ON THE DISTRIBUTION OF ZEROS OF
 A STRONGLY ANNULAR FUNCTION

AKIO OSADA

A function $f(z)$, regular in the unit disk D, is called annular ([1], p. 340) if there is a sequence of closed Jordan curves $J_{n} \subset D$ satisfying
$\left(\mathrm{A}_{1}\right) \quad J_{n}$ is contained in the interior of J_{n+1} for every n,
$\left(\mathrm{A}_{2}\right)$ given $\varepsilon>0$, there exists a positive number $n(\varepsilon)$ such that, for each $n>n(\varepsilon), J_{n}$ lies in the region $1-\varepsilon<|z|<1$ and
$\left(\mathrm{A}_{3}\right) \quad \lim _{n \rightarrow \infty} \min \left\{|f(z)| ; z \in J_{n}\right\}=+\infty$.
One says that $f(z)$ is strongly annular if the J_{n} can be taken as circles concentric with the unit circle C. As for examples of annular functions, see ([4], p. 18).

Given a function $f(z)$ in D, denote by $Z(f)$ the set of zeros of $f(z)$ and $Z^{\prime}(f)$ the set of limit points of $Z(f)$. If $f(z)$ is annular, $Z(f)$ is an infinite set of points of $D\left([1]\right.$, p. 340) and clearly $Z^{\prime}(f) \subset C$. In [1], Bagemihl and Erdös raised the following question: If $f(z)$ is annular, is $Z^{\prime}(f)=C$? This question seems to be reasonable because many early examples of annular functions had this property. In [3], however, an example of an annular function $g(z)$ was constructed with $Z^{\prime}(g)=\{1\}$. It is not known, regretfully, whether or not this example is strongly annular. Thus the problem of Bagemihl and Erdös remains open in the case where "annular" is replaced by "strongly annular" ([5], p. 141). In this note we shall give an example of a strongly annular function $f(z)$ with $Z^{\prime}(f)=\{1\}$, modifying the technique for constructing the example of Barth and Schneider [3].

1. We shall first make some definitions. Given a, b and θ such that $0<a<b<1$ and $0<\theta<\pi / 2$, we consider the annular sector $D(a, b ; \theta)=\{z \in D ; a<|z|<b$ and $-\theta<\arg z<\theta\}$. Moreover, for c, θ_{1} and θ_{2} with $0<c<1$ and $-\pi / 2<\theta_{2}<\theta_{1}<\pi / 2$, let $\sigma\left(c ; \theta_{2}, \theta_{1}\right)$ denote the circular arc $\left\{z \in D ;|z|=c\right.$ and $\left.\theta_{2} \leqq \arg z \leqq \theta_{1}\right\}$. Now we are to state

Lemma. Let $a_{i}(i=1,2,3)$ and $\theta_{j}(j=1,2)$ satisfy
(1) $0<a_{1}<a_{2}<a_{3}<1$ and $a_{2}^{2}>a_{1} a_{3}$ and
(2) $0<\theta_{2}<\theta_{1}<\pi / 2$ and $\tan \theta_{1} / 2<\left(a_{3}-a_{2}\right) /\left(a_{3}+a_{2}\right)$.

Then for any $\varepsilon>0$ and any $K>0$, there exists a rational function $p(z)$, with its only pole in the open line segment $\left(a_{2}, a_{3}\right)$, satisfying
(3) $|p(z)| \geqq K$ on $\sigma\left(a_{2} ;-\theta_{2}, \theta_{2}\right)$,
(4) $\operatorname{Re} p(z) \geqq 0$ on $\sigma\left(a_{2} ; \theta_{2}, \theta_{1}\right) \cup \sigma\left(a_{2} ;-\theta_{1},-\theta_{2}\right)$ and
(5) $|p(z)| \leqq \varepsilon$ on $\Omega_{z}-D\left(a_{1}^{\prime}, a_{3} ; \theta_{1}\right)$
where Ω_{z} is the z-sphere and $a_{1}^{\prime}=a_{2}^{2} / a_{3}$.
Proof. First we note that $a_{1}<a_{1}^{\prime}<a_{2}$. By the function $\zeta=i\left(a_{2}-z\right)$ $/\left(a_{2}+z\right)$, we map the disk $|z|<a_{2}$ onto the upper half plane of the ζ plane. Here simply put $\sigma\left(a_{2} ;-\theta_{2}, \theta_{2}\right)=\sigma, \sigma\left(a_{2} ; \theta_{2}, \theta_{1}\right) \cup \sigma\left(a_{2} ;-\theta_{1},-\theta_{2}\right)$ $=\alpha,\left(a_{j+1}-a_{j}\right) /\left(a_{j+1}+a_{j}\right)=b_{j}$ and $\tan \theta_{j} / 2=c_{j}(j=1,2)$. Then the circular arc σ (or the union of two circular arcs α) is mapped onto the closed segment $\left[-c_{2}, c_{2}\right.$] (or the union of two closed segments [$-c_{1},-c_{2}$] $\cup\left[c_{2}, c_{1}\right]$) respectively. Thus we have only to construct a rational function

$$
q(\zeta)=k(\zeta+\rho i)^{-2 m}
$$

where $k(>0)$, an integer $m(>0)$ and $\rho\left(0<\rho<b_{2}\right)$ are chosen such that
(3) $|q(\zeta)| \geqq K$ on $\left[-c_{2}, c_{2}\right]$,
(4)' $\operatorname{Re} q(\zeta) \geqq 0$ on $\left[-c_{1},-c_{2}\right] \cup\left[c_{2}, c_{1}\right]$ and
(5) $)^{\prime}|q(\zeta)| \leqq \varepsilon$ on $\Omega_{\zeta}-E$
where Ω_{ζ} is the ζ-sphere and E is the image of $D\left(a_{1}^{\prime}, a_{3} ; \theta_{1}\right)$ by ζ $=i\left(a_{2}-z\right) /\left(a_{2}+z\right)$. In order to see the existence of k, m and ρ satisfying (3)', (4)' and (5)', using $c_{1}<b_{2}$ and geometrical properties of E, it is sufficient to show the existence of an integer $m(>0)$ and $\rho\left(0<\rho<b_{2}\right)$ such that
(6) $\left(R_{1}-\sqrt{\rho^{2}+r_{1}^{2}}\right)^{2 m}\left(\rho^{2}+c_{2}^{2}\right)^{-m} \geqq K / \varepsilon \quad$ where $\quad R_{1}=\frac{1}{2}\left(1 / c_{1}+c_{1}\right) \quad$ and $r_{1}=\frac{1}{2}\left(1 / c_{1}-c_{1}\right)$ and
(7) $\pi / 4 m \geqq \tan ^{-1} \rho / c_{2}$.

By means of elementary calculations we can conclude that such m and ρ surely exist.
2. By virtue of the method used in [3] and our lemma, we shall construct a strongly annular function $f(z)$ with $Z^{\prime}(f)=\{1\}$.

Theorem. Let $\Gamma_{j}=\left\{z ; z=z_{j}(t), 0 \leqq t \leqq 1\right\}(j=1,2)$ be two Jordan arcs such that
(8) $z_{1}(0)=i y_{1}\left(0<y_{1}<1\right)$ and $z_{2}(0)=i y_{2}\left(-1<y_{2}<0\right)$,
(9) $z_{j}(1)=1(j=1,2)$ and
(10) except for $z_{j}(0)$ and $z_{j}(1)(j=1,2)$, we have $\Gamma_{1} \subset\{\operatorname{Re} z>0\}$ $\cap\{\operatorname{Im} z>0\} \cap D$ and $\Gamma_{2} \subset\{\operatorname{Re} z>0\} \cap\{\operatorname{Im} z<0\} \cap D$. Further take any two sequences of real numbers $\left\{a_{n}\right\}$ and $\left\{K_{n}\right\}$ such that
(11) $a_{n}^{2}>a_{n_{-1}} a_{n_{+1}}$ for all $n \geqq 1$ and $0<a_{n} \uparrow 1$ and
(12) $K_{n} \geqq 1$ for each $n \geqq 1$ and $\lim _{n \rightarrow \infty} K_{n}=+\infty$.

Then there exists a function $f(z)$, regular in D, satisfying
(13) $|f(z)| \geqq K_{n}$ on the circle $|z|=a_{n}$ for every $n \geqq 1$ and
(14) $Z(f) \subset R$
where R denotes the bounded region determined by Γ_{1}, Γ_{2} and the line segment $\left\{z=x+i y ; x=0, y_{2} \leqq y \leqq y_{1}\right\}$.

Proof. Set $\left(a_{n+1}-a_{n}\right) /\left(a_{n+1}+a_{n}\right)=b_{n}$ and then clearly $1>b_{n} \downarrow 0$. Now by virtue of (8), (9) and (10), we can choose $\theta_{n}(n=0,1,2, \ldots)$ so small that the region R includes two line segments $\left\{z=r e^{i \theta_{n}} ; 0 \leqq r \leqq a_{n+2}\right\}$, $\left\{z=r e^{-i \theta_{n}} ; 0 \leqq r \leqq a_{n+2}\right\}$ and the circular arc $\sigma\left(a_{n_{+2}} ;-\theta_{n}, \theta_{n}\right)$. Needless to say, we may assume that θ_{n} satisfies

$$
0<\theta_{n_{+1}}<\theta_{n}<\frac{\pi}{2} \quad \text { and } \quad \tan \frac{\theta_{n}}{2}<b_{n_{+1}}
$$

Now consider, as before, the annular sector $D_{n}=D\left(a_{n-1}^{\prime}, a_{n+1} ; \theta_{n-1}\right)$ where $a_{n-1}^{\prime}=a_{n}^{2} / a_{n+1}$ for each $n \geqq 1$. Moreover simply set $\sigma\left(a_{n} ;-\theta_{n}, \theta_{n}\right)$ $=\sigma_{n}, \sigma\left(a_{n} ; \theta_{n}, \theta_{n-1}\right) \cup \sigma\left(a_{n} ;-\theta_{n-1},-\theta_{n}\right)=\alpha_{n}$ and $\left\{|z|=a_{n}\right\}-\sigma_{n}=\gamma_{n}$. Then making a slight modification of a standard technique of Bagemihl and Seidel ([2], [3], p. 181) based on Mergelyan's approximation theorem, we can construct a function $g(z)$, regular in D, such that
(15) $g(z) \neq 0$ in D and $|g(z)| \geqq 2 K_{n}$ on γ_{n} for every $n \geqq 1$.

Next we choose $\left\{\varepsilon_{n}\right\}$ such that $\varepsilon_{n}>0$ and $\sum_{n=1}^{\infty} \varepsilon_{n}=\varepsilon<\frac{1}{4}$. Then by Lemma, there is a rational function $p_{1}(z)$, with its only pole in the open line segment (a_{1}, a_{2}), such that
(16) $\left|p_{1}(z)\right| \geqq 2 / s_{1}^{2}$ on σ_{1} where $s_{1}=\min \left\{1 / 2 K_{1}, \min _{z \in \sigma_{1}}|g(z)|\right\}$,
(17) $\operatorname{Re} p_{1}(z) \geqq 0$ on α_{1} and
(18) $\left|p_{1}(z)\right| \leqq \varepsilon_{1}$ on $\Omega_{z}-D_{1}$.

Our desire is, now, to approximate $p_{1}(z)$ by a regular function in $D-D_{1}$
minus a certain narrow region including the segment $\left[a_{2}, 1\right)$, pointed at $z=1$. Since $p_{1}(z)$ has, fortunately, its only pole in the open segment (a_{1}, a_{2}), we can sweep out, as is seen in ([6], [3], p. 182), the poles to the boundary point $z=1$, and consequently obtain a function $h_{1}(z)$, regular in D, satisfying
(16) $\left|h_{1}(z)\right| \geqq 1 / s_{1}^{2}$ on σ_{1},
(17)' $\operatorname{Re} h_{1}(z) \geqq-\varepsilon_{1}$ on α_{1} and
(18)' $\left|h_{1}(z)\right| \leqq 2 \varepsilon_{1}$ on $D-D_{1}-\bigcup_{k=2}^{\infty} D\left(a_{k}, a_{k+1} ; \theta_{k+1}\right)-\bigcup_{k=2}^{\infty} \sigma\left(a_{k} ;-\theta_{k+1}\right.$, θ_{k+1}).
Now we shall inductively construct rational functions $p_{n}(z)$ and regular functions $h_{n}(z)$ as follows. Let $t_{n}=\sum_{k=1}^{n-1} \max \left\{\left|h_{k}(z)\right| ; z \in \sigma_{1} \cup \sigma_{2} \cup \sigma_{3}\right.$ $\left.\cup \cdots \cup \sigma_{n}\right\}$. Then using Lemma again, we get a rational function $p_{n}(z)$, with its only pole in the open segment $\left(a_{n}, a_{n+1}\right)$, such that
(19) $\left|p_{n}(z)\right| \geqq 2 / s_{n}^{2}+2 t_{n}$ on σ_{n} where $s_{n}=\min \left\{1 / 2 K_{n}, \min _{z \in \sigma_{n}}|g(z)|\right\}$,
(20) $\quad \operatorname{Re} p_{n}(z) \geqq 0$ on α_{n} and
(21) $\left|p_{n}(z)\right| \leqq \varepsilon_{n}$ on $\Omega_{z}-D_{n}$.

Then as in the first step, we can find a function $h_{n}(z)$, regular in D, such that

$$
\begin{aligned}
& \quad(19)^{\prime} \quad\left|h_{n}(z)\right| \geqq 1 / s_{n}^{2}+t_{n} \text { on } \sigma_{n}, \\
& \quad(20)^{\prime} \quad \operatorname{Re} h_{n}(z) \geqq-\varepsilon_{n} \text { on } \alpha_{n} \text { and } \\
& \quad(21)^{\prime} \quad\left|h_{n}(z)\right| \leqq 2 \varepsilon_{n} \text { on } D-D_{n}-\bigcup_{k=n+1}^{\infty} D\left(a_{k}, a_{k+1} ; \theta_{k+1}\right)-\bigcup_{k=n+1}^{\infty} \sigma\left(a_{k} ;\right. \\
& \left.-\theta_{k+1}, \theta_{k+1}\right) .
\end{aligned}
$$

By virtue of (21)' the series $\sum_{n=1}^{\infty} h_{n}(z)$ uniformly converges on any compact subset of D and hence we obtain a function $h(z)=1+\sum_{n=1}^{\infty} h_{n}(z)$, regular in D. Now consider the function

$$
f(z)=g(z) h(z)
$$

Then using almost the same technique as is seen in ([3], p. 182-183), we can find that

$$
|f(z)|>\frac{1}{s_{n}}-2 s_{n} \text { on } \sigma_{n} \text { and }|f(z)| \geqq \frac{1}{2}|g(z)| \text { on } \gamma_{n}
$$

Consequently, from (15) and the definition of s_{n} stated in (19), we get that

$$
|f(z)| \geqq K_{n} \quad \text { on }|z|=a_{n}
$$

As for the distribution of zeros of $f(z)$, remember that $g(z) \neq 0$ in D
and note that $\bigcup_{n=1}^{\infty} D_{n} \subset R$. Further, by virtue of (21)', we have

$$
|h(z)|>\frac{1}{2} \quad \text { in } D-\bigcup_{n=1}^{\infty} D_{n} .
$$

Thus we see that $f(z)$ does not vanish outside of R.
Remark. According to a theorem of Bonar and Carrol ([5], p. 143), there exist no strongly annular functions, all zeros of which lie on the radius $[0,1)$. Our theorem, however, shows that zeros of strongly annular functions can be distributed arbitrarily near the radius $[0,1)$.

Bibliography

[1] F. Bagemihl and P. Erdös, A problem concerning the zeros of a certain kind of holomorphic function in the unit disk, J. Reine Angew. Math., 214/215 (1964), 340-344.
[2] F. Bagemihl and W. Seidel, Some boundary properties of analytic functions, Math. Z., 61 (1954), 186-199.
[3] K. Barth and W. Schneider, On a problem of Bagemihl and Erdös concerning the distribution of zeros of an annular function, J. Reine Angew. Math., 234 (1969), 179-183.
[4] D. D. Bonar, On annular functions, Berlin 1971.
[5] D. D. Bonar and F. W. Carrol, Distribution of a-points for unbounded analytic functions, J. Reine Angew. Math., 253 (1972), 141-145.
[6] W. Schneider, An entire transcendental function whose invers takes set of finite measure into set of finite measure, Bull. Amer. Math. Soc., 72 (1966), 841-842.

Gifu College of Pharmacy

