector functions cit) on /
with norm

| |c||2 = ί c*(s)G(ds)c(s) < oo .

For each t e I we write L2{t, G} for that subspace of L2{G} consisting of
all functions supported on the interval [0, t]. With this notation the
chain of spaces {j^iA,t),t e 1} is naturally isomorphic to the chain
{L2{t,G};te/}, and the isomorphism is provided by the stochastic (Wiener)

integral

cis) -> Wit) = Γ cis)Aids) ,

which gives a linear isometry from L2{t, G) onto $P(Ay t). The notation

will always be used for
J J[0,ί]

The multiplicity theory for {Ait)} is easily established. Write μidt)
for the trace measure of G, μidt) = tr Gidt), and let G'it) be the matrix
density of Gidt) with respect to μ. G\t) is a measurable matrix valued
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function and can be diagonalized with a measurable orthogonal matrix

valued function 0(0, (see e.g. [2], p. 1341),

(II.5) 0{t)G\t)0*(t) = diag (ri(t), , γn(t)) = Γ(t)

with yx > γ2 > > γn > 0. Setting μiidt) — γi(t)μ(dt), we observe that

P e*(s)G(ds)c(s) = P «

(II.6) , „

where e(t) = O(t)c(t). This shows that c(s) -* O(t)c(s) determines a linear

isometry

and at the same time, shows that the multiplicity function for the re-

solution {St} is given by the rank function r(t) = rank G'(t) = rankΓ(ί).

Moreover, the multiplicity of an w-variate martingale A(t) is no greater

than n. The left innovation spectrum consists of those real t for which

Git) -G(t-)ΦO with multiplicities r(t) = rank(G(0 - G(t-)) similarly

for the right innovation spectrum. When G\t) has rank k a.e. [μ] we

say A(t) has uniform multiplicity k and when k = 1 simply that A(ί)

has multiplicity one or simple spectrum. When μ(t) is equivalent to

Lebesgue measure we speak of Lebesgue spectrum.

III. Multiple Markov processes.

Let x(fi) be a univariate process and write St for £t{x).

DEFINITION III. 1. A process x(t) will be called w-ple Markov if

for all a < &, the set {^ax(t): t>b} contains exactly n linearly independent

elements.

This definition differs from that of Hida (1960) where it is assumed

that {$aX{td - i — 1> 9 N} contains exactly n linearly independent ele-

ments whenever a < tλ < < tN are distinct and N > n.

Following Mandrekar (1974) we will say that a process x(t) admits

a Goursat representation of rank n if there exists an w-variate martingale

A{t) and a (non-random) vector valued function e(t) with

(IIL2) X(t) - e*it)A(t) -
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If the martingale A(t) is non-singular and the function e(t) satisfies the
condition:

For each b there exist tn > tn_x > > tx > b for which the matrix

ifiit)) is non-singular,

we say that (III.2) is a non-singular Goursat representation. If

we call representation (III.2) proper. Note that 3f(x, t) c 3f(A, t) for
any Goursat representation.

THEOREM III.l. X(t) is n-ple Markov iff it admits a proper non-
singular Goursat representation of rankn.

Proof. Suppose x(t) = e*(t)A(t) is a proper Goursat representation
of rank n. Then for a < t, δax(t) = β*(ί)A(α), and the set {Sax(t) :t>b}
= {e*(t)A(a) :t>b} certainly contains no more than n independent elements.
It will contain n independent elements iff A{t) is non-singular and there
are times tn > > ίx > b for which {e(U): 1 < i < n) are independent.
This shows the sufficiency of the conditions of the theorem and also
shows that to prove necessity one only needs establish the existence of
a proper Goursat representation x{t) = e*(t)A(t).

Assuming x(t) is w-ple Markov we now construct A(t). We note
that for t < T the operator St induces a one-one invertable map from
sp{#Γx(s): s > T} onto sp {^^(s): s > ί}. This is true because they both
have dimension n, and the image sp {£tSτx(s): s > T) — sp {Stx{s) :s>T}
also has dimension n. Thus we may fix a time To and a basis
for sp {£To

χ(s) - s > TQ} and then define the aiit) by the formuli

αt(ί) = tfMTo) if t < To

at(T0) = δτfli{t) and

at(t) e sp {StΦ) :s>t} if t> To .

For the process A(t) thus defined one has 3f(A, t) c 2ff(x, t). Because
δt: sp {iτx{s): s > T} —> sp {(^(s): s > £} (Γ > ί) is one-one the {^(ί)} form
a basis of sp {£tx(s): s > t} and because x(t) e sp {^£^(s): s > t) there will
exist functions et(t) for which
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x{t) = 2 e4(t)α4(ί) .

This also shows that Jf(x,t) = je(A,t).

It now remains to show that Ait) is a martingale. For s < t we

show (ML(ί) = A(s) by checking the cases (i) t < To, (ii) s < To < t and

(iii) To < s. (i) <f SA(Q = gtftMTd = <M(T0) = A(s). (ii) <^A(ί) = *β£TtA(jb)

= #SA(ΓO) = A(s). (iii) STQ£sA(t) = ^Γ oA(0 = A(Γ0) and <̂ V0A(s) - A(Γ0).

For each j , both α̂  (s) and Ssaό(t) are in sp {^s^(τ): τ > s} and because

£TQ is one-one on sp{ί?s#(r): τ > s) we see ^(s) = $sdj(t). Thus < ŝA(ί) =

A(s). A{t) is a martingale and the proof is complete.

Let p(s, t) = Ex(s)x(t) be the covariance function of an %-ple Markov

process and let G(t) be the structure matrix of the corresponding

martingale A(t) in Theorem III . l . Then

p(8, t) = Ee*(s)A(s)e*(t)A(t)

= Σ etWgijimm (s, t))e/ί) .

Setting /(s) = G(s)e(s), we have

(III.5) p(s, ί) = Σ/ t(s)e i(t) - /*(β)e(t) , s < t .
i = ί

The next proposition is elementary and we leave its verification to the

reader.

LEMMA III.2. A positive definite function p(s9t) of the form

(HI.6) p(s, t) = Σ Λ(min (s, ί))β4(max (s, ί))
i i

is ίfee covariance function of an n-ple Markov process iff f(s) and e(t)

satisfy.

For each a > 0 there exist times s1 < < sn < a for which
\χLL,I.aj

the matrix (fi(sj)) is non-singular.

For each b > 0 there exist times tn > > tλ > b for which

the matrix (βiitj)) is non-singular.

The kernels p given by (III.6) with e(t) and f(s) satisfying (III.7)

have the following uniqueness property.

LEMMA III.3. Suppose f(s) and e(t) satisfy (III.7.a) and (IIL7.b)
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and that f(s) and e(s) are another pair of n-dimensional vector valued
functions satisfying

(IΠ.8) f*{8)e(t) = /*(8)«(t) , 8 < t .

Then there exists a unique non-singular matrix L with

e(t) = Le{t)

f(s) = L*f(s) .

In particular, if e(f) = e(t) ίfeeti f(s) = f(s).

Proof. Fix a time Γ and choose times tn > > tx > T for which
e(ίj), -,e(tn) are linearly independent. There exists a unique L for
which

Leitd = e(ti) , l<i<n .

Then f or s < Γ

f*(s)e(tt) = /*(β)Le(ίi) , l < i < n .

Because the e(£J are independent this shows that

(III.9) /(β) = L*/(β) for 5 < Γ ,

and condition (III.7a) implies that L* is invertible and that f(s) satisfies
condition (III.7a). From (III.9) we now have

- f * ( s ) L e ( t ) , s<T<t

and because /(s) satisfies (III.7a)

(III. 10) Le(ί) = δ(t) , t > Γ .

Letting T[0 while keeping t19 - -,tn fixed shows that (III. 10) holds for all
t. Condition (III.7.a) and the identity (III.10) then gives f(s) = L*/(s) for
all s and thus completes the proof.

PROPOSITION III.4. A kernel

p(s, t) = /*(min (s, OMmax (s, ί)) >

where f and e satisfy (III.7), is positive definite iff there exists an in-
creasing function G(t) of non-negative matrices with

(IΠ.ll) f(t) = G(ί)β(ί) .
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Proof. Suppose pis, t) is positive definite. By Lemma III.2 p is the
covariance function of an w-ple Markov process xit). By Theorem III.l
we can write x(t) — e*(t)A(t) where Ait) is an w-variate martingale with
structure matrix Hit). Then for s < t

p(s, t) = e*is)H(s)e(t)

= /*(s)8(ί) where f(s) = H(s)eis) .

By Lemma III.3 there exists an invertible matrix L with eit) = Leit)
and fit) = L*/(ί). Thus fit) = L*/(ί) = L*His)Leis) = G(β)β(«) with G(β)
= L*His)L, which is increasing and non-negative.

Conversely, if fit) satisfies (III. 11) we may define xit) as xit) =
e*it)Ait) where Ait) is a martingale with structure matrix Git). Then
for s < t we have

Exis)xit) = e*is)Gis)eit)

= p(s, t) ,

and pis, t) being a covariance function is positive definite. As a corol-
lary to these arguments we state

COROLLARY III.5. A process xit) which admits a Goursat represen-
tation xit) — e*it)Ait) of rank n is n-ple Markov iff the functions eit)
and fit) — Git)eit) satisfy conditions (ΠL7.a) and (ΠL7.b). A kernel
pis, t) is the covariance function of an n-ple Markov process iff it admits
a representation of the form

pis, t) = e*(s)G(s)e(t) for s < t ,

where eit) satisfies (IΠ.7.b), Gis) is a non-decreasing function of positive
definite matrices, and fit) = Git)eit) satisfies (IIL7.a).

IV. Goursat representations.

Whenever a Goursat representation

xit) = e*(ί)A(t)

is known to be proper a number of problems are greatly simplified. For
example, the least squares prediction of xit) given {xiτ): τ < s} is

isxit) =
= e*(t)A(8) .
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The prediction error is

E\x(t) - £8x(t)f = E |β*(t)[A(t) - A(s)]|2

= e*(t)[G(ί) - G(β)]β(ί) .

The identity Jf(x,t) = Jf(A,f) shows that the Hida-Cramer multiplicity
theories for the two processes x{t) and A(t) coincide and, as we shall
see, leads directly to the Hida-Cramer canonical representation of x(t).
For these reasons it is desirable to have criteria for deciding if a Goursat
representation is proper. In this section we present some basic theory
for Goursat representations including canonical representations, criteria
for properness, and multiplicity bounds for processes with Goursant
representations.

IV. 1. Existence of proper representations.

LEMMA IV. 1. Let x(t) = e*(t)A(t) be a Goursat representation and
write S% for £t(x). Then:

(IV. 1) Bit) = δtA{jb) is a martingale.

(IV.2) x(t) = e*(t)B(t) and this representation is proper.

If in addition x(t) is n-ple Markov then for any other proper

Goursat representation

x(t) = e*(t)B(t)

of xit) there exists a non-singular matrix L with e(t) = Le(t) and
B(t) = L*B(f).

Proof. (IV. 1): From the definition of B(f), Jf(B, t) c jf(x, t). Thus
the identities

£sB(t) = SsStA{t) = SsA{t) = W,(A)A(ί) = <M(s) = B(s) , (s < t)

show that B(t) is a martingale.

(IV.2): That x{t) = e*(t)B(t) follows from

x(t) = <?ta?(t) = <ίtβ*(ί)A(t) = e*(t)B(t) .

This and the inclusion c^(β, ί) c ^f(a;, t) complete the proof. Item (IV.3)
is due to Mandrekar (1974). The proof is an elementary modification
of the proof of Lemma III.3, which we omit.
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Let Git) denote the structure matrix of A(t) and set fit) = G(t)e(t).
If xit) is w-ple Markov then, by Lemma III.3, any increasing solution
Hit) of

Ex(s)x(t) = e*(s)H(s)e(t) , s <t

must satisfy

(IV.4) f(t) = lϊ(t)e(t) .

The covariance interpretation of (IV.3) is that equation (IV. 4) has only
one solution H(t) corresponding to a proper representation; namely the
structure matrix Hit) of Bit) = &tAit). The covariance matrix of Ait)
- Bit) is Git) - Hit). Thus Git) - Hit) is non-negative definite or Hit)
< Git), and this must hold for any other structure matrix solution Git)
of (IV.4). We can thus state a corollary to Lemma IV. 1.

COROLLARY IV.2. Let xit) be n-ple Markov and let

(IV.5) xit) = e*(ί)A(ί)

be a Goursat representation of rank n. Then (IV. 5) is proper iff Git)
is the minimal structure matrix solution of (IV.4).

IV. 2. Multiplicity theory for Goursat representations.

If xit) = e*(t)A(ί) is a proper Goursat representation the Hida-Cramer
canonical representation for xit) is easily derived. This is done by di-
agonalizing the density G'it) as in (II.5),

Oit)G'it)O*it) = Γit) = diag. (ri(t), . - -,r»(i)) ,

and setting

(IV.6) B(t) = f Ois)Aids) .

Then β(ί) is a martingale with the diagonal structure matrix

EBit)B*it) = Γ

= j*
Thus the processes bόit) are independent martingales with bjit) = 0 for
j > M where ilί = ess. sup. rank G'iέ) is the multiplicity of Ait).
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But (IV. 6) is invertible with

A(ds) = O*(s)B(ds)

and

x(f) = e*(ί)A(ί)

(IV.7) = Γ e*(t)O*(s)B(ds)

= Σ Γ ( Σ e*(*)O^(s
.7=1 J V = l

Because x(t) = e*(ί)A(£) is proper we have

f̂(a;, t) = 3f(A, t) = ^f(β, ί) ,

and (IV. 7) is seen to be the proper canonical Hida-Cramer representa-
tion of x(t).

The Hida-Levy criterion for canonical representations [Levy (1956b)
and Hida (I960)] also has a useful version in the present setting.

THEOREM IV.3. A Goursat representation x(t) = e*(t)A(t) is proper
iff for each T > 0 and c e L2{T, G) the relation

0 = e*(t) Γ G(ds)c(s) for all t < T implies
(IV. 8) J

G(ds)c(s) = 0

Proof. Because J4?(x, T) c jf (A, T) the representation will be proper
iff the orthogonal complement of ^f(x, T) in Jf(A, T) is empty for each
T > 0. But each x e Jf(A, T) has a representation as a stochastic integral

a = Γ c*(s)dA(s) , c(s) e L2{2\ G] ,

and f or t < T

Ex(t)x = e*(t) Γ G(d8)c(s) .

Thus x is orthogonal to ^(«, Γ) iff (IV. 8) holds for each t < T and the
result follows.

IV. 3. Multiplicity one conditions.

In cases when x(t) = c*(t)A(t) has multiplicity one the general multi-
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plicity theory simplifies greatly and in certain cases Theorem IV.3 gives
an effective technique for proving that a given Goursat representation
is proper and in other cases for determining the proper representation.
Our work in this section is closely related to that of Levy in (1951) and
(1956b) as well as Hitsuda (1973), but our techniques and results are

quite different.
We begin by considering a Goursat representation

(IV.9) x(t) = e*(t)A(t)

where the martingale A(t) is regular (i.e. G(0 + ) = 0) and the density
G' = dG/dμ of the structure matrix of A(t) has rank 1. Since μit) =
tr G(t), tr G'(t) = 1 and G'(ί) has the form

(IV.10) G\t) = g(t)g*(t)

where g(t) is a vector function with \g(t)\ = 1 a.e. [μ\.

THEOREM IV.4. (i) The representation (IV.9) with G'(t) given in
(IV. 10) is proper iff for each T > 0, a(t) = 0 is the only solution in
U{T,μ} Of

(IV.ll) 0 = 1' e*{t)g{s)a(s)μ{ds) , 0 < t < T .

(ii) A sufficient condition that (IV. 9) is proper is that e(t) is absolutely
continuous with respect to μ and that

(IV. 12)
de

it) (e*(t)g(t))~ι e U{T, μ) for each T > 0 .
dμ

Proof of (i). If G\t) has the form (IV. 10) then each function

G(ds)c(s) with c(t) e L2{T, G) has a unique representation of the form

J G(ds)c(s) = I ' g(s)a(s)μ(ds) , a(t) e U{T, μ) .

In fact,

a(s) = g*(s)c(s)

and

j * c*(s)G(ds)c(s) = J ' \a(s)\2μ(ds) .
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Thus

(IV.13) e*(t) I* G(ds)c(s) = Γ e*(t)g{s)a(s)μ{ds) ,

and (i) follows directly from Theorem IV.3.

Proof of (ii). To see that (IV.12) is sufficient let aeL2{T,μ} be

such that

0 = j * e*(t)g(sMs)dμ(s) , 0 < t < T .

Differentiating with respect to μ gives

0 = e*(t)g(t)a(t) + P^-(t)g(s)a(s)dμ(s) ,
J αμ

or

a(t) = - Γ ( e * ( ί ) ^ ω ) - ^

Recalling that \g(s)\ = 1 a.e. [μ], condition (IV.12) shows that the Voltera

kernel on the right side of (IV. 14) is Hilbert-Schmidt. A Hilbert-Schmidt

Voltera integral operator cannot have a non-zero eigenvalue and thus

a = 0. Part (i) completes the proof.

Fortunately the quantity e*(t)g(t) has a direct interpretation in terms

of the covariance function p(s,t) = Ex(s)x(t). To see this observe that

[e*(t)g(t)Y = e*(t)G'(t)e(t)

and that r(t) = ρ(t> t) has the two representations r(t) = e*(t)G(t)e(t) and

r(t) = /*(t)e(ί). Differentiating each with respect to μ gives

— ( t ) = β*(t)G/(ί)e(ί) + 2/*(ί)—(ί)

and

so that

5) e*(t)G'(t)e(t) =
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In case μit) is continuous we have also

e*(f)G'(t)e(t) = lim — i —{pit + h,t + h) + pit, t) - 2pit, t + h)} .
ftio μ(t + h) — μit)

Finally, if we assume that μ(dt) is equivalent to Lebesgue measure we
write e'it) = de/dt and set

σ\t) = lim — {p(t + h,t + h) - pit, t) - 2p(t, t + h)} .

Then

σ\t) =

and the dependence in condition (IV. 12) on μ disappears giving

(IV. 16) [\e\t)f σ~2it)dt < oo .

The basic significance of this quantity σ\t) was observed and exploited
in a slightly different setting by Levy in (1951) and (1956b).

We will now assume that cc(ί) = e*(f)A(t) is a representation for
which eit) is absolutely continuous and σ2it) Φ 0 exists for almost all t.
Assuming further that (IV. 16) holds and setting fit) = Git)eit) we pro-
ceed to derive conditions under which the equation

(IV.17) f(t) = Hit)eit)

can be solved with a structure matrix Hit) that is absolutely continuous
with respect to Lebesgue measure and for which H'it) = dH/dt has
rank 1. By the preceding comments and part (ii) of Theorem IV.4 this
is equivalent to showing that xit) has simple Lebesgue spectrum.

If the desired matrix Hit) exists then we may differentiate fit) =
Hit)eit) and obtain

(IV.18) f{t) = Hit)e\t) + Hfit)eit) .

Thus a necessary condition is that fit) is absolutely continuous. But
assuming H;it) has rankl, (IV. 18) gives

(IV.19) H'(t) = (/'(O ~ He'itWit) - He'jt))* d

*(ί)(/'(ί) - He'(t))
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The denominator is non-zero since

e*W(t) - e*{t)H{t)e\t) = /*'(t)β(t) -

= σ\t) Φ 0 a.e. [dt] .

Thus any absolutely continuous H(t) with rank H\t) = 1 which satisfies
(IV. 17) must also satisfy the differential equation (IV. 19). Conversely
suppose that H(t) is absolutely continuous on some interval [α, δ) with

H(β)e(β) = f(a)

and that (IV. 19) holds on [a, b). Then

Ή'(f)e(f) = fit) - He'(t)

or

A-(H{t)e(t)) = /'(*) ,
at

and since H(a)e(a) = /(α) we see

H(t)e(t) = f(t) , ί e [α, δ) .

Moreover iϊ(O is increasing since by (IV. 15)

ff'(i) = (/'(«) - H(t)e\t)){f\t) - H(t)e'{t))*σ-\t)

> 0 a.e. .

These considerations allow us to draw the conclusion that x(t) has multi-
plicity one if the equation (IV. 19) has a local existence theorem. Pre-
cisely, we can prove

THEOREM IV.5. Suppose that

p(s, t) = /*(s)e(t) β < t

where e(t) and f(t) are absolutely continuous. Suppose also that σ\t) Φ 0
exists a.e. and that (IV. 16) holds. A sufficient condition that x(t) has
simple Lebesgue spectrum in (0, oo) is that for each T > 0 and each non-
negative matrix H with

He(T) = f(T)

the initial value problem
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m t ) = (fit) - H(t)e'(t))(f'(t) - Hjt)e'jt))*
(IV.20) e*(f)(f'(t) - H(t)e'(t)

H(T) = H

has an absolutely continuous solution Hit) on some interval [T, T + ε).

Proof. We will show that for each T > 0 an ε > 0 can be found

for which xit) has simple Lebesgue spectrum in the interval [T, Γ + ε).

Repeating this argument with Γ replaced by T + ε we can find a maximal

interval [Γ,S) with T < S < +00 in which #(£) has simple Lebesgue

spectrum. If S < + 00 we can find another ε > 0 so that xit) has simple

Lebesgue spectrum in [Γ, S) U [S, S + e) = [T, S + ε), thus contradicting

the assumption that [T,S) was a maximal such interval. Thus S must

equal + 00 and since T > 0 was arbitrary x(t) will have simple Lebesgue

spectrum on (0,00) plus possibly some right innovation spectrum at

t = 0 if x(t) is not regular.

Proceeding we fix T > 0 and let

x(f) = e*(t)B(t)

be the proper Goursat representation of x(ί), whose existence is guar-

anteed by Lemma IV. 1. Let H(t) denote the structure matrix of B(t)

and define H(t) for t e [0, T + ε) by

H{t) = H(t) if t < T ,

and for T < t < T + ε let H(t) denote the solution of (IV.20) with H(T)

= H(T), whose existence we have assumed. Then Hit) is a structure

matrix solution of

fit) - H(t)e(fi) 0 < t < T + ε .

Let Bit) be a martingale defined on (0, T + ε) with structure matrix

Hit), and set

xit) = e*(ί)JS(t) .

Then for s, ί < T + ε

= Exis)xit) ,

and #(£) and xit) have isomorphic multiplicity theories for 0 < t < T + ε.

Because a(t).= e*(t)B(i) is proper and iϊ(ί) = ff(ί) for ί < T we have
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JP(X9 t) = 2?(B, t) , t < T .

The proof of Theorem IV.4 is now easily modified to show that

, t) = ^ t § , t) t < Γ + β .

But £Γ(t) satisfies (IV.20) on [T, Γ + ε), and thus i?(ί) has simple Lebesgue
spectrum in [T, T + ε). Hence x(t) and #(£) have simple Lebesgue spec-
trum in [T, T + ε) and the proof is complete.

If ef(t) and /'(£) are continuous and σ\t) > 0 for ί > 0 the classical
existence theorem applies to the initial value problem (IV.20), and we
have

COROLLARY IV.6. // e\t) and f(t) are continuous and if σ\t) > 0
for t > 0 then x(t) has simple Lebesgue spectrum.

It is not unreasonable to suppose that a local existence theorem for
the initial value problem (IV.20) holds whenever e(t) and f(t) are abso-
lutely continuous and {\e'(t)\ + /'(ί)|}σ-1(ί) is locally square integrable.
We have been unable to prove this but one can easily verify the follow-
ing approximation theorem, whose proof we omit.

PROPOSITION IV.7. The initial value problem (IV.20) has local solu-
tions provided that

(IV.21) {|e'(0| + \f'(t)\}σ-Kt) is locally square integrable,

and

for each Γ > 0 there exists an ε > 0 and a sequence of positive
(IV.22)

definite functions

Pn(s, t) = Λ*(min (s, ί)K(max (β, t)) T < s, t < T + ε .

with continuously differentiable en(t) and fn(t) for which σl(t) > 0 on

[Γ, T + ε) and

lim en(t) - β(ί) , lim/n(ί) = fit)

and

σ«(t) oit)

There are two elementary cases where this theorem is easily applied.
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THEOREM IV.8. Let p(s,t) be the covariance function of a process

with Goursat representation x(t) = e*(t)A(t). Set f(t) = G(t)e(t) and

suppose that e(t) and f(t) are both absolutely continuous and that e\t)

and f{t) are both locally square integrable. If either

(IV.24) G'(t) is continuous and σ\t) Φ 0 for all t > 0 or

e(t) Φ 0 for all t, G'{t) is locally square summable and the

minimum eigenvalue of G'it) is locally bounded below,

then the conditions of Proposition IV.7 are satisfied and xit) has simple

Lebesgue spectrum on (0, oo).

Proof. If (IV.24) holds we simply take en(t) to be a sequence of
rτ+s

continuously differentiate functions with |e£(ί) — e'(ί)|2dί--*0. Set-

ting fn(t) = G(t)en(t) we know that pn(s, t) = /n*(min (s, t))en(max (s, t)) is

positive definite. Moreover, fn(t) = G\t)en(t) + G(t)e'n(t) is continuous

and converges to /'(£) in the U norm on [T, T + ε). Upon noting that

σlit) = e*(t)G(t)en(t) converges uniformly to σ\t) > 0 on [T, T + e), condi-

tion (IV.23) is obvious.
If (IV.25) holds we let en be as above and let Gn(t) be a continuously

differentiable approximation of G(t) with | G'n(t) — G(t) f dt -> 0 and

such that G'n(t) > δl for all t e [T, Γ + ε] and some δ > 0. Setting fn(t)

= Gn(t)en(t) one can proceed as above.

COROLLARY IV.9 (See Hitsuda (1973)). Let B(t) be a standard n-

dimensional Brownian motion and let e(t) be absolutely continuous with

\e'(t)\2dt < oo , for T < oo
J

and

e(t) Φ 0 for all t.

Then

x(t) = e*(f)B(t)

= eMbiW + + eΛ(t)6ft(t)

simple Lebesgue spectrum.
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EXAMPLE in = 2). Let n = 2 and let x(t) = e*(t)A(t) be a process

with simple Lebesgue spectrum in (0, oo). Supposing that e(t) is abso-

lutely continuous and σ\t) > 0 a.e. then we have seen that the problem

of finding the structure matrix Hit) of Bit) for a proper Goursat rep-

resentation x(t) = e*(t)B(t) corresponds to solving the equation

m f ) = (fit) - H(t)e'(t))(f(t) - H{t)e'{t)Y
e*(fi){f'(t) - ff(t)e'(t))

or, more simply, since σ\t) = e*(ί)(/'(ί) - H(t)e\t))

(IV.26) #'(£) = CAP ^ H{t)e\t)(f{t) - H{t)e\t))* ^
σ\t)

Equation (IV.26) is a quadratic equation in the three unknowns hn(t),

h22(t) and hl2(t) = fe21(ί) but can be reduced to a simple Riccati equation

as we will now show.

Denote the structure matrix of A(t) by G(t). Then we must have

f(t) = G{t)eit) = H(t)e(t) .

Setting J{t) = JΪ(0 - G(0 we have

/(ί)e(t) = 0 .

Since J(t) is symmetric we can write

where λ(t) is a scalar function. Moreover, H'(t) has rank one since x(t)

has simple Lebesgue spectrum in (0, oo) and hence

(IV.27) det ff'(t) = det (G'(fi) + J'(t)) = 0 .

A simple calculation now shows that (IV.27) is equivalent to the Riccati

equation

(IV.28) 0 - λ'(t)a(t) + b(t) + c(t)λ(f) + dit)λ\t)

where

(£) βifli + e\gf

n + 2β1β2grί,
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c(ί) = 2[e2eigU + e^g^ + (exe'2 + e{e2)gi2]

d(t)= -(€&- e2eί)2 .

As a simple example consider

x(t) = Cos (ίK(ί) + Sin (ί)θ2(ί)

where ^(ί) and a2(t) are independent Brownian motions. Then ex(t) =
Cos (t), e2(t) = Sin (t), #π = $4 = 1? and g'u — 0. Equation (IV.28) simpli-
fies to

0 = X'(f) + 1 - λ\t) .

The initial condition H(0) = 0 requires that Λ(0) = 0, and we find that
X(t) = — tanh (ί) and

Hίfί-ί*
ί ) -Sin(ί)Cos(ί)

- Sin (t) Cos (ί) Sin* (t)

IV. 4. Arbitraliness of A(t) in proper Goursat representations.

If A(t) occurs in a proper Goursat representation

(IV.29) x(f) = e*(t)A(t) ,

the equality J(?(x9f) ~ Jf(A,t) shows that A(t) has simple left innovation
spectrum. We also know from the material in the last section that if
e(t) is too smooth with respect to μ(t) = tr G(t) and A(t) has multiplicity
greater than one then (IV.29) cannot be expected to be proper. We now
show that for any A(f) with simple left innovation spectrum a continuous
function e(t) may be chosen for which (IV.29) is proper. Throughout
this section the following assumptions will be in force.

A(t) is an n-variate martingale whose left innovation spectrum

(IV.30) is simple. The trace of the structure matrix G(t) of A(t) will

be denoted by μ(t).

(IV.31) β(ί) = (βχ(O, , en(ί))* is n — 1 times continuously differentiate.

τ(t) is a continuous positive function such that for each non
(IV. 32)

empty interval [a, b] c (0, oo),

i; (dτ)2 _

dμ ί μWi+o — μKH)

where this supremum is over all finite paritions of [α, &].
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(IV.33) x(t) is the process with Goursat representation

χ(t) = β*(τ(t))A(t) .

PROPOSITION IV.IO. For 0 < s < T

[e/(τ(21))]*A(Γ-) 6 sp {x(ΐ) :s<t<T}.

Proof. Fix ί e (s, T) and for each partition to = t<t1<

of [t, T] satisfying τ(ti+ι) ψ τ(ti) we associate the sum

* =
+1) - τ(t,)

where

Then λt > 0 and Σ ^ = l
Setting J^τ = τ(t<+1) — τ(ίθ we write

By the mean value theorem there exist numbers st e (ί4, ίi+1) with

[e(r(ί1+I) - eWίJWWiΓ)"1 = e'We*)), and thus

|| a; - [e'O(T))]*A(Γ-)|| <

+ \\ΣUeΊ

Letting ω(t) = sup{||[e'(r(s))]*A(i) — [e'

ω(ί) |0 as t\T and that

- ) | | : t < s < T} we see

Using the martingale property one obtains

(IV.34)
= Σ %Uiτ)-2e*(τ(ti+MG(.ti+1) -

Setting M = sup {|| e(σ) | |: s < σ < T} provides the estimate

0 < e*(r(ίί+1))[G(ίί+1) -

< M2[μ(ti+ι) -
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which gives an upper bound for (IV. 34) of

μ(ti+ι) - μ{td

By (IV. 32) this can be made less than (T — t) with an appropriate choice^

of the partition. For such a choice we have

IIa? - [e'(τ(t))]*A(T-)|| < JT=t + ω(ί) .

Noting again that ω(t)[0 as t\T shows that [e'(τ(T))]*A(Γ-) is a limit

point of the x's and hence is contained in sp {x(σ): s < σ < Γ}.

The above argument applies equally well to the derivatives ea)(t)r

1 < k < n, and we obtain the immediate

COROLLARY IV. 11. For 0 < s<T and 0 < k < n,

[e(*>(r(T))]*A(T-) e sp {x(t) :s<t<T} .

If the functions ex(t), « ,en(£) satisfy the Wronski condition

(IV.34)

then the vectors e(T), e'(Γ), ,eC n"υ(Γ) are linearly independent and'

Corollary IV. 11 shows that

α t ( Γ - ) e sp {a?(ί): Γ - ε < t < T} c ^f (a?, Γ) , i = 1, . . , n .

If A(t) were left continuous this would show that the representation

(IV.33) was proper. When A(t) is not left continuous this requires a

further condition.

THEOREM IV.12. Suppose the Wronski condition (IV.34) is satisfied

for all T (a dense set would suffice) and further that e(t) is such that

[G(ί) - G(ί—)]β(τ(ί)) Φ 0 whenever

Git) - Git-) Φ 0.

Then for T > ε > 0 and l<i<n

αi(T) e sp {xit): T - ε < t < T) .

and the representation (IV.33) is proper.

Proof. We may assume A(T) — A(T—) Φ 0. Then by the preceding"

comments it suffices to show that
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at(T) - at(T-) e sp {xit): T - ε < t < T) .

Moreover since Ait) has simple left innovation spectrum, A(T) — A(T—)
has a degenerate normal distribution supported on the one dimensional
range of GiT) - G(T—). Thus the components α<(Γ) - α<(!Γ—) are scalar
multiples of the variable

e*(r(Γ))[A(D - AiT-)] .

But

e*(τ(T))[A(T) - A(Γ-)] = a?(T) - a(T-) e sp {x(t): T - ε < t < T} ,

and the proof is complete.

COMMENT. For any Ait) with simple left innovation spectrum ex-
amples of functions τ(t) and e(t) satisfying the conditions Theorem IV. 12
exist. For example, let τ(t) be a strictly increasing continuous function
that is singular with respect μ and choose eit) of the form

ea(t) = (1, exp (at), , exp ((% — l)αί)) .

where a > 0 is such that

(IV.35) {G(t) - G(t-)}eaiτ(t)) Φ 0 whenever G(t) - Git-) ψ 0 .

Such α's must exist because for a fixed t with G(t) ψ Git—) there are
at most in — 1) values of a with {Git) — Git—)}eaiτit)) = 0, and there are
at most countably many t with G(ί) Φ Git-). Thus (IV.35) holds for all
but a coutable set of a > 0. For such an α the conditions of Theorem
(IV. 12) are satisfied and, moreover, if tx < < tn then (et(τ(ί^))) is non-
singular. By Theorem (III.l) and (IV. 12) we have

COROLLARY IV. 13. For any non-singular martingale Ait) whose left
innovation spectrum is simple there exists a continuous function eit) so
that the representation xit) = e*it)Ait) is proper and xit) is n-ple Markov.

COMMENT. A remarkable property of the processes described in
Theorem IV. 12 is that for all t < T,

(IV.36) sp {x(s): t < s < T} = sp {α*(s): 1 < i < n, t <s < T} ,

or equivalently for each fixed T

(IV.37) Π sp {x(s): t < s < T) = Π sp {at(s): 1 < i < n, t < s < T\ .

But for any Goursat representation
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Π sp {x(s) : K s < Γ } c Π s p {α«(s): 1 < i < n, t < s < T) .
t

Thus the equality (IV.36) holds iff the dimensions of the two spaces in
(IV.37) are equal. Assuming that A(t) is left continuous and non-
singular

( I V . 3 8 ) Π s p K ( s ) : 1 < i < n t < s < T} = s p {at(T) :l<i<n}
t

has dimension n. We thus have

PROPOSITION IV. 14. A Goursat representation xif) = e*(t)A(t) where
A(t) is left continuous and non-singular is φroper if for each T,

(IV.39) dim Π sp {x(s): t < s < T) = n .
ί

This is true in particular if x{t) is (n — 1) times differentiable and
for each T, {x(T), x'(T), , ̂ (ri-υ(Γ)} are linearly independent. We show
in section V that this condition implies that xit) has multiplicity one.
In the opposite direction we now prove

PROPOSITION IV.15. Suppose that xit) = e*(t)A(f) is a proper Goursat
representation of rank n with uniform multiplicity n, (i.e. G; = dG/dμ
has rank n a.e. [μ]). Then for any T > s > 0 with μ(T) > μ(s + ),

(IV.40) sp {x(t): s < t < T} = sp {α*(ί): 1 < i < n and s < t < T) .

Proof, We begin with two simple observations. First, if μ(s + ) <
μ(T) then

(IV.41) dim sp{e(t): s < t < T) = n .

Second, if x e sp {^(ί): 1 < i < n and s < t < T} then x has a unique repre-
sentation as a stochastic integral

(IV.42) x = Γ

with

(IV 43) «t)6LMT,G} and

c(ί) = φ + ) for 0 < ί < s+ .

Thus if the equality (IV.40) does not hold, there exists a c(£) Φ 0
satisfying (IV.43) with
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0 = Ex(t)x
(IV.44)

= e*(ί)ΓG(ώ)c(8), 0 < t < Γ.

We will show this is impossible, and to this end it suffices to show that

(IV.44) implies c(t) = 0 a.e. for s < t < T. This is true because (IV.43)

and (IV.44) would give

x =z

and

0 = Ex(t)x = c*(s + )G(s + )e(f) , s < t < T .

By (IV.41) it follows that G(s+)c(s+) = 0 and thus Ex2 = c*(s+)G(s + )

c(s+) = 0, which contradicts the assumption that c(ί) is not identically

To see that (IV.44) implies c(t) = 0 for s < t < T we define the

function a(t) by

a(t) = 0 for 0 < t < s +

and

^L(f) = {l + s+ < ί < Γ .

Setting

Cl(0 = [ G ' ί t ) ] - 1 ^ ® Γ G(ds)c(s)\ + a(t)c(t)
Idμ J )

we observe that c,(t) e L2{T, G} and that

(IV.45) Γ G(ds)φ) = α(ί) Γ G(ds)c(s) , 0 < ί < Γ .

Setting

y = d*

= β*(t) Γ
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- α(t)e*(t) Γ G(ds)c(s)

= 0 , 0 < t < T .

Because x(t) = e*(t)A(t) is assumed proper we may conclude that y = 0.

Thus cx(ί) = 0 and by (IV.44), c(ί) = 0 for s < t < T. The proof is com-

plete.

V. Smoothness properties and multiplicity bounds.

Smoothness properties of xit) = e*(ί)A(ί) are reflected in smooth-

ness of the function e(t) and multiplicity bounds on the martingale Ait).

In this section we discuss the elementary aspects of this theory.

To avoid trivialities we will assume that the martingale Ait) is non-

singular. The basic identity which follows directly from the martingale

property of Ait) is

- x{s)\\> = ||e*(ί)[A(t) - A(s)]\\2 + \\(e(t) - e(s))*A(s)\\2

- e*(t)[G(t) - G(s)]e(t)

+ (e(t) - e(s))*G(β)(e(t) - e(s)) , s < t .

From (V.I) we have at once

<V.2) \\x(t) - x(s)\? > e*(t)[G(t) - G(s)]e(t) ,

and

<V.3) ||a?(t) - x(s)\\2 > λ(s) \e(t) - e(s)\2 , s < t

where λ(s) is the minimum eigenvalue of G(s). The function λ(s) is non-

decreasing. Because G(s) is non-singular λ(s) > 0.

From (V.3) it is clear that if x(t) is continuous then so is e(t), and

if xit) satisfies a local Holder condition then so does e(t). We will now

see that differentiability properties are similar. Suppose that

D_x(t) = lim
«ίί t — S

-exists. Upon writing

x(t) — x(s) __ *,.JA(ty — A(s)] (e(t) —

.and noting by (V.3) that (t — s)"1 |e(t) — e(s)\ is bounded, we may choose
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a sequence snff so that (t — sn)"1(e(t) — e(sn))*A(sn) converges as n—> oo_
Thus e*{t)(t — sn)~

1[A(O — A(sn)] also converges to some limit, say x.
But by the martingale property, x is orthogonal to sp {x(s): s < ί}. On
the other hand, since #(s) is left continuous at t, sp {#(s): s < t} = ^ (#, ί)
and a; is orthogonal to

x = Γz>_̂ (0 - lim [ β f f l ~ 6 ( g w ) ] A ( s j 1 e Jt*(t, x) .

Thus x = 0 and

As this must be true for any convergent subsequence we must have

= limlim
sΐί t — S

This and the assumption that A(ί) is non-singular now imply that D_e(t)
exists and D_x(t) = (D_e(t))*A(ί—). Similarly, if #(ί) is fc times differ-
entiable then so is eit) and

(V.4) x{k)it) = (e(*}(t))*A(ί) .

THEOREM V.I. Suppose x(f) is (k — 1) times differ entiable and that
for each t, {x(t)9 , x(k~υ(t)} are linearly independent. Then:
(i) // x{k~ι)(t) is continuous the discrete multiplicity of A(t) is bounded

by n — k.
(ii) // xa~υ(t) is Hplder a-continuous for some a > 1/2 then the multi-

plicity of A{t) is bounded by n — k.

Proof, (i) For each t the k vectors e(t)9 - ,e(*"υ(ί) are independ-
ent, and applying (V.2) to the derivatives x{j)(jt), which we may by (V.4),
we have

0 = ||&<»(« + ) - x(j)(t-)\\ = (e(^(t))*(G(ί + ) - G{t-))e^(t) , 0 < j < k .

Thus rank (G(t + ) - G(ί-)) = w - dim ker (G(ί+ ) - G(ί-)) < n - k.
(ii) For any interval [α, 6] c (0, oo) and any / = 0, , k — 1 there exists
a c < oo for which

(V.5) | | ^ ( t ) - aj^(s)|| < c \t - s\a , s, ί e [α, 6] .
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We now approximate the integral

Γ (eW(t))*G'(t)eW(t)dμ = Γ (e^(t))*G(dt)e(j)(t)
J a J a

ΐ>y Riemann-Stieltjes sums which we estimate using (V.2) and (V.5)

Σ (e^iUΨlGiU) - GiU^WKU) < Σ

Since 2a > 1 this estimate tends to 0 as the norm of the partition tends
to zero. Thus

f
and since the interval [a, b] was arbitrary we see the kernel of G'(t)
€ontains the k independent vectors {e(t), , e{Ίύ~ι)(t)} a.s. [μ] and
rank G\t) < n — k.

COROLLARY V.2. // k = n — 2 in Theorem V.I part (ii) then x(t)
has simple spectrum.
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