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THE EXTENSION OF G-FOLIATIONS TO TANGENT
BUNDLES OF HIGHER ORDER

LUIS A. CORDERO*

Introduction

In this paper we describe a canonical procedure for constructing
the extension of a G-foliation on a differentiable** manifold X to its
tangent bundles of higher order and by applying the Bott-Haefliger’s
construction of characteristic classes of G-foliations ([2], [3]) we obtain
an infinite sequence {g,, - - -,¢, -} of characteristic classes for those
foliations (Theorem 4.8).

By the way, a new equivalence relation between G-foliations weaker
than the homotopy is defined (Definition 3.7) which we call r-homotopy
and show that the set of characteristic classes of a G-foliation is an
invariant of its r-homotopy class; some new results in the theory of
tangent bundles of higher order are shown (Theorem 1.1 and Lemma
3.10) and the concept of tangent pseudogroup of higher order of a
transitive Lie pseudogroup is introduced (Theorem 2.1 and Definition 2.1).

§ 1. Tangent bundles of higher order ([5])

Let r > 0 be an integer.

Let M be a differentiable C~ manifold, dim M = n, and let C~(M)
be the algebra of all differentiable functions on M. We denote by S(M)
the set of all differentiable maps ¢: R— M; we define an equivalence
relation on S(M) in the following way: if ¢,y e S(M) we say ¢ 7 ¢ if
and only if ¢(0) = ¥(0) and, for every fe C~(M), fop and fo+ have the
same r-jet in 0, the origin of R; if ¢ e S(M),lpl, will denote its class
of equivalence and if ¢(0) = peM,[pl, is called the r-tangent vector
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defined by ¢ at the point p of M.
Let ff‘M be the set of all r-tangent vectors at all points of M ; there
is a canonical projection

given by 4(gl,) = ¢(0).

In order to define a structure of differentiable manifold on f}‘M ,
consider a differentiable atlas {U,, d.}ocsa 0f M and let (g, ---,22) be the
coordinate funections on U,. On the set (Jf/ ) YU, a coordinate system

(v)a
@), 1=1,2,-+-,m,0=0,1,-..,7, is defined by

a o(

for every [¢l, e (ITI 2 Uy,
Therefore, f’M is an n(r + 1)-dimensional differentiable manifold and

ITI » 18 a submersion. Besides, for every peM, ’_;‘pM = (ITZ 2 7Hp) is ca-
nonically diffeomorphic to R™”.

M can be canonically imbedded in f’M by taking
iyt M — TM

defined by iy(x) = &,xeM, being % = [y,],, with 7, eS(M) given by
r.(t) = xz, for every te R.

Let N be another differentiable manifold and ¢: M — N a differenti-
able map; then, a differentiable map

is canonically defined by
(f'¢)([¢]r) = [goel,, for every e S(M) .
Let M, M,,M, and M, be differentiable manifolds and let

¢p:My— M, ¢: My — M,,¢': My— M, and +:M,— M,

be differentiable maps. Then, it is verified that
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T(gog) = TooTg, T(p¢) = (T, T¢)
T x ¥) = Tg X Tp,  Tly =1

where 1, is the identity diffeomorphism and 5’(M X M,) is canonically
identified to TM x TM,.

Likewise, if ¢: M — N is a submersion (respect. an immersion) f’qﬂ
is also a submersion (respect. an immersion); if ¢ is a diffeomorphism,
f‘¢ is also a diffeomorphism.

If : M — N is a differentiable map and v:TM — TN is a differ-
entiable map in such a form that

™™ 2> TN
z’le lsz

M -t N

is commutative we shall say “y is over ¢”; note that, for each ¢, the
set of differentiable maps which are over ¢ is not empty and let us
denote this set S,.

The following theorem will be important for our purposes and gives
a topological relation between a differentiable manifold and its tangent
bundles of higher order.

THEOREM 1.1. For every integer r = 0,M and TM have the same
homotopy type.
Proof. Let i, and ﬁM as above; it is clear that fIMoiM = 1,.

Now, define a continuous map
F: Tr‘M X R— TT'M

by F(lel., t) = [g.],, for [¢l, e TM and te R, where [¢], ¢ TM is defined
in the following way: if ¢:R-— M defines [¢],, we take, for each
teR,0,: R— M given by ¢,s) = o(s(1 — 8)),vse R; it is clear that [g,],
is well-defined and

F lZuxey = 1n

,
FlT’Mxm =tiyolly

Q.E.D.
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COROLLARY 1.1. For every integer r > 0, the de Rham complex

H*(M) and H*('.;’M) are coanonically isomorphic.

§2. Tangent pseudogroups of higher order.

Let M an n-dimensional differentiable manifold and let EI’M be its
tangent bundle of order 7, > 0. Let G be a pseudogroup of local
diffeomorphisms of M and consider, for every ge (G, the set S, of all

local diffeomorphisms of f;’M which are over g. Then, "G = ;e S, is
a pseudogroup of local diffeomorphisms of C;‘M .

DEFINITION 2.1. We shall call "G the tangent pseudogroup of G of
order r.

Now, consider the euclidean space R® and its tangent bundle of

order 7, i’R"; for each coordinate open neighborhood U in R™ with co-

ordinate functions (x,, ---,x,), consider the coordinate open neighborhood
7 7 »)
TU in TR" and its coordinate functions («,),2=1,2,---,n,v=0,1,--.,7,

and denote ¢": 5’U——> open set C R*”+Y the diffeomorphism defined by
)
the coordinate functions xz;. Let

r+1

P:R* X -+ X R*— R"
be the canonical projection onto the first factor; then, every diffeomor-
phism
2: ¢"(TU) — " (TM)
such that p,02 = p, defines canonically a differentiable transformation

of ’.;‘U which ig over 1.
Now, take G = I',, the Lie pseudogroup of diffeomorphisms on R"
(for definition of Lie pseudogroup see [4], p. 36).

THEOREM 2.1. [, is a transitive Lie pseudogroup.
Proof. Let A,Be TT‘R",A #+ B. We have to show there is "fe’[,

in such a form that "f(A) = B. It may be ﬁ zi(4) = ﬁ r(B) or ﬁ zi(4)

#* 1 z(B); suppose we are in the second case and put a = 1 z(A), b



EXTENSION OF G-FOLIATIONS 33

= .lr]Rn(B); then, there exists fel', such that f(a) =& and by using
T ferl’, we obtain 1 ,,,,((Ir1 IA) = /i g(B). Therefore we can restrain
us to consider g = b.

Thus, let U C R™ be an open set and ac U; then, A,Be TU and put
@ = ¢’(4),V = ¢"(B), ¢ being the diffeomorphism of TU on an open set
in R+ clearly, there is a diffeomorphism

2: o' (TU) — ¢"(TU)
in such a form that 2(¢’) = b’ and satisfying p,o1 = p,. The differenti-

able transformation y of TU on itself defined through 2 is over 1, and,
therefore, ye"I",; besides, 5(A) = B and this shows 7I", is transitive.

Now, let J¥("1,) be the space of A-jets at § of elements of 77,
with 0 = 4£.(0) and 0 being the origin of R*. Our purpose is to show
that J¥("I",) is canonically a differentiable principal bundle over fI’R”
with group ("I',)f, the Lie group of k-jets of elements of 7I", which
keep 0 fixed.

(i acts freely on J4I",) on the right in the natural way: if
JECf) e (I'n)§ and j§(9) e JE('T,), then

J5C9) o ) = jiCgoTf)

is well-defined and if "geS,,"feS,, then ("g-"f)eS,,, and, therefore
jECgorf)eJi(I',). In order to obtain the local trivialization of J(*I",),
consider the open covering of TR® given by {IT’U}, {U} being the open

r

sets of R"; then, if p:J¥"I",) - TR* is the canonical projection, for
every U C R" we define
biv: D7(TU) — TU X (T
as follows: for every ji(f)ep (TU) with p(JECf) =&, let "gyel,
such that 7¢gy(0) = %; then
ro(GEC ) = (@, 75(C9) " )
Q.E.D.

§ 3. r-extension and r-homotopy of foliations.

Let M be a differentiable manifold and G a pseudogroup of local
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diffeomorphisms acting transitively on M ; consider the manifold IT‘M
and the tangent pseudogroup "G of order r», for every re¢{0,1,2,-..}.
We shall suppose from now on that "G is a transitive Lie pseudogroup
(that is the case when M = R® and G = I', as we have shown in theo-
rem 2.1).

Let X be a differentiable manifold, dim X > dim M.

DEFINITION 3.1. A G-foliation on X is a maximal family F of
submersions

7‘[/: U—-’M

of open sets U in X, {U} being an open covering of X and the family
{fu} satisfying the following condition: for every x e U N V there exists
an element g,, € G with f; = gy o fy in some vicinity of .

Given a smooth map f:X' — X, f is transverse to F if the com-
posed maps fyo f are submersions; in this case, the maps f;of are the
local projections of a G-foliation on X’ called the inverse image f~'F of
F via f. With this concept, f is called a morphism from f~'F to F
and, thus, the G-foliations form a category denoted F(G).

Let #("G) be the category of "G-foliations.

THEOREM 3.2. Let F be a G-foliation on X. There exists, can-
onically defined, a "G-foliation Fon TX in such o form that the cor-

respondence F — 1;’ defines a contravariant functor Z from F(G) to F(G).

Proof. Let {U} be the open covering of X and let {fy} be the family
of submersions which define the foliation F. The G-foliation F on TX
is defined taking the open covering {1’, U= (ITI ) '(0)} and the family of
submersions {5’ fu}; since this family satisfies the compatibility condition,

there exists a maximal family containing it and defining ff’ Now, let
f: X’ — X be a differentiable map which is transverse to F. Then, it

is clear that C;‘ f: QT’X’—JT’X is transverse to ﬁ' and it follows (f‘lfc‘)

= (5’ f )‘1FT’. The functoriality of the correspondence F — ﬁ' is shown by
a direct computation.

Q.E.D.
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DEFINITION 3.3. Let F' be a G-foliation on X. The "G-foliation F

on TX defined in theorem 3.2 will be called the r-extension of F.

Remark. The construction of Theorem 3.2 is true for every finite

positive integer r, and, therefore, to each G-foliation F' on X, a sequence
0

{(F,F,F, ...}, with F = F, is associated. If dim M = m, that is codim F

= m, then codiml%‘ = m(r + 1), for each r > 0.
Let F, and F, be two G-foliations on X. For each te R

denotes the canonical injection x — (z,t).
DEFINITION 3.4. The G-foliations F, and F, are said homotopic,

F,~F,, if there exists a G-foliation F on X X R in such a way that ¢,
and ¢, are transverse to F' and i;'F = F,{;'F = F,.

As it is well known, the homotopy of G-foliations is an equivalence
relation. Denote 5#4(X) the set of homotopy class of G-foliations on X;
if f: X’ — X is a morphism of F, G-foliation on X, to f~'F, G-foliation
on X/, it is clear that f defines a map

H(f): Ho(X) - Hy(X)
and the following theorem is easily proved:

THEOREM 3.5. #4( - ) is a homotopy invariant contravariant functor.

Now, we return to our r-extensions.

THEOREM 3.6. Let F, and F, be two homotopic G-foliations on X.
Then, for every r > 0, their r-extensions I:’0 and 177’1 are homotopic "G-
foliations on TX.

Proof. Let F be the G-foliation on X X R defining the homotopy

between F, and F,. Consider

r
1£xXir I xxr

TX X REZXB IX « TR T(X X B) —2% X < R

and denote A= ~o(17y X ip); then, A'F is a "G-foliation on TX X R

which defines a homotopy between 12'0 and I:"l; this fact follows from
the commutativity of the following diagram, for every tc R,
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TX X R
y‘ lz
r fvu r
TX 25 T(X X R)
% I
X% XXR
Q.E.D.

Observe that if F, and F, are not homotopic G-foliations on X,
their r-extensions could be homotopic, but the converse is an open pro-
blem, the answer of which we think to be negative. That leads us to
the following definition.

DEFINITION 3.7. Let r > 0 be an integer. Two G-foliations F, and
F, on X will be said r-homotopic, F, ~ F,, if their r-extensions I:’0 and
Ifr'1 are homotopic, Fr‘o ~ Fr'l.

PROPOSITION 3.8. ~ is an equivalence relation.

Remark. The 0-homotopy is the usual homotopy of G-foliations and
if F, and F, are 0-homotopic then they are r-homotopic for every r > 0.

Denote, for each r > 0, #%(X) the set of r-homotopy classes of G-
foliations on X. Then, we have

THEOREM 3.9. #%( ) is a homotopy invariant contravariant functor.

This theorem is a direct consequence of Theorems 3.5 and 3.6 and
of the following Lemma.

LEMMA 3.10. Let f,, fi: X' — X two differentiable (differentiably)

homotopic maps. Then, for each r > 0, T Jos T fis TX — TX are (daffer-
entiably) homotopic.

Proof. Let g: X’ X R— X be the differentiable map defining the
homotopy between f, and f;,. We define a differentiable map

rg: TX' X R— TX

by 79 = 5’90 ~o(l7x X ip), where ~: TX’ X TR — %(X’ X R) is the can-
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onical diffeomorphism; 7g defines actually a homotopy between frl’ fo and

T f1, because for each te R the following diagram is commutative:

TX' x R

lf ,X1IR
TX’ >< TR
I4

TX T(X' X R) T TX

Q.E.D.

§ 4. Characteristic classes of G-foliations.

Recall briefly the construction of the Bott-Haefliger’s characteristic
homomorphism for G-foliations, following Haefliger ({3}).

Let G be a Lie pseudogroup acting transitively on a differentiable
manifold M; a vector field defined on an open set of M is called a G-
vector field if the local one parameter group which it generates is in G.

Fix a point 0e M; the set of k-jets at 0 of G-vector fields is a
vector space G* which is not a Lie algebra. Then, consider the inverse
limit

G = Lim G*
which is a Lie algebra called “the Lie algebra of formal G-vector fields”.
Denote by A(G) the direct limit of the algebras A(G*) of multilinear
alternate forms on G*; the bracket on G induces a differential on A(G),
and we write H*(G@) for the resulting cohomology group.

Denote JXG) the space of k-jets at 0 of the elements of G; this is
the total space of a fiber space on M; besides, if G¥ denotes the Lie
group of elements of J¥G) keeping 0 fixed, G¢ acts on J¥G) on the
right and makes it a differentiable principal bundle. Besides, G acts
on JXG) on the left as a pseudogroup of transformations. Denote J3(G)
the inverse limit of the J¥&); J2(G) is endowed with a differentiable
structure as follows: a map of a differentiable manifold X on J{(G) is
differentiable if its projection on each J¥G) is differentiable; in this
way Je(G) can be looked as a differentiable principal bundle over M
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with group G7, the inverse limit of the Gf; besides, G acts on JQ(G)
on the left. We define the algebra A(Jy(G)) of differential forms on
Je(G@) as the direct limit of the algebras A(J¥G)) of differential forms
on JEG).

THEOREM 4.1 ([8]). A(G) is canonically isomorphic to the algebra
of differential forms on J3(G) which are invariant under the action of
G and this isomorphism commutes with the differential operators.

A compact subgroup K of Gy, playing the role of maximal com-
pact subgroup, is defined being isomorphic to (up to conjugation) the
inverse limit of the maximal compact subgroups K°® of Gj, for each
positive integer s; the complex A(G, K) is the subcomplex of K-basic
elements of A(G) and its cohomology algebra will be denoted H*(G, K).

THEOREM 4.2 ([3]). Let F be a G-foliation on X. There is an
algebra homomorphism

o(F): H¥(G, K) — H*(X)
n such a form that if f:X — X is transverse to F, then
J*oo(F) = o(f7'F)

DEFINITION 4.3. Imo(F) is called the set of characteristic classes
of F.

PROPOSITION 4.4. If F, and F, are homotopic G-foliations on X, then
Im (F) = Im o(F) .

This means that the characteristic classes of a G-foliation are
invariants of its homotopy class; the following theorem gives a finer
characterization.

THEOREM 4.5. Let F, and F, G-foliations on X. If there is some
integer r = 0 such that F, and F, are r-homotopic, then

Im o(Fy) = Im o(F)) .
This theorem follows from Proposition 4.4 and the following theorem.

THEOREM 4.6. Let F be a G-foliation on X and let r > 0 an integer;

if go(fi‘) denotes the Bott-Haefliger’s characteristic homomorphism, we have
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Im o(F) = i%(Im o(F))

where 1% is the isomorphism induced in cohomology by iy: X — TX.

To show this theorem, we need a preparatory Lemma. For that,
denote H*("G,”K) the cohomology of "K-basic differential forms on G,
the Lie algebra of formal "G-vector fields; we keep the notations above,
only adding the index r in each case.

LEMMA 4.7. Let r > 0 be an arbitrary fixed integer. Let F be a

G-foliation on X and let ﬁ‘ be its r-extension. Then:
a) There exists a canonical homomorphism

o: H¥(G,K) —» H*('G,"K)

such that
2*¢G,K) *8 Hr(fx)
T % “.1)
* oF) ..
H*G,K) — H*X)
commutes.

b) There exists a canonical homomorphism

v: H*("G,"K) — H*(G, K)

such that
746, K) ¥ H+(fx)
fl T(ﬁx)* @.2)
4G, K) 25 1 (%)
commutes.

¢) too = ly«ex, and, hence, t is onto.
Proof. 1. Construction of .

Fix the point 0 e ’il‘M,G = 14(0). Now, consider the map, for each
k>0,

01 Ji('G) — JH(G)
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defined as follows: let 7%("f) e J5('G) and let "f € "G a representative of
this jet; then, there is a unique fe G such that 7f is over f; we define

ax(G5C)) = 35(f)

and ¢, is, clearly, a well-defined map. Actually, ¢; induces a homomor-
phism of Lie groups

Oy« TGg—) G(’)‘

and, in fact, we get a homomorphism of differentiable principal bundles
making commutative the following diagram

JE @) -5 JHR)
oy

Moreover, if for every *fe’G with "fe S;, f € G, we denote 2,, (respect.
2,) the differentiable transformation of JEGQ) (respect. JX(G)) defined by
the action on the left of 7f(respect. f), a direct computation shows

/szO'k = akOZT,

If ¢, denotes, still, the induced homomorphism between the algebras
of differential forms

x: AJH@) — AJFCG)

the differential forms invariant under the action of G are sent on the
differential forms invariant under the action of "G. As a consequence,
we have canonically a homomorphism

o: AUJT(@) — AU (@)
which induces a new one
g: A(@ - A(G)
Actually, ¢ induces a homomorphism
0: A(G,K) - A('G,"K)
which induces a homomorphism in cohomology

o: H¥G, K) - H*("G,"K)
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In order to prove the commutativity of (4.1) it is sufficient to show
the commutativity of

ATEC®) 2> APHF)|5p) —2> ATU)
o« [ @.3)
AUXG) -1 APYF)),) —2> A()

where U is a distinguished open set on X, P*(F")|, (respect. P"(le‘)|T'U) is
the restriction to U (respect. to frl‘U) of the principal bundles of k-jets

of the local projections of F (respect. of ﬁ‘); p (respect. 7p) is the homo-
morphism canonically induced by the local embedding j; (respect. jzy)

in P*(F)|, (respect. P"(ﬁ')IT'U) and 7 (respect. ") is induced by the iden-
tification of J¥(G) (respect. Ji("G)) to P*(F)|, (respect. P"(T:‘)IT'U) via fy

(respect. T fv). This diagram, in the limit, and for the K-basic G-invariant
differential forms, induces (4.1).

The embedding j;: U — P*(F)|; is defined as follows: if f,: U —- M
is the local submersion, for each point xze U, j,(x) = j¥(9~'fy), where
g € G verifies g(0) = fy(x), that is, j; is defined through the local trivi-
alization of P*(F); j7y is defined in the same way.

Then, if oe AJEG)), we have

P(@)]s = 70 |ssg-17) = |10
and, if Z = iy(x)
FCpCor(@M) = "P((0x(@)))]s
= "(0x(O)|fFo-1Frp = 0:(0) |iEdg = ®ps)
Hence, (4.3) commutes.

2. Construction of z.
For each k > 0, we define a differentiable map

e JEG) — JE(GR)
by z:(76(f) = j’a‘"’(f'f) for fe@, if k> r, and 7, (j¢(f)) = ?'g(i'f) ife<r.

It is clear that 7, is a well-defined differentiable map and it induces a
homomorphism

et AJE (@) — AJHG)
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and, in the limit, we have the homomorphism
t: A (GQ) —» AUJF(GR)) .

As above, ¢ sends the differential forms invariant under the action
of "G on differential forms invariant under the action of G, because

AffoTy = To Ay
for every &k > 0. Hence, r defines a homomorphism
tt ACG) - A@ .
Obviously, for each k > 0,r, defines a homomorphism of differenti-

able principal bundles, making commutative the following diagram

JHG) 2> T (@)
M < fu
and, in faect, z induces a homomorphism in cohomology
. H*(G,’K) —» H*(G, K) .

The commutativity of (4.2) follows from the commutativity of

AT @) L5 AP (F)|5p) —2> A(TU)

"l T(ﬁ”’* (4.4)
AUHG) —L APWFE)) -2 AD)

because if we AJE('Q)) and &e TU with IT,(%) = z, we have
PN = YDk gy -1E gy = @lE gy
and

() % @Ge@))]s = pore(@))]s

= (@) |gsg-110) = Ti(@) s = 0| g

but "ge S, and, by definition of jz; it is g = 5’g and we have the com-
mutativity of (4.4).
3. too= 1H*(Q,K)

For that, it is sufficient to show that
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AJHG) -2 AJEC@®) 225 AJE(G)
| )

Tr+7°0k= Uk

induces the identity in the limit. Then, consider, for each & > 0,

AUHG) 22> AT (@)

N S 49

AJH@)
where 1 = 1,4, and
Pt J5(G) — JHG)
is the canonical projection. But (4.5) commutes because the following

diagram

JE(G) 223 JE(G) —Z> JHG)

pm /

JH (@)

commutes trivially.
The assertion, now, follows from the commutativity of (4.5).

Proof of Theorem 4.6. (4.1) implies

#(Im o(F)) 2 Tm o(F)

and (4.2) implies
(I)*(Im ¢(F)) 2 Im o(F)
because z is onto. Then, as ij&o(lrI 0¥ = 1y x,, We obtain
Im o(F) = i#(Im (7)) .

Q.E.D.

Finally, combining the Bott-Haefliger’s result (theorem 4.2), their
definition of characteristic class of a G-foliation and our results, we
can assert:

THEOREM 4.8. Let F(G) the category of G-foliations; there ewists
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0 1 r
an infinite sequence {p,p,---,¢,---} of characteristic classes of G-

foliations, that is, natural transformations

0: F(G)— H*( ; B)
satisfying

o(f71F) = f* o olF)
and gg being the Bott—Haeﬂiger’s characteristic class.

Proof. Define, for a G-foliation F, g;(F) = ga(Fr’), and apply the above
theorem.

Q.E.D.
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