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ON THE DISTRIBUTION OF ZEROS OF

A STRONGLY ANNULAR FUNCTION

AKIO OSADA

A function /(#), regular in the unit disk D, is called annular ([11,
p. 340) if there is a sequence of closed Jordan curves Jn c D satisfying

(Ax) Jn is contained in the interior of Jn+1 for every n,
(A2) given e > 0, there exists a positive number n(ε) such that, for

each n > n(ε),Jn lies in the region 1 — ε < \z\ < 1 and
(A3) lim min {|/(z)| z e Jn} = + oo.

One says that f{z) is strongly annular if the Jn can be taken as circles
concentric with the unit circle C As for examples of annular functions,
see ([4], p. 18).

Given a function f{z) in D, denote by Z(f) the set of zeros of f(z)
and Z'(f) the set of limit points of Z(J). If f(z) is annular, Z(f) is
an infinite set of points of D ([1], p. 340) and clearly Z'(f) c C. In [1],
Bagemihl and Erdδs raised the following question: If f(z) is annular,
is Z'(f) = C? This question seems to be reasonable because many early
examples of annular functions had this property. In [3], however, an
example of an annular function g(z) was constructed with Z\g) = {1}.
It is not known, regretfully, whether or not this example is strongly
annular. Thus the problem of Bagemihl and Erdδs remains open in
the case where "annular" is replaced by "strongly annular" ([5], p. 141).
In this note we shall give an example of a strongly annular function
f(z) with Z'(J) = {1}, modifying the technique for constructing the
example of Barth and Schneider [3].

1. We shall first make some definitions. Given a, b and θ such
that 0 < a < b < 1 and 0 < θ < π/2, we consider the annular sector
D(a, b θ) — {z e D a < \z\ < b and —θ < a rg z < θ). Moreover, for c, θx

and θ2 with 0 < c < 1 and -π/2 <Θ2<Θ1< π/2, let σ(c;θ2,θ1) denote

the circular arc {z e D \z\ = c and θ2 S arg z ^ 0J. Now we are to state
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LEMMA. Let at (i = 1,2,3) and θj (j = 1,2) satisfy

(1) 0 < aλ < a2 < a3 < 1 and a\ > aγa3 and

(2) 0<θ2<θι< π/2 and tan ΘJ2 < (α3 - α2)/(α3 + α2).

T&eπ /or cm?/ e > 0 and any K > 0, ίfeβre e&isίs a rational function p(z),

with its only pole in the open line segment (a2, a3), satisfying

(3) |p(«)| ^ K (m σ(a2; -Θ2,θ2),

(4) Re 39(2) ^ 0 on σ(az\θ2,θd U σ(a2; - ^ , - 0 2 ) aπd

(5) |p(«)| ^ε on Ωz- D(aί, a3 ^ )

where Ωz is the z-sphere and a[ = aa/a3.

Proo/. F i r s t we note t h a t aγ<a[< a2. By the function ζ = i(a2 — z)

/(a2 + z), we map the disk \z\ < a2 onto the upper half plane of the ζ-

plane. Here simply put σ(a2; —θ2, θ2) — σ, σ(a2; θ2, θd U σ(a2; —θ19 —θ2)

= α, (α i + 1 — aj)/(aj+ι + α )̂ = δ^ and t a n ^ / 2 = c, 0' = 1,2). Then the

circular arc σ (or the union of two circular arcs a) is mapped onto the

closed segment [—c2, c2] (or the union of two closed segments [—c19 — c2]

U [c2, cj) respectively. Thus we have only to construct a rational

function

9(0 = fc(C + ^ ) - 2 w

where fc(>0), an integer m(>0) and p (0 < p < b2) are chosen such that

(3y Ig(OI ^ ^ on [-c2,c2],

(4)' Re q(ζ) ^ 0 on l - c x , -c 2 ] U [c2, cx] and

(5)' | g ( O | ^ e on Qζ-E

where Ωζ is the ζ-sphere and E is the image of D(a[, a3 ^) by ζ

= i(α2 — «)/(θ2 + z). In order to see the existence of k,m and p satisfy-

ing (3)7, (4)7 and (5)r, using cx < δ2 and geometrical properties of E, it

is sufficient to show the existence of an integer m (>0) and p (0 < p < δ2)

such that

(6) (#x - Vp2 + rί)2m(p2 + cί)~m ^ K/ε where β x - 1(1/^ + cx) and

rx = | ( 1 /cx — cx) and

(7) π / 4 m ^ tan" 1 p/c2.

By means of elementary calculations we can conclude that such m and

p surely exist.

2. By virtue of the method used in [3] and our lemma, we shall

construct a strongly annular function f(z) with Z'(f) = {1}.
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THEOREM. Let Γj = {z; z = Zj(t), 0 <; t <^ 1} (j = 1,2) be two Jordan

arcs such that

(8) zx(0) = iyί (0 < yx < 1) and z2(0) = ij/2 ( - 1 < y2 < 0),

(9) «/l) = l O' = l,2) and

(10) e#cep£ /or s/0) and 2,(1) (j = 1,2), we ftcwe Λ c {Re 2; > 0}

n^{Im z > 0} Π D and Γ2<z {Re z > 0} Π {Im z < 0} Π D. Further take

any two sequences of real numbers {an} and {Kn} such that

(11) a\ > an_A+1 for all n^tl and 0 < an f 1 and

(12) ίCTC ^ 1 /or βacfe n ^ 1 and limίC^ = + 00.

Then there exists a function f(z), regular in D, satisfying

(13) I/O?)I ^ Kn on the circle \z\ = an for every n ^ 1 and

(14) Z(J)<ZR

where R denotes the bounded region determined by Γ19 Γ2 and the line

segment {z — x + iy x = 0, y2 <, y <. yt}.

Proof. Set (an+1 — an)/(an+ι + an) = bn and then clearly 1 > bn [ 0.

Now by virtue of (8), (9) and (10), we can choose θn (n = 0,1,2, •) so

small that the region R includes two line segments {z == reίθn 0 ^ r ^ an+2},

{z = re~ίθn; 0 ^ r ^ an+2} and the circular arc σ(an+2; —θn,θn). Needless

to say, we may assume that θn satisfies

O < 0 n + 1 < 0 « < £ and t a n A < 6 n + 1 .

Now consider, as before, the annular sector Dn = D{af

n_lyan+ι\θn_^ where

ttn-i = αn/Λn+1 for each n ^ 1. Moreover simply set σ(an;—θn9θn)

= σn, σ(αn βn, βn-i) U σ(αre -θn_19 -θn) = αw and {|s| = αw} - σn = γn. Then

making a slight modification of a standard technique of Bagemihl and

Seidel ([2], [3], p. 181) based on Mergelyan's approximation theorem, we

can construct a function g(z), regular in D, such that

(15) g(z) Φ 0 in D and \g(z)\ ̂  2Kn on γn for every n ;> 1.

Next we choose {εn} such that εTO > 0 and ]>]~=1 εn = e < J. Then by

Lemma, there is a rational function vλ(z), with its only pole in the open

line segment (α^α^,), such that

(16) |Pi(s)| ^ 2/Si on ^ where s1 — min

(17) Re p^z) ^ 0 on «! and

(18) iPxC^l^β! on β , - A

Our desire is, now, to approximate ^j^) by a regular function in Z> — Dx
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minus a certain narrow region including the segment [α2,1), pointed at

z — 1. Since px(z) has, fortunately, its only pole in the open segment

(α!,α2), we can sweep out, as is seen in ([6], [3], p. 182), the poles to

the boundary point z = 1, and consequently obtain a function h^z),

regular in D, satisfying

(16)' IWaDl^l/βJ on σl9

(17)' Re fox0) ̂  — ex on aλ and

(18)' | ^ ) | ^ 2εx on D - A - U?

Now we shall inductively construct rational functions pn(z) and regular

functions fcn(2) as follows. Let tn = Σ*::ϊ max {1/^(2)1; 2e<?i U σ2 U σz

U U σn}. Then using Lemma again, we get a rational function pn(z),

with its only pole in the open segment (an,an+1), such that

(19) \Vn(z)\ ^ 2/si + 2tn on σn where sw = min {l/2Kn, min\g(z)\)y

(20) Re pn(^) ^ 0 on an and

(21) \pn(z)\^εn on Ωz-Dn.

Then as in the first step, we can find a function /tn(2), regular in D,

such that

(19)' \hn(z)\ ^ 1/4 + U on *„,

(20)' Refew(2;) ^ — εn on ̂ n and

(21)' |fen(«)| ^ 2εw o n ΰ - ΰ n - U?=w

By virtue of (21)' the series J]n-i ^n(«) uniformly converges on any com-

pact subset of D and hence we obtain a function h(z) = 1 + Σn=i hn{z)y

regular in D. Now consider the function

/(«) - g(z)h(z) .

Then using almost the same technique as is seen in ([3], p. 182-183),

we can find that

|/(2)| > — - 2sn on on and \f(z)\ ^ \\g{z)\ on γn .

Consequently, from (15) and the definition of sn stated in (19), we get

that

Kn on\z\ = an.

As for the distribution of zeros of /(#), remember that g(z) Φ 0 in D
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and note that (JίΓ-i Dn c R. Further, by virtue of (2iy, we have

\h(z)\>i in D-\JDn.
n=l

Thus we see that f(z) does not vanish outside of R.

Remark. According to a theorem of Bonar and Carrol ([5], p. 143),
there exist no strongly annular functions, all zeros of which lie on the
radius [0,1). Our theorem, however, shows that zeros of strongly an-
nular functions can be distributed arbitrarily near the radius [0,1).
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