
R. Kaufman
Nagoya Math. J.
Vol. 56 (1974), 139-145

LARGE INCREMENTS OF BROWNIAN MOTION

R. KAUFMAN

1. Let X(t) denote Brownian motion on the line 0 < t < oo, let
g(h) = (2h log h~ψ\ and let 0 < a < 1. Orey and Taylor [5] have inves-
tigated the random set defined by the inequalities

Ea: 0 < t < 1, lim sup X(t + h) - X(t)/g(h) > a

and proved that P{dimEa = 1 — a2} = 1. Here we prove two theorems
on Ea that reflect more subtle properties of Ea than its Hausdorff
dimension alone.

THEOREM 1. With probability 1, a certain compact subset of Ea

carries a probability measure μ such that fi(u) = o(^ i ( α 2"υ),l < u < oo.

THEOREM 2. Le£ F be a closed set in (0,1) of dimension d > a2.
Then

P{dimF PiEa> d - a2} = 1 .

For every pair d, a with 1 > d > a2

9 there is almost-sure equality for a
certain fixed set Fj of dimension d. For every a there is a set F2 of
dimension 1 — a2 such that dim F2 Γi Ea = 1 — a2 almost surely.

The standard reference concerning relations between Fourier-Stieltjes
transforms and Hausdorίf measures is [3]: in particular, by a theorem
of Beurling [3, Ch. Ill], the property of Ea claimed in Theorem 1 is
stronger than the lower bound on dim£7α found by Orey and Taylor.
For example, by a theorem of Zygmund [1, p. 413; 6] the property of
Ea is not even shared by certain sets of positive Lebesgue measure.
Further examples concerning dimension and Fourier analysis are pre-
sented in [2], theorems on Brownian motion and dimension in [4 a — d],
while the indeterminacy of intersections of random sets and fixed sets
(as in the second and third statements in Theorem 2) was observed in
[4e].
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Thanks are due to Orey and Taylor for a preprint of [5] and to N.
Jain for pointing out many obscurities.

2. In the proofs we need estimates for sums 2 (P — ζn)Un, where
the ξn are independent random variables with common distribution

P{ξn = 1} = P = 1 ~ P{ξn = 0}; σ2 = Σ K P >

B — max|αn |. The basic inequality is

- p)t2 < exp t2p ,

valid for 0 < p < 1, — 1 < t < 1. In case the coefficients are real, we
find by Chebyshev's inequality

P{\Σ\ > ϊ"} < 2 exp fpσ2 exp - tY , 0 < tB < 1 .

Choosing the best value of t we find

> γ) < 2 e χ P - l/4ir1<r2Γ2 , provided

In the case of complex numbers an in the sum 2 (p — £n)α», we
have merely to replace Y by |Y and double the bounds so obtained;
this estimate is rough, but sufficient.

3. Let S be the functional max|Z(&) - X(a)\ (0 < a < b < 1); we
need only the 'tail' of the distribution of S, namely

P{S >Y} = exp - iY2expo(Y2) , Y-> +oo .

This estimate is obtained simply from the Gaussian law and the reflec-
tion principle, and is of course valid for P{X(ΐ) — X(0) > Y}. We use
it now to obtain an estimate from [5], involving parameters 0 < β < 1,
0 < b < 1. The event

- χ(0) > βg(fi), \X(t) - X(0)| < 2b*g(h) on [0, bk]

has probability hβ2hoω — o(h) as ft-»0+. Thus the event

XQi) - X(t) >(β- 2&)g(h) on 0 < t < bh

has probability >hphoω for small h > 0. With the aid of this inequality
we can begin to construct the measure μ. Let 0 < r < s < 1 and let
h 0- <n < N) be the usual division of (r, s) into adjacent intervals of
length (s — r ) ^ " 1 ; supposing that 6"1 is an integer (as in [5]) we have
a further subdivision of each In into intervals /; (1 < q < b"1) of length
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(s — r)bN~\ An interval /; with left extremity x is selected if

X(x + h) - Xit) >(β- 2b*)g(h) on x < t < x + bh ,

with h = N-^s — r). We put ft = /} — 26* and suppose that 0 < ft < β
< a2. The selections of the intervals /« (1 < w < N) are mutually in-
dependent for each q, with a probability p = PN> N~β*Noω, for large
JV. Let m0 be Lebesgue measure in (r, s), let ξ be the characteristic
function of the selected intervals, and let mx(dx) = p~1ξ(x)m0(dx).

LEMMA. For any ε > 0 the inequality \inau) — mo(^)| < e(l + w)*Cβϊ-1)

/or αίϊ tc > 0 holds, with probability approaching 1 as N —> oo.

Proof. The parameter g = 1, ,b~ι determines decompositions mλ

= 2 m ί and m0 = X] ml because 6 is fixed it is sufficient to prove the
inequality for each pair rhl and m?, as we now do, dropping the super-
script q. Now 7hQ(u) — m^iu) = Σ (1 — P~ιξn)fn(u) where

\fn\< bN'1 < N'1 and |

The last inequality follows from eίuι dt <2\u\-\ Setting C{u)

= max|/n(w)|, we cast the sum into the shape treated in paragraph 2,
except for a factor p~\ The inequality in question is thus \Σ (p — fn) Λ»(w)|
< ep(l + u)**~l\ where β = C(^),σ2 = NC2(u).

On the interval 0 <u < N we replace σ2 and J? by their common
upper bound N~\ and choose Y = εpN^a2'ι\ Then YS < pσ2 and we
obtain an exponential bound 4 exp — cp~ισ~2Y2. Here the exponent exceeds
cpNN"2-1 > Nδ because —β2 + 1 + a2 — 1 > 0. When u> N we use
B = 2u~1,σ2 = 4iV^-2, Y = e?m%2 - 1). To choose the best value of t in
Chebyshev's inequality we must verify that YB < 2pσ2, and this is true
if ua2+1 < N2. The exponent obtained exceeds cp~la~2Y2 > pN^u"2*1 > Nδ,
as before. For the remaining numbers u, defined by the inequality

ua*+i > ^2^ w e c h o o s e i — γβ-ι w i th a small constant η > 0 and obtain
from Chebyshev's inequality a bound 4 exp — cB~Ύ, wherein B~ιY >Nδ.

Thus, for each individual u > 0 the inequality sought holds except
on a set of measure exp — Nδ; in particular, at u = 0, \\nix\\ < 2, except
on such a set. Thus, with probability near 1, the result is valid for
fractions u = jN~2,0 < j < iV4, and since ^ — m0 has derivative at most
2, this disposes of the interval 0 < u < N2 (since the error introduced
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by passing to real numbers u doesn't exceed iV~2). When u > N\ we
use the inequality

1^(^)1 < 2u-1p~1 Σ%n< 4w"W = o(vr*) .

An approach more congenial in Fourier analysis is to prove the
inequality for all integers k and then pass to real numbers u by expand-
ing eίut in terms of eίkt, on the interval 0 < t < 1, whose length is less
than 2ττ.

Using the lemma carefully we can prove Theorem 1. Once η is
specified in (0, \) we state once and for all that the n-th. step, in the
inductive process to be described, must be accomplished except on a set
of P < η + + ψ, and the measures constructed in the n-th. step must
have mass m in the interval |1 — m\ < η + + ψ. In an obvious
way we make β — 25* increase to a. The lemma is applied first with
(r, s) = (0,1), and the random measures mx constructed are step-functions,
with level intervals jN~ι(§ < j < N). As N is fixed, we can apply the
lemma to these N intervals (r, s), and then sum the N different measures
constructed to obtain a random measure m2 such that \m2(t) — mγ{t)\
< 1/4(1 + t)*(β"-υ for all t > 0. The closed support of m2 is contained
in that of mlf . Clearly we can find a limit measure μ, of mass
between 1 - 2 ^ and 1 + 2? such that \fl(t) - mn(t)\ < 2"w(l + t)^a2~ι\
supported in a compact subset of Ea. Since μ is defined except on a
set of P < 2η, Theorem 1 is completely proved.

4. In the proof of Theorem 2 we require a lemma somewhat
analogous to the one already proved; Fourier transforms are of little
use here, since the set F need not carry any measure whose transform
μ tends to zero. We therefore work directly on the metrical properties
of measures, assigning to each measure μ0 on [0,1] a random measure
μλ by the same process as before. Let 0 < β < α : < l , a2 < d < 1.

LEMMA. Suppose that μQ(I) < C\I\d for all intervals I of length \I\.
Then the inequality \μQ(Γ) — μi(Γ)\ < ε\I\d~a2 for all intervals I holds, with
probability approaching 1 as N —> oo.

Proof. Because μ^S) < p~^0(S) for all sets S, the inequality is
valid for intervals / so small that 2p~ιC\I\d < ε\I\d-a\ or \I\a*'<e'p.
Now p = N~μN0(1\ so that the upper bound on |/| exceeds N'1 for large
N. For larger intervals we have the partition of μ0 and μ1 determined
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by q, and as before we omit the superscript. Let then / c (0,1) and
observe that

μo(D - μι(i) = p-1 Σ(v- ξn)μod n /„).

Now μo(I Π In) < CN~d, while σ2 < CN-dμ0(I) < C'N-d\I\d. To estimate
the probability of the event | Σ | > εp\I\d~a2 we use the exponential
integrals with t = ηNd (η > 0 small). Here tY majorizes t2pσ2 because
|/| < 1; moreover tY > cNd \I\d-«*p > Nδ because |/| > 2V"1 and a2 > β2.
This estimate is strong enough to account for the N2 intervals / composed
of adjacent intervals In because the μrmeasure of an interval of length
N'1 is at most Cp~ιN~d = o(Na2~d), this in turn accounts for all intervals
of length |/| > N'1; now the lemma is completely proved:

To prove the first statement in Theorem 2, let dim F > e>a2, so
that F carries a measure μ0 subject to a Lipschitz condition with exponent
e [3, Ch. III]. The lemma can then be applied to construct a sequence
of measures μN9 concentrated in F, whose limit measure is concentrated
in F Π Ea and has mass >^; each μN fulfills a Lipschitz condition
with exponent e, while the entire sequence fulfills a uniform (with
respect to N) Lipschitz condition with exponent e — a2, ensuring that
F Π Ea has dimension at least e — a2. As before, this can be accom-
plished on a set of probability arbitrarily close to 1, so P{dim F Π Ea

> e _ α 2 | = l β

To prove the remaining statements in Theorem 2 we choose for Fx

and F2 certain dyadic sets, defined as follows. To each strictly increas-
ing sequence M = (mfc) of positive integers we associate the set of all
infinite sums 2] ^~mk (e* = 0,1). The Hausdorίf dimension of F is then
liminf k/mk, the lower density of M [2, Ch. II]. For Fx we choose
mk = [d^mjjy so that mk+ι > mk > 1 and M has density d > 1 — a2.
Each integer k > 1 determines a covering of Fx by 2k intervals / of
length 2~m*; let us estimate the number of intervals / that contain a
number t, for which \X(t + h) — X(t)\ > βg(h), for some number h in
the range 2~m* < h < k2~mκ The expected number is at most2Jfc2-^m*2o(A:),
and it is almost sure that for large k a bound of this type is valid.
Clearly this implies that dim F1 Π Ea < d — β2 (whenever β < a2) hence
P{dim Fx Π Ea < d - a2} = 1. Moreover, when d < a2 Fλ D Ea = φ almost
surely.

We now sketch briefly a curious result about the critical case d = a2,
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choosing a sequence M with mk = d~ιk + o(k),mk — d~ιk-> oo. As will

be explained below, Fx carries a measure μ satisfying the Lipschitz con-

dition in each exponent dx < d. Adapting the second lemma we can

prove that Fx Π Ea almost surely supports a continuous measure and

must then be uncountable a proper choice of ikf, taking account of the

distribution of S, yields a set F1 of dimension a2 such that

\X(t + h) - X(t)\ < ag(h) for h < h0 and all t in Fx

almost surely. (The argument in this paragraph is adapted from [5].)

The sequence M defining F2 is described in terms of its counting

function v: v(s) = k if mk < s < mk+1. We require that d = 1 — a2 and

that

(1) v(s) > ds + sι/2 for 8 > s0,

(2) lim inf s^viέ) = d,

(3) v(P) >f — t for all integers t in an infinite set T.

Then F2 carries a product measure μ0 derived from its representation as

a Cantor set its modulus of continuity w(h) = sup μo(α, a + h) is govern-

ed by the inequalities w(2~s) < 2 2-υ(s).

Now we follow the proof of the first statement, setting N = 2ίS for

some t in Γ. The inequality necessary for one step in the construction

is \μo(I) - μi(I)\<ε\I\d for all intervals /. First of all w(h) = o(hd);

thus wQi) < εphd for h < N~ι. In fact, for h < 2"ίβ, say h = 2~ , w(h)h~d

< 2~sυ\ while 2? > N-β*Noω, so the inequality s > t8 yields w(h)h~d < N'1

= o(p). For & > 2"ί6 we use the elementary inequality wQi) < 2h-2tew(2~te)

< Ah2K Also, Ah2ι < εphd when h < N~\ because d + a2 = 1. Thus we

have disposed of intervals / of length < 2V"1.

For remaining numbers h > N'1 we study sums p~ι Σ = P"1 Σ (p

- ζn)μ(I Γl /„); in Σ we have β < wiN-1) and σ2 < w(h)w(N-1). In the

exponential integrals we take t — ηw~\N~ι) with a small J? > 0 and obtain

a bound

P{\Σx\ > εP/^} < 2 exp η2vw(h)w-ι(N~ι) exp -

Now w(fo) = 0(fed) so the exponent is negative for small η and has

modulus > cφhdw-ι(N~ι) > cpN^w'KN'1) > Nδ for a certain δ > 0; these

inequalities are sufficient to construct a measure on F2 Π i7α with modulus

of continuity 0(hd) so F2 Π ί7α has dimension 1 — α:2.

By the same method we can prove an even stronger property for a

set F3 of dimension 1 — a2. Let S be a sequence of positive numbers
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tending to 0, and let Ea(S) be defined by the functional lim sup X(t + h)
— X(t)/g(h)9heS. Then F 3 will be a compact set of dimension 1 — a2,
and dim F3 Π Ea(S) = 1 — a2 almost-surely, for each fixed null sequence
S.

Fz is a "compound" dyadic set, slightly more complicated than Fλ

and F2 in structure. Using the dyadic representation as before, we
have sets Dq defined as follows: x = Σ eΛ2~* is in Dk if either εk = 0
on q < k < d~ιq, or efc = 0 on q2 < k < d~ιq2 F3 is the intersection
Π D(qj), where qj+1 > (/ + l)q). Since each D(q) has an efficient cover-
ing by dyadic intervals, dim F3 < 1 — a2 = d. Each sequence of symbols
aά = I or // determines a dyadic set contained in F3: when aό = / we
take the first alternative allowed in D ^ ) , and the second when aj = II.
When the sequence s = Λ 1>Λ 2> >feTO> is specified, there is a
subsequence of S, say (fc*) and a choice of the symbols ad = I, II with
this property: the numbers — log fc* and the digits εk omitted from the
dyadic set become far apart in the sense that for large m all integers
k in [—£ log ft*, — ε"1 log ft*] are unrestricted. Now, choosing the product
measure on this special subset of F3 and using N = ft"1 in the construc-
tion leading to F2, we can construct a subset of F3 Π Ea(S) of dimension
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