ON THE SEMISIMPLICITY OF THE ALGEBRA ASSOCIATED TO A POLARIZED ALGEBRAIC VARIETY

YOSHIFUMI KATO

§ 1. Introduction.

Let V be a compact nonsingular algebraic variety of dimension n with a Hodge structure ω and let $H^{i, i}(V, C)$ be the subgroup of $2 i$-th cohomology group $H^{2 i}(V, C)$ represented by harmonic (i, i-forms on V with respect to ω.

We denote

$$
\begin{aligned}
\mathfrak{S}_{2}^{i, i}(V, \boldsymbol{Q}) & =H^{i, i}(V, \boldsymbol{C}) \cap H^{2 i}(V, \boldsymbol{Q}), \\
\mathfrak{S}(V, \boldsymbol{Q}) & =\bigoplus_{i=0}^{n} \mathfrak{S}_{\mathrm{E}}^{i, i}(V, \boldsymbol{Q}) .
\end{aligned}
$$

Then $\mathscr{S}_{\mathcal{E}}(V, \boldsymbol{Q})$ forms a commutative associative algebra over \boldsymbol{Q}. We denote by L and Λ the linear operators acting on the cohomology group $H^{*}(V, C)$ as follows

$$
\begin{aligned}
& L \phi=\omega \cdot \phi, \\
& \Lambda \phi=i(\omega) \cdot \phi, \quad\left(\phi \in H^{*}(V, C)\right)
\end{aligned}
$$

where $i(\omega)$ means the inner product of ω with ϕ.
Recently H. Morikawa introduced a symmetric binary composition 。 in $\mathscr{S}^{1,1}(V, \mathbb{Q})$ defined by the equation

$$
\phi \circ \psi=\frac{1}{2}\{\Lambda \phi \cdot \psi+\Lambda \psi \cdot \phi-\Lambda(\phi \cdot \psi)\} . \quad\left(\phi, \psi \in \mathfrak{S}_{\mathscr{I}}^{1,1}(V, \boldsymbol{Q})\right)
$$

He remarked that if V is a polarized abelian variety, the Q-(not necessarily associative) algebra $\mathfrak{S}^{1,1}(V, \boldsymbol{Q})$ is canonically isomorphic to the Jordan algebra of symmetric elements in $\operatorname{End}_{Q}(V)$ with respect to the involution induced by the polarization (Cf. [4]).

In this paper, using formulae in Kähler geometry, we shall prove the following theorems that show the semisimplicity of the algebra ($\mathfrak{S}^{1,1}(V, \boldsymbol{Q}), \circ$).

Received February 19, 1974.
I would like to express my gratitude to Prof. Morikawa for his suggestions and encouragement.

TheOrem 1. Let V be a compact nonsingular algebraic variety of dimension n with a Hodge structure ω. Let \circ be a binary composition in $\mathfrak{S}^{1,1}(V, \boldsymbol{Q})$ defined by

$$
\begin{equation*}
\phi \circ \psi=\frac{1}{2}\{\Lambda \phi \cdot \psi+\Lambda \psi \cdot \phi-\Lambda(\phi \cdot \psi)\}, \tag{1.1}
\end{equation*}
$$

and let (,) be a symmetric bilinear form given by

$$
\begin{equation*}
(\phi, \psi)=\Lambda(\phi \circ \psi) . \quad\left(\phi, \psi \in \mathfrak{S}_{\complement}^{1,1}(V, \boldsymbol{Q})\right) \tag{1.2}
\end{equation*}
$$

Then the algebra ($\mathfrak{S}_{c^{1,1}}(V, Q), \circ$) is commutative and has ω as its unity element. And the symmetric bilinear form (,) satisfies

$$
\begin{equation*}
(\phi \circ \psi, \tau)=(\phi, \psi \circ \tau), \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
(\phi, \phi)>0 \quad \text { for } \phi \neq 0 . \quad\left(\phi, \psi, \tau \in \mathfrak{S}^{1,1}(V, \boldsymbol{Q})\right) \tag{1.4}
\end{equation*}
$$

REMARK 1. A symmetric bilinear form for an arbitrary (not necessarily associative) algebra satisfying (1.3) is called a trace form.

Definition 1. Let \mathfrak{A} be an algebra. An ideal \mathfrak{B} of \mathfrak{A} is simple, by definition, if there is no ideal of \mathfrak{A} contained in \mathfrak{B} and different from (0) and \mathfrak{B}. An algebra \mathfrak{H} is simple if the ideal \mathfrak{A} is simple.

Definition 2. For an algebra \mathfrak{A} we call it semisimple if it is decomposed into a direct sum of simple ideals.

Theorem 2. The algebra ($\mathfrak{S}_{\mathrm{C}}^{1,1}(V, \boldsymbol{Q}), \circ$) is semisimple so that $\mathfrak{S}_{\mathrm{e}}^{1,1}(V$, $\boldsymbol{Q})$ is uniquely expressible as a direct sum

$$
\begin{equation*}
\mathfrak{S}^{1,1}(V, \boldsymbol{Q})=\mathfrak{K}_{1}+\cdots+\mathfrak{S}_{\mathrm{C} k}, \tag{1.5}
\end{equation*}
$$

of simple ideals $\mathfrak{S}_{\mathrm{E}}$.
Corresponding to this decomposition, the Hodge structure ω is decomposed

$$
\begin{equation*}
\omega=\omega_{1}+\cdots+\omega_{k}, \tag{1.6}
\end{equation*}
$$

with

$$
\begin{aligned}
& \omega_{i} \circ \omega_{j}=0 \quad \text { for } i \neq j, \\
& \omega_{i} \circ \omega_{i}=\omega_{i} .
\end{aligned}
$$

Theorem 2 follows from the next general theorem (Cf, [3]).
Theorem 3. Let $(\mathfrak{A}, \circ$) be an algebra of finite dimension satisfying (1) there is a nondegenerate trace form (,) defined on \mathfrak{H}.
(2) $\mathfrak{B}^{2} \neq 0$ for every ideal $\mathfrak{B} \neq 0$ of \mathfrak{A}.

Then \mathfrak{A} is uniquely decomposed into a direct sum

$$
\mathfrak{U}=\mathfrak{A}_{1}+\cdots+\mathfrak{U}_{j},
$$

of simple ideals \mathfrak{N}_{i}.
But in our case the trace form is positive definite so the proof of Theorem 2 is easy as we shall see in $\S 3$.

§ 2. Some formulae in Kähler geometry.

First of all, let us recall the fundamental formulae and theorems in Kähler geometry which will be used for the proofs of Theorem 1 and Theorem 2 (Cf, [1]).

We need following formulae between the operators L and Λ;

$$
\begin{equation*}
[L, \Lambda]=H=\sum_{i=0}^{2 n}(i-n) \dot{P_{i}} \tag{2.1}
\end{equation*}
$$

where P_{i} is the projection map on the i-th factor.

$$
\begin{gather*}
{[L, H]=-2 L, \quad[\Lambda, H]=2 \Lambda} \\
\Lambda L^{r}-L^{r} \Lambda=\sum_{\substack{i, j, 0 \leq j \leqslant r-1}}(n-i) L^{r-1} P_{i-2 j} \tag{2.2}
\end{gather*}
$$

Denoting by $H^{i}(V, C)_{0}$ the i-th primitive cohomology group $\left\{\phi \in H^{i}(V, C) \mid \Lambda \phi=0\right\}$, we have a criterion of primitivity;

$$
\begin{equation*}
H^{i}(V, C)_{0}=\left\{\phi \in H^{i}(V, C) \mid \omega^{n-i+1} \phi=0\right\}, \tag{2.3}
\end{equation*}
$$

and Lefschetz decomposition theorem;

$$
\begin{gather*}
H^{i}(V, C)=H^{i}(V, C)_{0}+\cdots+L^{r} H^{i-2 r}(V, C)_{0} \\
r \leq\left[\frac{i}{2}\right] \quad \text { for } 0 \leq i \leq n \tag{2.4}\\
H^{i}(V, C)=L^{i-n} H^{2 n-i}(V, C)_{0}+\cdots+L^{i-n+r} H^{2 n-i-2 r}(V, C)_{0} \\
r \leq\left[\frac{2 n-i}{2}\right] \quad \text { for } n<i \leq 2 n
\end{gather*}
$$

Putting

$$
Q(\phi, \psi)=(-1)^{i(i+1) / 2} \int_{V} \omega^{n-i} \cdot \phi \cdot \psi \quad \text { for } \phi, \psi \text { in } H^{i}(V, C)_{0}
$$

Q is symmetric bilinear form for i even and is an alternating bilinear form for i odd. For either case Q is nondegenerate. Moreover we have

$$
\begin{equation*}
Q\left(H_{0}^{i-r, r}, H_{0}^{s, i-s}\right)=0 \quad \text { for } r \neq s \tag{2.5}
\end{equation*}
$$

(2.6) $\quad(\sqrt{-1})^{i}(-1)^{i+r} Q\left(H_{0}^{i-r, r}, H_{0}^{r, i-r}\right)>0 \quad$ positive definite.

Lemma 1. Using the notations above, we have

$$
\begin{equation*}
L \Lambda \phi=\Lambda \phi \cdot \omega \tag{2.7}
\end{equation*}
$$

$$
\begin{gather*}
\Lambda L \phi=(n-2) \phi+\Lambda \phi \cdot \omega \tag{2.8}\\
\Lambda \omega=n=\operatorname{dim} V . \quad\left(\phi \in \mathscr{S}_{反}^{1,1}(V, \boldsymbol{Q})\right) \tag{2.9}
\end{gather*}
$$

Proof. From the formulae (2.1) and (2.2) between the operators L, Λ and H, it follows that

$$
\begin{aligned}
L \Lambda \phi & =\Lambda \phi \cdot L 1=\Lambda \phi \cdot \omega \\
\Lambda L \phi & =(-H+L \Lambda) \phi=(n-2) \phi+\Lambda \phi \cdot \omega \\
\Lambda \omega & =\Lambda L 1=(-H+L \Lambda) 1=-H 1=n
\end{aligned}
$$

Proposition 1.

$$
\begin{equation*}
\phi \circ \psi=\psi \circ \phi, \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\phi \circ \omega=\omega \circ \phi=\phi . \quad\left(\phi, \psi \in \mathscr{S}_{\mathscr{C}^{1,1}}(V, Q)\right) \tag{2.11}
\end{equation*}
$$

Proof. From Lemma 1 and the definition (1.1) of the composition \circ, we have the commutativity (2.10) and

$$
\begin{aligned}
\phi \circ \omega & =\frac{1}{2}\{\Lambda \omega \cdot \phi+\Lambda \phi \cdot \omega-\Lambda(\phi \cdot \omega)\} \\
& =\frac{1}{2}\{n \phi+\Lambda \phi \cdot \omega-\Lambda L \phi\} \\
& =\phi .
\end{aligned}
$$

The equation (2.11) implies that the Hodge structure ω is the unity element of the algebra ($\left.\mathfrak{S}^{1,1}(V, Q), \circ\right)$.

We denote by $B_{2}($,$) and B_{3}(,$,$) respectively a bilinear form and a$ trilinear form given by

$$
\begin{aligned}
B_{2}(\phi, \psi) \omega^{n} & =\phi \cdot \psi \cdot \omega^{n-2}, \\
B_{3}(\phi, \psi, \tau) \omega^{n} & =\phi \cdot \psi \cdot \tau \cdot \omega^{n-3}, \quad\left(\phi, \psi, \tau \in \mathfrak{S}_{\mathcal{E}}^{1,1}(V, \boldsymbol{Q})\right)
\end{aligned}
$$

Integrating both sides of the above first equation over V, we have

$$
\int_{V} B_{2}(\phi, \psi) \omega^{n}=\int_{V} \phi \cdot \psi \cdot \omega^{n-2},
$$

and

$$
\begin{equation*}
B_{2}(\phi, \psi)=\frac{1}{I(\omega)} \int_{V} \phi \cdot \psi \cdot \omega^{n-2}, \tag{2.12}
\end{equation*}
$$

where

$$
I(\omega)=\int_{V} \omega^{n}>0 .
$$

Similarly we have

$$
\begin{equation*}
B_{3}(\phi, \psi, \tau)=\frac{1}{I(\omega)} \int_{V} \phi \cdot \psi \cdot \tau \cdot \omega^{n-3} . \tag{2.13}
\end{equation*}
$$

$B_{2}($,$) and B_{3}(,$,$) are symmetric forms and by virture of (2.3), (2.5) and$ (2.6), we have

$$
\begin{equation*}
B_{2}(\omega, \omega)=1, \tag{2.14}
\end{equation*}
$$

(2.15) $\quad B_{2}(\phi, \omega)=B_{2}(\omega, \phi)=0 \quad$ for primitive ϕ in $\mathscr{S}^{1,1}(V, Q)$,
(2.16) $\quad B_{2}(\phi, \phi)<0 \quad$ for nonzero primitive ϕ in $\mathfrak{S}_{2}^{1,1}(V, Q)$,

These formulae will give the positive definiteness of the bilinear form (,) defined in Theorem 1.

Lemma 2. Let ϕ, ψ, τ be in $\mathscr{S}^{1,1}(V, Q)$. Then we have

$$
\begin{gather*}
\Lambda L^{n} 1=n L^{n-1} 1=n \omega^{n-1}, \tag{2.17}\\
\Lambda \phi=n B_{2}(\phi, \omega) \tag{2.18}
\end{gather*}
$$

$$
\begin{equation*}
B_{2}(\Lambda(\phi \cdot \psi), \omega)=2(n-1) B_{2}(\phi, \psi), \tag{2.19}
\end{equation*}
$$

$$
\begin{gather*}
B_{2}(\Lambda(\phi \cdot \psi), \tau)=n B_{2}(\phi, \psi) B_{2}(\tau, \omega)+(n-2) B_{3}(\phi, \psi, \tau), \tag{2.20}\\
\Lambda^{2}(\phi \cdot \psi)=2 n(n-1) B_{2}(\phi, \psi) . \tag{2.21}
\end{gather*}
$$

Proof. By the formulae (2.2), we have

$$
\Lambda L^{n} 1=L^{n} \Lambda 1+\sum_{r=0}^{n-1}(n-2 r) L^{n-1} 1=n L^{n-1} 1=n \omega^{n-1}
$$

Since

$$
\Lambda\left(\phi \cdot \omega^{n-1}\right)=\Lambda\left(B_{2}(\phi, \omega) \omega^{n}\right)=B_{2}(\phi, \omega) \Lambda L^{n} 1=n B_{2}(\phi, \omega) \omega^{n-1},
$$

and

$$
\begin{aligned}
\Lambda\left(\phi \cdot \omega^{n-1}\right) & =\Lambda L^{n-1} \phi=L^{n-1} \Lambda \phi+\sum_{r=0}^{n-2}(n-2-2 r) L^{n-2} \phi=\Lambda \phi L^{n-1} 1 \\
& =\Lambda \phi \cdot \omega^{n-1}
\end{aligned}
$$

comparing the coefficients of ω^{n-1} in $n B_{2}(\phi, \omega) \omega^{n-1}$ and $\Lambda \phi \cdot \omega^{n-1}$, we have (2.18).

Comparing the coefficients of ω^{n} of the following equations;

$$
\begin{aligned}
B_{2}(\Lambda(\phi \cdot \psi), \omega) \omega^{n} & =\Lambda(\phi \cdot \psi) \omega^{n-1}=L^{n-1} \Lambda(\phi \cdot \psi) \\
& =\Lambda L^{n-1} \phi \psi-\sum_{r=0}^{n-2}(n-4-2 r) L^{n-2} \phi \psi \\
& =2(n-1) B_{2}(\phi, \psi) \omega^{n},
\end{aligned}
$$

and

$$
\begin{aligned}
B_{2}(\Lambda(\phi \cdot \psi), \tau) \omega^{n} & =\Lambda(\phi \cdot \psi) \cdot \tau \omega^{n-2}=L^{n-2} \Lambda(\phi \cdot \psi) \cdot \tau \\
& =\left\{\Lambda L^{n-2} \phi \psi-\sum_{r=0}^{n-3}(n-4-2 r) L^{n-3} \phi \psi\right\} \cdot \tau \\
& =n B_{2}(\phi, \psi) \omega^{n-1} \tau+(n-2) \omega^{n-3} \phi \psi \tau \\
& =\left\{n B_{2}(\phi, \psi) B_{2}(\tau, \omega)+(n-2) B_{3}(\phi, \psi, \tau)\right\} \omega^{n},
\end{aligned}
$$

we have (2.19) and (2.20).
By (2.18) and (2.19), we have

$$
\Lambda^{2}(\phi \cdot \psi)=n B_{2}(\Lambda(\phi \cdot \psi), \omega)=2 n(n-1) B_{2}(\phi, \psi)
$$

and the proof of Lemma 2 is completed.

§ 3. The proofs of Theorem 1 and Theorem 2.

By Proposition 1, the former part of Theorem 1 that the algebra $\mathfrak{S}^{1,1}(V, \boldsymbol{Q})$ is commutative and ω is the unity element is proved. Hence we prove that the symmetric bilinear form (,) is a trace form (1.3) and is positive definite (1.4).

If at least one of ϕ, ψ and τ is ω, since ω is the unity element, (1.3) holds. So considering the Lefschetz decomposition, we may assume that they are all primitive.
Then

$$
(\phi \circ \psi) \circ \tau=\frac{1}{4}\left\{-\Lambda^{2}(\phi \cdot \psi) \cdot \tau+\Lambda(\Lambda(\phi \cdot \psi) \cdot \tau)\right\},
$$

and from (1.2), (2.15), (2.20) and (2.21), we have

$$
\begin{aligned}
(\phi \circ \psi, \tau) & =\Lambda((\phi \circ \psi) \circ \tau)=\frac{1}{4} \Lambda^{2}(\Lambda(\phi \cdot \psi) \cdot \tau) \\
& =\frac{1}{2} n(n-1)(n-2) B_{3}(\phi, \psi, \tau) .
\end{aligned}
$$

On the other hand we have

$$
\begin{aligned}
(\phi, \psi \circ \tau) & =\Lambda(\phi \circ(\psi \circ \tau))=\frac{1}{4} \Lambda^{2}(\phi \cdot \Lambda(\psi \cdot \tau)) \\
& =\frac{1}{2} n(n-1)(n-2) B_{3}(\phi, \psi, \tau) .
\end{aligned}
$$

This shows (1.3).
Now we prove (1.4). From (1.1), (1.2), (2.18) and (2.21), it follows

$$
\begin{aligned}
(\phi, \psi) & =\Lambda(\phi \circ \psi)=\frac{1}{2}\left\{\Lambda \phi \cdot \Lambda \psi+\Lambda \psi \cdot \Lambda \phi-\Lambda^{2}(\phi \cdot \psi)\right\} \\
& =\Lambda \phi \cdot \Lambda \psi-\frac{1}{2} \Lambda^{2}(\phi \cdot \psi) \\
& =n^{2} B_{2}(\phi, \omega) B_{2}(\psi, \omega)-n(n-1) B_{2}(\phi, \psi)
\end{aligned}
$$

We choose a base $\left\{e_{0}, \cdots, e_{r}\right\}$ of $\mathfrak{S}^{1,1}(V, \boldsymbol{Q})$ such that

$$
\begin{aligned}
& e_{0}=\omega \\
& e_{i}: \text { primitive for } 1 \leq i \leq r,
\end{aligned}
$$

and express the bilinear forms $n^{2} B_{2}(\phi, \omega) B_{2}(\psi, \omega), n(n-1) B_{2}(\phi, \psi)$, and (ϕ, ψ) by matrices with respect to this base.
Then by virture of (2.14), (2.15) and (2.16), we have

$$
\left(\begin{array}{c|c}
n^{2} B_{2}\left(e_{i}, \omega\right) B_{2}\left(e_{j}, \omega\right)
\end{array}\right)=\left(\begin{array}{c|c}
n^{2} & 0 \\
\hline 0 & 0
\end{array}\right),
$$

and

$$
\left(\begin{array}{c|c}
n(n-1) B_{2}\left(e_{i}, e_{j}\right)
\end{array}\right)=\left(\begin{array}{c|c}
n(n-1) & 0 \\
\hline 0 & \left(^{*}\right)
\end{array}\right),
$$

where the matrix $\left({ }^{*}\right)$ is negative definite.
So the matrix

$$
\left(\left(e_{i}, e_{j}\right)\right)=\left(\begin{array}{c|c}
n & 0 \\
\hline 0 & -\left(^{*}\right)
\end{array}\right)
$$

is positive definite. The proof of Theorem 1 is completed.
We prove Theorem 2. Let \mathfrak{K}_{1} be a simple ideal of $\mathfrak{S}^{1,1}(V, Q)$. Putting
 of $\mathscr{S}^{1,1}(V, Q)$, since the bilinear form (,) is a trace form. Moreover taking an element ϕ in $\mathfrak{K}_{1} \cap \mathscr{S}_{c} \perp$, we have

$$
(\phi, \phi)=0
$$

and

$$
\phi=0,
$$

because the bilinear form (,) is positive definite. Hence the algebra $\mathfrak{S}^{1,1}(V, Q)$ is decomposed into

$$
\mathfrak{S}^{1,1}(V, \boldsymbol{Q})=\mathfrak{S}_{1}+\mathfrak{S}_{\mathfrak{L}}^{\perp} .
$$

Repeating this method, we obtain the decomposition (1.5) such that

$$
\mathfrak{S}^{1,1}(V, Q)=\mathfrak{S}_{1}+\cdots+\mathfrak{S}_{k} .
$$

 lows

$$
\mathscr{G} \cap \mathscr{S}_{\mathrm{G}} i=0
$$

or

$$
\mathfrak{S} \cap \mathfrak{S}_{i} \neq 0 .
$$

In case $\mathscr{S}_{\mathrm{S}} \cap \mathfrak{S}_{i} \neq 0$, it follows

$$
\mathfrak{S} \cap \mathfrak{S}_{i}=\mathfrak{S}=\mathfrak{S}_{i},
$$

because $\mathscr{S}_{\mathcal{L}}$ and \mathfrak{S}_{2} are both simple ideals. From this the uniqueness of the decomposition (1.5) follows. The proof of Theorem 2 is completed.

Finally we present two problems. Let D be an ample divisor whose chern class is ω. Then corresponding to the decomposition (1.6) of ω, D can be written as follows

$$
D=D_{1}+\cdots+D_{k},
$$

where

$$
\begin{gathered}
D_{i}=\sum_{j} q_{i j} D_{i j} \quad\left(q_{i j} \in \boldsymbol{Q}\right) \\
\left(D_{i j} \text { is a cycle of codimension one }\right)
\end{gathered}
$$

and

$$
c\left(D_{i}\right)=\omega_{i}
$$

Multiplying D by a suitable integer, we may assume that $q_{i j}$ is an integer for all i, j.

Problem 1. When we write D as above, is each divisor D_{i} effective?
If Problem 1 is affirmative, we can consider the following problem.
Problem 2. We denote

$$
V_{i}=\operatorname{Proj}\left(\bigoplus_{m=0}^{\infty} L\left(m D_{i}\right)\right) \quad \text { for } 1 \leq i \leq k
$$

(Cf, [5]).
Then, are there any mappings from V to $V_{1} \times \cdots \times V_{k}$?

References

[1] A. Weil, Introduction a l'étude des variétés kählériennes, Hermann Paris, 1957.
[2] S. Lang, Abelian variety, Interscience Publishers, 1958.
[3] R. D. Schafer, An introduction to nonassociative algebras, Academic Press, 1966.
[4] H. Morikawa, On a certain algebra associated to a polarized algebraic variety, Nagoya Math. Jour, vol. 53.
[5] A. Grothendieck Éléments de géométrie algébrique II, I.H.E.S., 1961.

Nagoya University

