THE EXTENSION OF G-FOLIATIONS TO TANGENT BUNDLES OF HIGHER ORDER

LUIS A. CORDERO*

Introduction

In this paper we describe a canonical procedure for constructing the extension of a G-foliation on a differentiable** manifold X to its tangent bundles of higher order and by applying the Bott-Haefliger's construction of characteristic classes of G-foliations ([2], [3]) we obtain an infinite sequence $\{\mathring{\varphi}, \mathring{\varphi}, \cdots, \mathring{\varphi}, \cdots\}$ of characteristic classes for those foliations (Theorem 4.8).

By the way, a new equivalence relation between G-foliations weaker than the homotopy is defined (Definition 3.7) which we call r-homotopy and show that the set of characteristic classes of a G-foliation is an invariant of its r-homotopy class; some new results in the theory of tangent bundles of higher order are shown (Theorem 1.1 and Lemma 3.10) and the concept of tangent pseudogroup of higher order of a transitive Lie pseudogroup is introduced (Theorem 2.1 and Definition 2.1).

§ 1. Tangent bundles of higher order ([5])

Let $r \ge 0$ be an integer.

Let M be a differentiable C^{∞} manifold, $\dim M = n$, and let $C^{\infty}(M)$ be the algebra of all differentiable functions on M. We denote by S(M) the set of all differentiable maps $\varphi \colon R \to M$; we define an equivalence relation on S(M) in the following way: if $\varphi, \psi \in S(M)$ we say $\varphi \curvearrowright \psi$ if and only if $\varphi(0) = \psi(0)$ and, for every $f \in C^{\infty}(M)$, $f \circ \varphi$ and $f \circ \psi$ have the same r-jet in 0, the origin of R; if $\varphi \in S(M)$, $[\varphi]_r$ will denote its class of equivalence and if $\varphi(0) = p \in M$, $[\varphi]_r$ is called the r-tangent vector

Received November 26, 1973.

Revised June 12, 1974.

^{*} This research was supported by a fellowship of Ministerio de Educacion y Ciencia (Spain) in 1972-73.

^{**} Always differentiable will mean differentiable of class C^{∞} .

defined by φ at the point p of M.

Let TM be the set of all r-tangent vectors at all points of M; there is a canonical projection

$$\overset{r}{\Pi}_{M}: \overset{r}{T}M \to M$$

given by $\prod_{M}^{r}([\varphi]_{r})=\varphi(0)$.

In order to define a structure of differentiable manifold on TM, consider a differentiable atlas $\{U_a,\phi_a\}_{\alpha\in A}$ of M and let $(x_1^\alpha,\cdots,x_n^\alpha)$ be the coordinate functions on U_a . On the set $(\tilde{H}_M)^{-1}(U_a)$ a coordinate system $(x_i)^\alpha, i=1,2,\cdots,n, \nu=0,1,\cdots,r$, is defined by

$$\stackrel{\scriptscriptstyle(
u)}{x_i}{}^{\scriptscriptstyle(
u)}([\varphi]_r) = rac{1}{\nu!} \left[rac{d^{\scriptscriptstyle{
u}}(x_i^{\scriptscriptstyle{lpha}}(\varphi(t)))}{dt^{\scriptscriptstyle{
u}}}
ight]_{t=0}$$

for every $[\varphi]_r \in (\stackrel{r}{\Pi}_M)^{-1}(U_\alpha)$.

Therefore, $\overset{r}{T}M$ is an n(r+1)-dimensional differentiable manifold and $\overset{r}{H}_{M}$ is a submersion. Besides, for every $p \in M$, $\overset{r}{T}_{p}M = (\overset{r}{H}_{M})^{-1}(p)$ is canonically diffeomorphic to R^{rn} .

M can be canonically imbedded in TM by taking

$$i_{\scriptscriptstyle M}:M \to \overset{r}{T}M$$

defined by $i_M(x) = \tilde{x}, x \in M$, being $\tilde{x} = [\gamma_x]_r$, with $\gamma_x \in S(M)$ given by $\gamma_x(t) = x$, for every $t \in R$.

Let N be another differentiable manifold and $\phi: M \to N$ a differentiable map; then, a differentiable map

$$T\phi: TM \to TN$$

is canonically defined by

$$(\overset{r}{T}\phi)([\varphi]_r)=[\phi\circ\varphi]_r$$
 , for every $\varphi\in S(M)$.

Let M_0, M_1, M_2 and M_3 be differentiable manifolds and let

$$\phi: M_0 \to M_1, \phi_1: M_1 \to M_2, \phi': M_0 \to M_2$$
 and $\psi: M_2 \to M_3$

be differentiable maps. Then, it is verified that

$$egin{aligned} & \ddot{T}(\phi_1 \circ \phi) = \ddot{T}\phi_1 \circ \ddot{T}\phi \;, & \ddot{T}(\phi,\phi') = (\ddot{T}\phi,\ddot{T}\phi') \ & \ddot{T}(\phi imes \psi) = \ddot{T}\phi imes \dot{T}\psi \;, & \ddot{T}1_{\scriptscriptstyle M} = 1_{\scriptscriptstyle TM} \end{aligned}$$

where 1_M is the identity diffeomorphism and $T(M \times M_2)$ is canonically identified to $TM \times TM_2$.

Likewise, if $\phi: M \to N$ is a submersion (respect. an immersion) $T\phi$ is also a submersion (respect. an immersion); if ϕ is a diffeomorphism, $T\phi$ is also a diffeomorphism.

If $\phi: M \to N$ is a differentiable map and $\psi: TM \to TN$ is a differentiable map in such a form that

$$\begin{array}{ccc} \stackrel{T}{T}M \stackrel{\psi}{\longrightarrow} \stackrel{T}{T}N \\ \stackrel{\tilde{H}_{M}}{\downarrow} & & \downarrow \stackrel{\tilde{H}_{N}}{\downarrow} \\ M & \stackrel{\phi}{\longrightarrow} & N \end{array}$$

is commutative we shall say " ψ is over ϕ "; note that, for each ϕ , the set of differentiable maps which are over ϕ is not empty and let us denote this set S_{ϕ} .

The following theorem will be important for our purposes and gives a topological relation between a differentiable manifold and its tangent bundles of higher order.

THEOREM 1.1. For every integer $r \geqslant 0$, M and TM have the same homotopy type.

Proof. Let i_M and \tilde{H}_M as above; it is clear that $\tilde{H}_M \circ i_M = 1_M$. Now, define a continuous map

$$F: \overset{r}{T}M \times R \rightarrow \overset{r}{T}M$$

by $F([\varphi]_r,t) = [\varphi_t]_r$, for $[\varphi]_r \in TM$ and $t \in R$, where $[\varphi_t]_r \in TM$ is defined in the following way: if $\varphi: R \to M$ defines $[\varphi]_r$, we take, for each $t \in R, \varphi_t: R \to M$ given by $\varphi_t(s) = \varphi(s(1-t)), \forall s \in R$; it is clear that $[\varphi_t]_r$ is well-defined and

$$egin{aligned} F_{TM imes\{0\}} &= 1_{TM} \ F_{TM imes\{0\}} &= i_M \circ \H_M \end{aligned}$$

COROLLARY 1.1. For every integer $r \ge 0$, the de Rham complex $H^*(M)$ and $H^*(TM)$ are canonically isomorphic.

§ 2. Tangent pseudogroups of higher order.

Let M an n-dimensional differentiable manifold and let TM be its tangent bundle of order $r, r \geqslant 0$. Let G be a pseudogroup of local diffeomorphisms of M and consider, for every $g \in G$, the set S_g of all local diffeomorphisms of TM which are over g. Then, $^rG = \bigcup_{g \in G} S_g$ is a pseudogroup of local diffeomorphisms of TM.

DEFINITION 2.1. We shall call rG the tangent pseudogroup of G of order r.

Now, consider the euclidean space \mathbf{R}^n and its tangent bundle of order $r, T^n \mathbf{R}^n$; for each coordinate open neighborhood U in \mathbf{R}^n with coordinate functions (x_1, \dots, x_n) , consider the coordinate open neighborhood TU in $T^n \mathbf{R}^n$ and its coordinate functions (x_i) , $i=1,2,\dots,n, \nu=0,1,\dots,r$, and denote $\varphi^r: TU \to \text{open set } \subset \mathbf{R}^{n(r+1)}$ the diffeomorphism defined by the coordinate functions x_i . Let

$$p_1: \mathbf{R}^n \times \stackrel{r+1}{\cdots} \times \mathbf{R}^n \to \mathbf{R}^n$$

be the canonical projection onto the first factor; then, every diffeomorphism

$$\lambda: \varphi^r(\overset{r}{T}U) \to \varphi^r(\overset{r}{T}M)$$

such that $p_1 \circ \lambda = p_1$ defines canonically a differentiable transformation of TU which is over $\mathbf{1}_U$.

Now, take $G = \Gamma_n$, the Lie pseudogroup of diffeomorphisms on \mathbb{R}^n (for definition of Lie pseudogroup see [4], p. 36).

THEOREM 2.1. ${}^{r}\Gamma_{n}$ is a transitive Lie pseudogroup.

Proof. Let $A, B \in TR^n, A \neq B$. We have to show there is ${}^r f \in {}^r \Gamma_n$ in such a form that ${}^r f(A) = B$. It may be $\tilde{\Pi}_{R^n}(A) = \tilde{\Pi}_{R^n}(B)$ or $\tilde{\Pi}_{R^n}(A) \neq \tilde{\Pi}_{R^n}(B)$; suppose we are in the second case and put $a = \tilde{\Pi}_{R^n}(A), b$

 $=\stackrel{r}{\Pi}_{R^n}(B)$; then, there exists $f\in \Gamma_n$ such that f(a)=b and by using $Tf\in {}^r\Gamma_n$ we obtain $\stackrel{r}{\Pi}_{R^n}((Tf)(A))=\stackrel{r}{\Pi}_{R^n}(B)$. Therefore we can restrain us to consider a=b.

Thus, let $U \subset \mathbb{R}^n$ be an open set and $a \in U$; then, $A, B \in TU$ and put $a' = \varphi^r(A), b' = \varphi^r(B), \varphi^r$ being the diffeomorphism of TU on an open set in $\mathbb{R}^{n(r+1)}$; clearly, there is a diffeomorphism

$$\lambda \colon \varphi^r(\overset{r}{T}U) \to \varphi^r(\overset{r}{T}U)$$

in such a form that $\lambda(a') = b'$ and satisfying $p_1 \circ \lambda = p_1$. The differentiable transformation η of TU on itself defined through λ is over 1_U and, therefore, $\eta \in {}^r\Gamma_n$; besides, $\eta(A) = B$ and this shows ${}^r\Gamma_n$ is transitive.

Now, let $J_0^k({}^r\Gamma_n)$ be the space of k-jets at $\widetilde{0}$ of elements of ${}^r\Gamma_n$, with $\widetilde{0}=i_{R^n}(0)$ and 0 being the origin of R^n . Our purpose is to show that $J_0^k({}^r\Gamma_n)$ is canonically a differentiable principal bundle over ${}^rR^n$ with group $({}^r\Gamma_n)_0^k$, the Lie group of k-jets of elements of ${}^r\Gamma_n$ which keep $\widetilde{0}$ fixed.

 $({}^r\Gamma_n)_0^k$ acts freely on $J_0^k({}^r\Gamma_n)$ on the right in the natural way: if $j_0^k({}^rf) \in ({}^r\Gamma_n)_0^k$ and $j_0^k({}^rg) \in J_0^k({}^r\Gamma_n)$, then

$$j_{\delta}^{k}(^{r}g)\circ j_{\delta}^{k}(^{r}f)=j_{\delta}^{k}(^{r}g\circ ^{r}f)$$

is well-defined and if ${}^rg \in S_{\varrho}, {}^rf \in S_f$, then $({}^rg \circ {}^rf) \in S_{(\varrho \circ f)}$ and, therefore $j^k_{\bar{\varrho}}({}^rg \circ {}^rf) \in J^k_{\bar{\varrho}}({}^r\Gamma_n)$. In order to obtain the local trivialization of $J^k_{\bar{\varrho}}({}^r\Gamma_n)$, consider the open covering of ${}^rR^n$ given by $\{{}^rU\}$, $\{U\}$ being the open sets of R^n ; then, if $p:J^k_{\bar{\varrho}}({}^r\Gamma_n) \to {}^rR^n$ is the canonical projection, for every $U \subset R^n$ we define

$$\phi_{TU}^r \colon p^{-1}(\mathring{T}U) \to \mathring{T}U \times ({}^r\Gamma_n)^k_0$$

as follows: for every $j_0^k({}^rf) \in p^{-1}(\overset{r}{T}U)$ with $p(j_0^k({}^rf)) = \tilde{x}$, let ${}^rg_U \in {}^r\Gamma_n$ such that ${}^rg_U(\tilde{0}) = \tilde{x}$; then

$$\phi_{TU}^{r}(j_{\delta}^{k}(rf)) = (\tilde{x}, j_{\delta}^{k}((rg)^{-1} \circ rf))$$

Q.E.D.

§ 3. r-extension and r-homotopy of foliations.

Let M be a differentiable manifold and G a pseudogroup of local

diffeomorphisms acting transitively on M; consider the manifold TM and the tangent pseudogroup rG of order r, for every $r \in \{0, 1, 2, \cdots\}$. We shall suppose from now on that rG is a transitive Lie pseudogroup (that is the case when $M = \mathbb{R}^n$ and $G = \Gamma_n$ as we have shown in theorem 2.1).

Let X be a differentiable manifold, dim $X \geqslant \dim M$.

Definition 3.1. A G-foliation on X is a maximal family F of submersions

$$f_U:U\to M$$

of open sets U in X, $\{U\}$ being an open covering of X and the family $\{f_U\}$ satisfying the following condition: for every $x \in U \cap V$ there exists an element $g_{UV} \in G$ with $f_U = g_{UV} \circ f_V$ in some vicinity of x.

Given a smooth map $f: X' \to X$, f is transverse to F if the composed maps $f_U \circ f$ are submersions; in this case, the maps $f_U \circ f$ are the local projections of a G-foliation on X' called the inverse image $f^{-1}F$ of F via f. With this concept, f is called a morphism from $f^{-1}F$ to F and, thus, the G-foliations form a category denoted $\mathscr{F}(G)$.

Let $\mathcal{F}(^rG)$ be the category of rG -foliations.

THEOREM 3.2. Let F be a G-foliation on X. There exists, canonically defined, a rG -foliation $\overset{r}{F}$ on $\overset{r}{T}X$ in such a form that the correspondence $F \to \overset{r}{F}$ defines a contravariant functor $\mathscr R$ from $\mathscr F(G)$ to $\mathscr F({}^rG)$.

Proof. Let $\{U\}$ be the open covering of X and let $\{f_U\}$ be the family of submersions which define the foliation F. The rG -foliation F on TX is defined taking the open covering $\{TU = (T_X)^{-1}(U)\}$ and the family of submersions $\{Tf_U\}$; since this family satisfies the compatibility condition, there exists a maximal family containing it and defining F. Now, let $f: X' \to X$ be a differentiable map which is transverse to F. Then, it is clear that $Tf: TX' \to TX$ is transverse to F and it follows $(f^{-1}F) = (Tf)^{-1}F$. The functoriality of the correspondence $F \to F$ is shown by a direct computation.

DEFINITION 3.3. Let F be a G-foliation on X. The rG -foliation $\overset{r}{F}$ on $\overset{r}{T}X$ defined in theorem 3.2 will be called the r-extension of F.

Remark. The construction of Theorem 3.2 is true for every finite positive integer r, and, therefore, to each G-foliation F on X, a sequence $\{\overset{\circ}{F},\overset{1}{F},\overset{2}{F},\cdots\}$, with $\overset{\circ}{F}=F$, is associated. If dim M=m, that is codim F=m, then codim $\overset{r}{F}=m(r+1)$, for each $r\geqslant 0$.

Let F_0 and F_1 be two G-foliations on X. For each $t \in R$

$$i_t: X \to X \times R$$

denotes the canonical injection $x \to (x, t)$.

DEFINITION 3.4. The G-foliations F_0 and F_1 are said homotopic, $F_0 \sim F_1$, if there exists a G-foliation F on $X \times R$ in such a way that i_0 and i_1 are transverse to F and $i_0^{-1}F = F_0$, $i_1^{-1}F = F_1$.

As it is well known, the homotopy of G-foliations is an equivalence relation. Denote $\mathcal{H}_G(X)$ the set of homotopy class of G-foliations on X; if $f: X' \to X$ is a morphism of F, G-foliation on X, to $f^{-1}F$, G-foliation on X', it is clear that f defines a map

$$\mathcal{H}(f):\mathcal{H}_{G}(X)\to\mathcal{H}_{G}(X')$$

and the following theorem is easily proved:

THEOREM 3.5. $\mathscr{H}_{G}(\cdot)$ is a homotopy invariant contravariant functor. Now, we return to our r-extensions.

THEOREM 3.6. Let F_0 and F_1 be two homotopic G-foliations on X. Then, for every $r \geqslant 0$, their r-extensions \tilde{F}_0 and \tilde{F}_1 are homotopic rG -foliations on $\tilde{T}X$.

Proof. Let F be the G-foliation on $X \times R$ defining the homotopy between F_0 and F_1 . Consider

$$TX \times R \xrightarrow{\mathbf{1}_{TX}^r \times i_R} TX \times TR \xrightarrow{\simeq} T(X \times R) \xrightarrow{\tilde{H}_{X \times R}} X \times R$$

and denote $\lambda = \simeq \circ (1_{\tilde{t}X} \times i_R)$; then, $\lambda^{-1} \tilde{F}$ is a rG -foliation on $\tilde{t}X \times R$ which defines a homotopy between \tilde{F}_0 and \tilde{F}_1 ; this fact follows from the commutativity of the following diagram, for every $t \in R$,

$$\begin{array}{ccc}
 & TX \times R \\
\downarrow^{i_t} & \downarrow^{\lambda} \\
 & TX \xrightarrow{\tilde{T}i_t} T(X \times R) \\
 & \tilde{\Pi}_X \downarrow & \downarrow^{\tilde{\Pi}_{X \times R}} \\
 & X \xrightarrow{i_t} X \times R
\end{array}$$

Q.E.D.

Observe that if F_0 and F_1 are not homotopic G-foliations on X, their r-extensions could be homotopic, but the converse is an open problem, the answer of which we think to be negative. That leads us to the following definition.

DEFINITION 3.7. Let $r \geqslant 0$ be an integer. Two G-foliations F_0 and F_1 on X will be said r-homotopic, $F_0 \sim F_1$, if their r-extensions \tilde{F}_0 and \tilde{F}_1 are homotopic, $\tilde{F}_0 \sim \tilde{F}_1$.

Proposition 3.8. \sim is an equivalence relation.

Remark. The 0-homotopy is the usual homotopy of G-foliations and if F_0 and F_1 are 0-homotopic then they are r-homotopic for every r > 0.

Denote, for each $r \ge 0$, $\mathcal{H}_{\sigma}^r(X)$ the set of r-homotopy classes of G-foliations on X. Then, we have

Theorem 3.9. $\mathcal{H}_{G}^{r}(\cdot)$ is a homotopy invariant contravariant functor.

This theorem is a direct consequence of Theorems 3.5 and 3.6 and of the following Lemma.

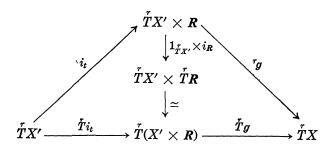
LEMMA 3.10. Let $f_0, f_1: X' \to X$ two differentiable (differentiably) homotopic maps. Then, for each $r \geqslant 0, T f_0, T f_1: T X' \to T X$ are (differentiably) homotopic.

Proof. Let $g: X' \times R \to X$ be the differentiable map defining the homotopy between f_0 and f_1 . We define a differentiable map

$$^{r}g: \overset{r}{T}X' \times \mathbf{R} \rightarrow \overset{r}{T}X$$

by $rg = Tg \circ \simeq \circ (1_{TX'} \times i_R)$, where $\simeq : TX' \times TR \to T(X' \times R)$ is the can-

onical diffeomorphism; rg defines actually a homotopy between rTf_0 and rTf_1 , because for each $t \in R$ the following diagram is commutative:



Q.E.D.

§ 4. Characteristic classes of G-foliations.

Recall briefly the construction of the Bott-Haefliger's characteristic homomorphism for G-foliations, following Haefliger ({3}).

Let G be a Lie pseudogroup acting transitively on a differentiable manifold M; a vector field defined on an open set of M is called a G-vector field if the local one parameter group which it generates is in G.

Fix a point $0 \in M$; the set of k-jets at 0 of G-vector fields is a vector space \underline{G}^k which is not a Lie algebra. Then, consider the inverse limit

$$\underline{G}=\varprojlim\underline{G}^{\mathtt{k}}$$

which is a Lie algebra called "the Lie algebra of formal G-vector fields". Denote by $A(\underline{G})$ the direct limit of the algebras $A(\underline{G}^k)$ of multilinear alternate forms on \underline{G}^k ; the bracket on \underline{G} induces a differential on $A(\underline{G})$, and we write $H^*(\underline{G})$ for the resulting cohomology group.

Denote $J_0^k(G)$ the space of k-jets at 0 of the elements of G; this is the total space of a fiber space on M; besides, if G_0^k denotes the Lie group of elements of $J_0^k(G)$ keeping 0 fixed, G_0^k acts on $J_0^k(G)$ on the right and makes it a differentiable principal bundle. Besides, G acts on $J_0^k(G)$ on the left as a pseudogroup of transformations. Denote $J_0^{\infty}(G)$ the inverse limit of the $J_0^k(G)$; $J_0^{\infty}(G)$ is endowed with a differentiable structure as follows: a map of a differentiable manifold X on $J_0^{\infty}(G)$ is differentiable if its projection on each $J_0^k(G)$ is differentiable; in this way $J_0^{\infty}(G)$ can be looked as a differentiable principal bundle over M

with group G_0^{∞} , the inverse limit of the G_0^k ; besides, G acts on $J_0^{\infty}(G)$ on the left. We define the algebra $A(J_0^{\infty}(G))$ of differential forms on $J_0^{\infty}(G)$ as the direct limit of the algebras $A(J_0^k(G))$ of differential forms on $J_0^k(G)$.

THEOREM 4.1 ([3]). $A(\underline{G})$ is canonically isomorphic to the algebra of differential forms on $J_0^{\infty}(G)$ which are invariant under the action of G and this isomorphism commutes with the differential operators.

A compact subgroup K of G_0^{∞} , playing the role of maximal compact subgroup, is defined being isomorphic to (up to conjugation) the inverse limit of the maximal compact subgroups K^s of G_0^s , for each positive integer s; the complex $A(\underline{G}, K)$ is the subcomplex of K-basic elements of $A(\underline{G})$ and its cohomology algebra will be denoted $H^*(\underline{G}, K)$.

Theorem 4.2 ([3]). Let F be a G-foliation on X. There is an algebra homomorphism

$$\varphi(F): H^*(\underline{G}, K) \to H^*(X)$$

in such a form that if $f: X' \to X$ is transverse to F, then

$$f^* \circ \varphi(F) = \varphi(f^{-1}F)$$

DEFINITION 4.3. Im $\varphi(F)$ is called the set of characteristic classes of F.

PROPOSITION 4.4. If F_0 and F_1 are homotopic G-foliations on X, then

$$\operatorname{Im} \varphi(F_0) = \operatorname{Im} \varphi(F_1)$$
.

This means that the characteristic classes of a G-foliation are invariants of its homotopy class; the following theorem gives a finer characterization.

THEOREM 4.5. Let F_0 and F_1 G-foliations on X. If there is some integer $r \geqslant 0$ such that F_0 and F_1 are r-homotopic, then

$$\operatorname{Im} \varphi(F_0) = \operatorname{Im} \varphi(F_1)$$
.

This theorem follows from Proposition 4.4 and the following theorem.

THEOREM 4.6. Let F be a G-foliation on X and let $r \ge 0$ an integer; if $\varphi(F)$ denotes the Bott-Haefliger's characteristic homomorphism, we have

$$\operatorname{Im} \varphi(F) = i_X^*(\operatorname{Im} \varphi(F))$$

where i_x^* is the isomorphism induced in cohomology by $i_x : X \to \overset{r}{T} X$.

To show this theorem, we need a preparatory Lemma. For that, denote $H^*({}^r\underline{G}, {}^rK)$ the cohomology of rK -basic differential forms on ${}^r\underline{G}$, the Lie algebra of formal rG -vector fields; we keep the notations above, only adding the index r in each case.

LEMMA 4.7. Let $r \geqslant 0$ be an arbitrary fixed integer. Let F be a G-foliation on X and let \tilde{F} be its r-extension. Then:

a) There exists a canonical homomorphism

$$\sigma: H^*(\underline{G}, K) \to H^*({}^{r}\underline{G}, {}^{r}K)$$

such that

$$H^{*}({}^{r}\underline{G}, {}^{r}K) \xrightarrow{\varphi(\overset{r}{F})} H^{*}(\overset{r}{T}X)$$

$$\downarrow i_{X}^{*} \qquad \qquad \downarrow i_{X}^{*}$$

$$H^{*}(\overset{G}{G}, K) \xrightarrow{\varphi(F)} H^{*}(X)$$

$$(4.1)$$

commutes.

b) There exists a canonical homomorphism

$$\tau: H^*({}^{\tau}G, {}^{\tau}K) \to H^*(G, K)$$

such that

$$H^{*}({}^{r}\underline{G}, {}^{r}K) \xrightarrow{\varphi(\dot{F})} H^{*}(\dot{T}X)$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow (\dot{\Pi}_{X})^{*}$$

$$H^{*}(G, K) \xrightarrow{\varphi(F)} H^{*}(X)$$

$$(4.2)$$

commutes.

c) $\tau \circ \sigma = 1_{H^*(G,K)}$ and, hence, τ is onto.

Proof. 1. Construction of σ .

Fix the point $\widetilde{0}\in {}^r\!M$, $\widetilde{0}=i_{\scriptscriptstyle M}(0)$. Now, consider the map, for each $k\geqslant 0$,

$$\sigma_k: J^k_0({}^rG) \to J^k_0(G)$$

defined as follows: let $j_{\delta}^{k}({}^{r}f) \in J_{\delta}^{k}({}^{r}G)$ and let ${}^{r}f \in {}^{r}G$ a representative of this jet; then, there is a unique $f \in G$ such that ${}^{r}f$ is over f; we define

$$\sigma_k(j_0^k(rf)) = j_0^k(f)$$

and σ_k is, clearly, a well-defined map. Actually, σ_k induces a homomorphism of Lie groups

$$\sigma_k : {}^rG_0^k \to G_0^k$$

and, in fact, we get a homomorphism of differentiable principal bundles making commutative the following diagram

$$J_0^k({}^rG) \xrightarrow{\sigma_k} J_0^k(G) \\ \downarrow \qquad \qquad \downarrow \\ \stackrel{r}{T}M \xrightarrow{\stackrel{f}{I}_M} M$$

Moreover, if for every ${}^r f \in {}^r G$ with ${}^r f \in S_f$, $f \in G$, we denote λ_r , (respect. λ_f) the differentiable transformation of $J_0^k({}^r G)$ (respect. $J_0^k(G)$) defined by the action on the left of ${}^r f$ (respect. f), a direct computation shows

$$\lambda_f \circ \sigma_k = \sigma_k \circ \lambda_{r_f}$$

If σ_k denotes, still, the induced homomorphism between the algebras of differential forms

$$\sigma_k: A(J_0^k(G)) \to A(J_0^k({}^rG))$$

the differential forms invariant under the action of G are sent on the differential forms invariant under the action of rG . As a consequence, we have canonically a homomorphism

$$\sigma: A(J_0^{\infty}(G)) \to A(J_0^{\infty}({}^rG))$$

which induces a new one

$$\sigma: A(G) \to A({}^rG)$$

Actually, σ induces a homomorphism

$$\sigma: A(\underline{G}, K) \to A({}^{r}\underline{G}, {}^{r}K)$$

which induces a homomorphism in cohomology

$$\sigma: H^*(G,K) \to H^*({}^r\underline{G},{}^rK)$$

In order to prove the commutativity of (4.1) it is sufficient to show the commutativity of

$$A(J_0^k({}^rG)) \xrightarrow{r_\eta} A(P^k(\tilde{F})|_{\tilde{T}U}) \xrightarrow{r_p} A(\tilde{T}U)$$

$$\downarrow i_{\overline{v}}^* \qquad \qquad \downarrow i_{\overline{v}}^*$$

$$A(J_0^k(G)) \xrightarrow{\eta} A(P^k(F)|_{U}) \xrightarrow{p} A(U)$$

$$(4.3)$$

where U is a distinguished open set on $X, P^k(F)|_U$ (respect. $P^k(F)|_{TU}$) is the restriction to U (respect. to TU) of the principal bundles of k-jets of the local projections of F (respect. of F); p (respect. rp) is the homomorphism canonically induced by the local embedding j_U (respect. j_{TU}) in $P^k(F)|_U$ (respect. $P^k(F)|_{TU}$) and η (respect. $^r\eta$) is induced by the identification of $J^k_0(G)$ (respect. $J^k_0(^rG)$) to $P^k(F)|_U$ (respect. $P^k(F)|_{TU}$) via f_U (respect. $T^k_U(F)|_U$). This diagram, in the limit, and for the K-basic G-invariant differential forms, induces (4.1).

The embedding $j_U: U \to P^k(F)|_U$ is defined as follows: if $f_U: U \to M$ is the local submersion, for each point $x \in U$, $j_U(x) = j_0^k(g^{-1}f_U)$, where $g \in G$ verifies $g(0) = f_U(x)$, that is, j_U is defined through the local trivialization of $P^k(F)$; j_{TU} is defined in the same way.

Then, if $\omega \in A(J_0^k(G))$, we have

$$p(\eta(\omega))|_x = \eta(\omega)|_{I_x^k(q-1f_x)} = \omega|_{I_x^k(q)}$$

and, if $\tilde{x} = i_U(x)$

$$i_{U}^{*}({}^{r}p({}^{r}\eta(\sigma_{k}(\omega))))|_{x} = {}^{r}p({}^{r}\eta(\sigma_{k}(\omega)))|_{x}$$

$$= {}^{r}\eta(\sigma_{k}(\omega))|_{f_{0}^{*}(f_{0})^{-1}I_{f_{U}}^{*}} = \sigma_{k}(\omega)|_{f_{0}^{*}(I_{0})}^{*} = \omega|_{f_{0}^{*}(G)}$$

Hence, (4.3) commutes.

2. Construction of τ .

For each $k \ge 0$, we define a differentiable map

$$\tau_k: J_0^k(G) \to J_0^{k-r}({}^rG)$$

by $\tau_k(j_0^k(f)) = j_0^{k-r}(Tf)$ for $f \in G$, if k > r, and $\tau_k(j_0^k(f)) = j_0^0(Tf)$ if $k \leqslant r$. It is clear that τ_k is a well-defined differentiable map and it induces a homomorphism

$$\tau_k: A(J_0^{k-r}({}^rG)) \to A(J_0^k(G))$$

and, in the limit, we have the homomorphism

$$\tau: A(J_0^{\infty}({}^rG)) \to A(J_0^{\infty}(G))$$
.

As above, τ sends the differential forms invariant under the action of ${}^{\tau}G$ on differential forms invariant under the action of G, because

$$\lambda_{Tf}^{\tau} \circ \tau_k = \tau_k \circ \lambda_f$$

for every $k \geqslant 0$. Hence, τ defines a homomorphism

$$\tau: A({}^rG) \to A(G)$$
.

Obviously, for each $k \ge 0$, τ_k defines a homomorphism of differentiable principal bundles, making commutative the following diagram

$$J_0^k(G) \xrightarrow{\tau_k} J_0^{k-r}({}^rG)$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \stackrel{i_M}{\rightleftharpoons} TM$$

and, in fact, τ induces a homomorphism in cohomology

$$\tau: H^*({}^rG, {}^rK) \to H^*(G, K)$$
.

The commutativity of (4.2) follows from the commutativity of

$$A(J_0^{k-r}({}^rG)) \xrightarrow{r_\eta} A(P^{k-r}(\overset{r}{F})|_{TU}^r) \xrightarrow{r_p} A(\overset{r}{T}U)$$

$$\downarrow \qquad \qquad \qquad \uparrow (\check{H}_U) *$$

$$A(J_0^k(G)) \xrightarrow{\eta} A(P^k(F)|_U) \xrightarrow{p} A(U)$$

$$(4.4)$$

because if $\omega \in A(J^{k-r}_{\delta}({}^rG))$ and $\tilde{x} \in \overset{r}{T}U$ with $\overset{r}{H}_{U}(\tilde{x}) = x$, we have

$$|^{r}p(^{r}\eta(\omega))|_{\tilde{x}} = |^{r}\eta(\omega)|_{j_{0}^{k-r}((^{r}g)^{-1}T_{f_{U}})} = \omega|_{j_{0}^{k-r}(^{r}g)}$$

and

$$egin{aligned} (\overset{ au}{H}_U) * (p(\eta(au_k(\omega))))|_{\ddot{x}} &= p(\eta(au_k(\omega)))|_x \ &= \eta(au_k(\omega))|_{j_0^k(g^{-1}f_U)} &= au_k(\omega)|_{j_0^k(g)} &= \omega|_{j_0^{k-r}(\overset{ au}{T}g)} \end{aligned}$$

but ${}^rg \in S_g$ and, by definition of j_{TU}^* it is ${}^rg = {}^TTg$ and we have the commutativity of (4.4).

3.
$$\tau \circ \sigma = 1_{H^*(G,K)}$$

For that, it is sufficient to show that

$$A(J_0^k(G)) \xrightarrow{\sigma_k} A(J_0^k({}^rG)) \xrightarrow{\tau_{k+r}} A(J_0^{k+r}(G))$$

$$\downarrow \qquad \qquad \uparrow$$

$$\tau_{k+r} \circ \sigma_k = \mu_k$$

induces the identity in the limit. Then, consider, for each k > 0,

$$A(J_0^k(G)) \xrightarrow{\mu_k} A(J_0^{k+r}(G))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

where $1 = 1_{A(J_0^k(G))}$ and

$$p_k^{k+r}: J_0^{k+r}(G) \to J_0^k(G)$$

is the canonical projection. But (4.5) commutes because the following diagram

$$J_0^{k+r}(G) \xrightarrow{\tau_{k+r}} J_0^k(rG) \xrightarrow{\sigma_k} J_0^k(G)$$

$$\downarrow p_k^{k+r} \downarrow p_k^{k+r}$$

$$J_0^k(G)$$

commutes trivially.

The assertion, now, follows from the commutativity of (4.5).

Proof of Theorem 4.6. (4.1) implies

$$i_X^*(\operatorname{Im}\varphi(\overset{r}{F}))\supseteq \operatorname{Im}\varphi(F)$$

and (4.2) implies

$$(\prod_{r})^*(\operatorname{Im} \varphi(F)) \supset \operatorname{Im} \varphi(F)$$

because τ is onto. Then, as $i_X^* \circ (\overset{r}{\varPi}_X)^* = 1_{H^*(X)}$, we obtain

$$\operatorname{Im} \varphi(F) = i_X^*(\operatorname{Im} \varphi(F)).$$

Q.E.D.

Finally, combining the Bott-Haefliger's result (theorem 4.2), their definition of characteristic class of a G-foliation and our results, we can assert:

THEOREM 4.8. Let $\mathcal{F}(G)$ the category of G-foliations; there exists

an infinite sequence $\{\varphi, \varphi, \cdots, \varphi, \cdots\}$ of characteristic classes of G-foliations, that is, natural transformations

$$\varphi^r \colon \mathscr{F}(G) \to H^*(\ ; \mathbf{R})$$

satisfying

$$\overset{r}{\varphi}(f^{-1}F) = f^* \circ \overset{r}{\varphi}(F)$$

and $\overset{\scriptscriptstyle{0}}{\varphi}$ being the Bott-Haefliger's characteristic class.

Proof. Define, for a *G*-foliation F, $\varphi(F) = \varphi(F)$, and apply the above theorem.

Q.E.D.

REFERENCES

- Bott, R., Lectures on characteristic classes and foliations. Lect. Notes on Math., Springer, n° 279, 1972.
- [2] Bott, R. and Haefliger, A., On characteristic classes of Γ -foliations. Bull. Am. Math. Soc., 1973.
- [3] Haefliger, A., Sur les classes caractéristiques des feuilletages. Sem. Bourbaki, exposé 412, 1971/72.
- [4] Kobayashi, S., Transformation groups in differential geometry. Springer-Verlag 1972.
- [5] Morimoto, A., Prolongation of G-structures to tangent bundles of higher order. Nagoya Math. J., 38 (1970), 153-179.

Departamento de Geometria y Topologia Universidad de Santiago de Compostela