Y. Kato Nagoya Math. J. Vol. 55 (1974), 81-89

ON THE SEMISIMPLICITY OF THE ALGEBRA ASSOCIATED TO A POLARIZED ALGEBRAIC VARIETY

YOSHIFUMI KATO

§1. Introduction.

Let V be a compact nonsingular algebraic variety of dimension n with a Hodge structure ω and let $H^{i,i}(V, C)$ be the subgroup of 2*i*-th cohomology group $H^{2i}(V, C)$ represented by harmonic (i, i)-forms on V with respect to ω .

We denote

$$\begin{split} \mathfrak{F}^{i,i}(V, \mathcal{Q}) &= H^{i,i}(V, \mathcal{C}) \cap H^{2i}(V, \mathcal{Q}) \;, \\ \mathfrak{F}(V, \mathcal{Q}) &= \bigoplus_{i=0}^n \mathfrak{F}^{i,i}(V, \mathcal{Q}) \;. \end{split}$$

Then $\mathfrak{H}(V, \mathbf{Q})$ forms a commutative associative algebra over \mathbf{Q} . We denote by L and Λ the linear operators acting on the cohomology group $H^*(V, \mathbf{C})$ as follows

$$egin{aligned} L\phi &= \omega \cdot \phi \ , \ \Lambda\phi &= i(\omega) \cdot \phi \ , \end{aligned} (\phi \in H^*(V, {m C})) \end{aligned}$$

where $i(\omega)$ means the inner product of ω with ϕ .

Recently H. Morikawa introduced a symmetric binary composition \circ in $\mathfrak{H}^{1,1}(V, \mathbf{Q})$ defined by the equation

$$\phi \circ \psi = \frac{1}{2} \{ \Lambda \phi \cdot \psi + \Lambda \psi \cdot \phi - \Lambda (\phi \cdot \psi) \} . \qquad (\phi, \psi \in \mathfrak{S}^{1,1}(V, \mathbf{Q}))$$

He remarked that if V is a polarized abelian variety, the Q-(not necessarily associative) algebra $\mathfrak{F}^{1,1}(V, Q)$ is canonically isomorphic to the Jordan algebra of symmetric elements in $\operatorname{End}_{Q}(V)$ with respect to the involution induced by the polarization (Cf. [4]).

In this paper, using formulae in Kähler geometry, we shall prove the following theorems that show the semisimplicity of the algebra $(\mathfrak{H}^{1,1}(V, \mathbf{Q}), \circ).$

I would like to express my gratitude to Prof. Morikawa for his suggestions and encouragement.

Received February 19, 1974.

THEOREM 1. Let V be a compact nonsingular algebraic variety of dimension n with a Hodge structure ω . Let \circ be a binary composition in $S^{1,1}(V, \mathbf{Q})$ defined by

(1.1)
$$\phi \circ \psi = \frac{1}{2} \{ \Lambda \phi \cdot \psi + \Lambda \psi \cdot \phi - \Lambda (\phi \cdot \psi) \},$$

and let (,) be a symmetric bilinear form given by

(1.2)
$$(\phi, \psi) = \Lambda(\phi \circ \psi) \ . \qquad (\phi, \psi \in \mathfrak{S}^{1,1}(V, \mathbf{Q}))$$

Then the algebra $(S^{1,1}(V, \mathbf{Q}), \circ)$ is commutative and has ω as its unity element. And the symmetric bilinear form (,) satisfies

(1.3)
$$(\phi \circ \psi, \tau) = (\phi, \psi \circ \tau) ,$$

(1.4)
$$(\phi,\phi) \geq 0 \quad \text{for } \phi \neq 0 \; . \qquad (\phi,\psi,\tau\in \mathfrak{S}^{1,1}(V,\mathbf{Q}))$$

REMARK 1. A symmetric bilinear form for an arbitrary (not necessarily associative) algebra satisfying (1.3) is called a trace form.

DEFINITION 1. Let \mathfrak{A} be an algebra. An ideal \mathfrak{B} of \mathfrak{A} is simple, by definition, if there is no ideal of \mathfrak{A} contained in \mathfrak{B} and different from (0) and \mathfrak{B} . An algebra \mathfrak{A} is simple if the ideal \mathfrak{A} is simple.

DEFINITION 2. For an algebra \mathfrak{A} we call it semisimple if it is decomposed into a direct sum of simple ideals.

THEOREM 2. The algebra $(S^{1,1}(V, Q), \circ)$ is semisimple so that $S^{1,1}(V, Q)$ is uniquely expressible as a direct sum

(1.5)
$$\mathfrak{H}^{1,1}(V, \mathbf{Q}) = \mathfrak{H}_1 + \cdots + \mathfrak{H}_k,$$

of simple ideals \mathfrak{H}_i .

Corresponding to this decomposition, the Hodge structure ω is decomposed

(1.6)
$$\omega = \omega_1 + \cdots + \omega_k ,$$

with

$$egin{aligned} &\omega_i\circ\omega_j=0 & for \ i
eq j \ , \ &\omega_i\circ\omega_i=\omega_i \ . \end{aligned}$$

Theorem 2 follows from the next general theorem (Cf, [3]).

THEOREM 3. Let (\mathfrak{A}, \circ) be an algebra of finite dimension satisfying (1) there is a nondegenerate trace form (,) defined on \mathfrak{A} . (2) $\mathfrak{B}^2 \neq 0$ for every ideal $\mathfrak{B} \neq 0$ of \mathfrak{A} . Then \mathfrak{A} is uniquely decomposed into a direct sum

$$\mathfrak{A} = \mathfrak{A}_1 + \cdots + \mathfrak{A}_j$$
,

of simple ideals \mathfrak{A}_i .

But in our case the trace form is positive definite so the proof of Theorem 2 is easy as we shall see in $\S 3$.

§ 2. Some formulae in Kähler geometry.

First of all, let us recall the fundamental formulae and theorems in Kähler geometry which will be used for the proofs of Theorem 1 and Theorem 2 (Cf, [1]).

We need following formulae between the operators L and Λ ;

(2.1)
$$[L,\Lambda] = H = \sum_{i=0}^{2n} (i-n)P_i,$$

where P_i is the projection map on the *i*-th factor.

(2.2)
$$[L,H] = -2L , \qquad [\Lambda,H] = 2\Lambda , \Lambda L^r - L^r \Lambda = \sum_{\substack{i,j \\ 0 < j < r-1}} (n-i) L^{r-1} P_{i-2j} .$$

Denoting by $H^i(V, C)_0$ the *i*-th primitive cohomology group $\{\phi \in H^i(V, C) \mid A\phi = 0\}$, we have a criterion of primitivity;

(2.3)
$$H^{i}(V, C)_{0} = \{\phi \in H^{i}(V, C) | \omega^{n-i+1}\phi = 0\},\$$

and Lefschetz decomposition theorem;

(2.4)

$$H^{i}(V, C) = H^{i}(V, C)_{0} + \cdots + L^{r} H^{i-2r}(V, C)_{0}$$

$$r \leq \left[\frac{i}{2}\right] \quad \text{for } 0 \leq i \leq n ,$$

$$H^{i}(V, C) = L^{i-n} H^{2n-i}(V, C)_{0} + \cdots + L^{i-n+r} H^{2n-i-2r}(V, C)_{0}$$

$$r \leq \left[\frac{2n-i}{2}\right] \quad \text{for } n < i \leq 2n .$$

Putting

$$Q(\phi,\psi) = (-1)^{i(i+1)/2} \int_{V} \omega^{n-i} \cdot \phi \cdot \psi$$
 for ϕ, ψ in $H^{i}(V, C)_{0}$,

Q is symmetric bilinear form for i even and is an alternating bilinear form for i odd. For either case Q is nondegenerate. Moreover we have

(2.5)
$$Q(H_0^{i-r,r}, H_0^{s,i-s}) = 0 \quad \text{for } r \neq s$$

 $(2.6) \qquad (\sqrt{-1})^{i}(-1)^{i+r}Q(H_0^{i-r,r},H_0^{r,i-r}) > 0 \qquad \text{positive definite.}$

LEMMA 1. Using the notations above, we have

$$L\Lambda\phi = \Lambda\phi\cdot\omega,$$

(2.8)
$$\Lambda L\phi = (n-2)\phi + \Lambda\phi\cdot\omega,$$

(2.9)
$$\Lambda \omega = n = \dim V . \qquad (\phi \in S^{1,1}(V, Q))$$

Proof. From the formulae (2.1) and (2.2) between the operators L, Λ and H, it follows that

$$L\Lambda\phi = \Lambda\phi\cdot L\mathbf{1} = \Lambda\phi\cdot\omega$$
,
 $\Lambda L\phi = (-H + L\Lambda)\phi = (n-2)\phi + \Lambda\phi\cdot\omega$,
 $\Lambda\omega = \Lambda L\mathbf{1} = (-H + L\Lambda)\mathbf{1} = -H\mathbf{1} = n$.

PROPOSITION 1.

$$(2.10) \qquad \qquad \phi \circ \psi = \psi \circ \phi ,$$

(2.11)
$$\phi \circ \omega = \omega \circ \phi = \phi$$
. $(\phi, \psi \in \mathfrak{H}^{1,1}(V, Q))$

Proof. From Lemma 1 and the definition (1.1) of the composition \circ , we have the commutativity (2.10) and

$$\phi \circ \omega = \frac{1}{2} \{ \Lambda \omega \cdot \phi + \Lambda \phi \cdot \omega - \Lambda (\phi \cdot \omega) \}$$
$$= \frac{1}{2} \{ n\phi + \Lambda \phi \cdot \omega - \Lambda L\phi \}$$
$$= \phi .$$

The equation (2.11) implies that the Hodge structure ω is the unity element of the algebra $(\mathcal{S}^{1,1}(V, \mathbf{Q}), \circ)$.

We denote by $B_2(,)$ and $B_3(,,)$ respectively a bilinear form and a trilinear form given by

$$egin{aligned} B_2(\phi,\psi)\omega^n&=\phi\cdot\psi\cdot\omega^{n-2}\ ,\ B_3(\phi,\psi, au)\omega^n&=\phi\cdot\psi\cdot au\cdot\omega^{n-3}\ ,\ (\phi,\psi, au\in \mathbb{S}^{1,1}(V,oldsymbol{Q})) \end{aligned}$$

Integrating both sides of the above first equation over V, we have

$$\int_{V} B_2(\phi,\psi) \omega^n = \int_{V} \phi \cdot \psi \cdot \omega^{n-2}$$
 ,

and

(2.12)
$$B_2(\phi,\psi) = \frac{1}{I(\omega)} \int_V \phi \cdot \psi \cdot \omega^{n-2} ,$$

where

$$I(\omega)=\int_{V}\omega^{n}>0.$$

Similarly we have

(2.13)
$$B_3(\phi,\psi,\tau) = \frac{1}{I(\omega)} \int_{\nu} \phi \cdot \psi \cdot \tau \cdot \omega^{n-3} .$$

 $B_2(,)$ and $B_3(,,)$ are symmetric forms and by virture of (2.3), (2.5) and (2.6), we have

$$(2.14) B_2(\omega, \omega) = 1 ,$$

$$(2.15) \qquad B_2(\phi, \omega) = B_2(\omega, \phi) = 0 \qquad \text{for primitive } \phi \text{ in } \mathfrak{H}^{1,1}(V, \mathbf{Q}) = 0$$

(2.16) $B_2(\phi,\phi) < 0$ for nonzero primitive ϕ in $\mathfrak{S}^{1,1}(V, \mathbf{Q})$,

These formulae will give the positive definiteness of the bilinear form (,) defined in Theorem 1.

LEMMA 2. Let ϕ, ψ, τ be in $\mathfrak{H}^{1,1}(V, Q)$. Then we have

(2.17)
$$AL^{n} = nL^{n-1} = n\omega^{n-1},$$

(2.18)
$$\Lambda \phi = n B_2(\phi, \omega) ,$$

(2.19)
$$B_2(\Lambda(\phi \cdot \psi), \omega) = 2(n-1)B_2(\phi, \psi)$$
,

$$(2.20) B_2(\Lambda(\phi \cdot \psi), \tau) = nB_2(\phi, \psi)B_2(\tau, \omega) + (n-2)B_3(\phi, \psi, \tau) ,$$

(2.21)
$$\Lambda^{2}(\phi \cdot \psi) = 2n(n-1)B_{2}(\phi, \psi) .$$

Proof. By the formulae (2.2), we have

$$\Lambda L^{n} \mathbf{1} = L^{n} \Lambda \mathbf{1} + \sum_{r=0}^{n-1} (n-2r) L^{n-1} \mathbf{1} = n L^{n-1} \mathbf{1} = n \omega^{n-1} .$$

Since

YOSHIFUMI KATO

$$\Lambda(\phi \cdot \omega^{n-1}) = \Lambda(B_2(\phi, \omega)\omega^n) = B_2(\phi, \omega)\Lambda L^n \mathbf{1} = nB_2(\phi, \omega)\omega^{n-1}$$

and

$$\begin{split} \Lambda(\phi \cdot \omega^{n-1}) &= \Lambda L^{n-1} \phi = L^{n-1} \Lambda \phi + \sum_{r=0}^{n-2} (n-2-2r) L^{n-2} \phi = \Lambda \phi L^{n-1} \mathbf{1} \\ &= \Lambda \phi \cdot \omega^{n-1} , \end{split}$$

comparing the coefficients of ω^{n-1} in $nB_2(\phi, \omega)\omega^{n-1}$ and $A\phi \cdot \omega^{n-1}$, we have (2.18).

Comparing the coefficients of ω^n of the following equations;

$$egin{aligned} B_2(arLambda(\phi\cdot\psi),\omega)\omega^n&=arLambda(\phi\cdot\psi)\ &=arLambda^{n-1}\phi\psi-\sum\limits_{r=0}^{n-2}(n-4-2r)L^{n-2}\phi\psi\ &=2(n-1)B_2(\phi,\psi)\omega^n \ , \end{aligned}$$

and

$$egin{aligned} B_2(arLambda(\phi\cdot\psi), au)\omega^n&=arLambda(\phi\cdot\psi)\cdot au\ &=\left\{arLambda L^{n-2}\phi\psi-\sum_{r=0}^{n-3}(n-4-2r)L^{n-3}\phi\psi
ight\}\cdot au\ &=nB_2(\phi,\psi)\omega^{n-1} au+(n-2)\omega^{n-3}\phi\psi au\ &=\{nB_2(\phi,\psi)B_2(au,\omega)+(n-2)B_3(\phi,\psi, au)\}\omega^n\ ,\end{aligned}$$

we have (2.19) and (2.20). By (2.18) and (2.19), we have

$$\Lambda^{2}(\phi \cdot \psi) = nB_{2}(\Lambda(\phi \cdot \psi), \omega) = 2n(n-1)B_{2}(\phi, \psi)$$

and the proof of Lemma 2 is completed.

§3. The proofs of Theorem 1 and Theorem 2.

By Proposition 1, the former part of Theorem 1 that the algebra $\mathfrak{S}^{1,1}(V, \mathbf{Q})$ is commutative and ω is the unity element is proved. Hence we prove that the symmetric bilinear form (,) is a trace form (1.3) and is positive definite (1.4).

If at least one of ϕ , ψ and τ is ω , since ω is the unity element, (1.3) holds. So considering the Lefschetz decomposition, we may assume that they are all primitive.

Then

$$(\phi \circ \psi) \circ \tau = \frac{1}{4} \{ -\Lambda^2(\phi \cdot \psi) \cdot \tau + \Lambda(\Lambda(\phi \cdot \psi) \cdot \tau) \}$$

86

and from (1.2), (2.15), (2.20) and (2.21), we have

$$\begin{aligned} (\phi \circ \psi, \tau) &= \Lambda((\phi \circ \psi) \circ \tau) = \frac{1}{4} \Lambda^2 (\Lambda(\phi \cdot \psi) \cdot \tau) \\ &= \frac{1}{2} n(n-1)(n-2) B_3(\phi, \psi, \tau) \;. \end{aligned}$$

On the other hand we have

$$\begin{aligned} (\phi, \psi \circ \tau) &= \Lambda(\phi \circ (\psi \circ \tau)) = \frac{1}{4} \Lambda^2 (\phi \cdot \Lambda(\psi \cdot \tau)) \\ &= \frac{1}{2} n(n-1)(n-2) B_3(\phi, \psi, \tau) \; . \end{aligned}$$

This shows (1.3).

Now we prove (1.4). From (1.1), (1.2), (2.18) and (2.21), it follows

$$\begin{split} (\phi,\psi) &= \Lambda(\phi\circ\psi) = \frac{1}{2} \{ \Lambda\phi \cdot \Lambda\psi + \Lambda\psi \cdot \Lambda\phi - \Lambda^2(\phi\cdot\psi) \} \\ &= \Lambda\phi \cdot \Lambda\psi - \frac{1}{2}\Lambda^2(\phi\cdot\psi) \\ &= n^2 B_2(\phi,\omega) B_2(\psi,\omega) - n(n-1) B_2(\phi,\psi) \; . \end{split}$$

We choose a base $\{e_0, \dots, e_r\}$ of $S^{1,1}(V, \mathbf{Q})$ such that

$$egin{array}{ll} e_0 = \omega \ , \ e_i \colon \ ext{primitive for } 1 \leq i \leq r \ , \end{array}$$

and express the bilinear forms $n^2B_2(\phi, \omega)B_2(\psi, \omega)$, $n(n-1)B_2(\phi, \psi)$, and (ϕ, ψ) by matrices with respect to this base.

Then by virture of (2.14), (2.15) and (2.16), we have

$$\left(n^2B_2(e_i,\omega)B_2(e_j,\omega)\right) = \left(\begin{array}{c|c}n^2 & 0\\ \hline 0 & 0\end{array}\right),$$

and

$$\left(n(n-1)B_2(e_i,e_j)\right) = \left(\frac{n(n-1)|0|}{0|(*)|}\right),$$

where the matrix (*) is negative definite. So the matrix

$$\left((e_i, e_j)\right) = \left(\begin{array}{c|c}n & 0\\\hline 0 & -(*)\end{array}\right),$$

is positive definite. The proof of Theorem 1 is completed.

We prove Theorem 2. Let \mathfrak{H}_1 be a simple ideal of $\mathfrak{H}^{1,1}(V, \mathbf{Q})$. Putting

 $\mathcal{G}_{1}^{\perp} = \{ \phi \in \mathfrak{G}^{1,1}(V, \mathbf{Q}) | (\phi, \psi) = 0 \text{ for every } \psi \text{ in } \mathfrak{F}_{1} \}, \ \mathfrak{G}_{1}^{\perp} \text{ is also an ideal of } \mathfrak{G}^{1,1}(V, \mathbf{Q}), \text{ since the bilinear form (,) is a trace form. Moreover taking an element } \phi \text{ in } \mathfrak{F}_{1} \cap \mathfrak{F}_{1}^{\perp}, \text{ we have }$

$$(\phi,\phi)=0$$
,

and

 $\phi=0$,

because the bilinear form (,) is positive definite. Hence the algebra $\mathfrak{F}^{1,1}(V, \mathbf{Q})$ is decomposed into

$$\mathfrak{H}^{\mathfrak{l},\mathfrak{l}}(V, \mathbf{Q}) = \mathfrak{H}_{\mathfrak{l}} + \mathfrak{H}_{\mathfrak{l}}^{\perp}$$
.

Repeating this method, we obtain the decomposition (1.5) such that

$$\mathfrak{H}^{1,1}(V, \mathbf{Q}) = \mathfrak{H}_1 + \cdots + \mathfrak{H}_k$$
.

Let \mathfrak{H} be any simple ideal of $\mathfrak{H}^{i,1}(V, \mathbf{Q})$. Then for each ideal \mathfrak{H}_i , it follows

$$\mathfrak{H} \cap \mathfrak{H}_i = 0$$
 ,

or

 $\mathfrak{H} \cap \mathfrak{H}_i \neq 0$.

In case $\mathfrak{H} \cap \mathfrak{H}_i \neq 0$, it follows

$$\mathfrak{H} \cap \mathfrak{H}_i = \mathfrak{H} = \mathfrak{H}_i$$
 ,

because \mathfrak{H} and \mathfrak{H}_i are both simple ideals. From this the uniqueness of the decomposition (1.5) follows. The proof of Theorem 2 is completed.

Finally we present two problems. Let D be an ample divisor whose chern class is ω . Then corresponding to the decomposition (1.6) of ω , D can be written as follows

$$D=D_1+\cdots+D_k$$
,

where

$$D_i = \sum_j q_{ij} D_{ij}$$
 $(q_{ij} \in \mathbf{Q})$,

 $(D_{ij}$ is a cycle of codimension one)

88

and

$$c(D_i) = \omega_i$$
.

Multiplying D by a suitable integer, we may assume that q_{ij} is an integer for all i, j.

PROBLEM 1. When we write D as above, is each divisor D_i effective?

If Problem 1 is affirmative, we can consider the following problem.

PROBLEM 2. We denote

$$V_i = \operatorname{Proj}\left(igoplus_{m=0}^{\infty} L(mD_i)
ight) \quad ext{ for } 1 \leq i \leq k ext{ ,}$$

(Cf, [5]).

Then, are there any mappings from V to $V_1 \times \cdots \times V_k$?

References

- [1] A. Weil, Introduction a l'étude des variétés kählériennes, Hermann Paris, 1957.
- [2] S. Lang, Abelian variety, Interscience Publishers, 1958.
- [3] R. D. Schafer, An introduction to nonassociative algebras, Academic Press, 1966.
- [4] H. Morikawa, On a certain algebra associated to a polarized algebraic variety, Nagoya Math. Jour, vol. 53.
- [5] A. Grothendieck Éléments de géométrie algébrique II, I.H.E.S., 1961.

Nagoya University