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ADDENDUM: tf-PRINCIPAL HEREDITARY ORDERS

(Nagoya Math. J. 32 (1968), 41-65)

SUSAN WILLIAMSON

Let R denote a complete discrete rank one valuation ring of unequal
characteristic, and let p denote the characteristic of the residue class
field R of R. Consider the integral closure S of R in a finite Galois
extension K of the quotient field k of R. Recall (see Prop. 1.1 of [3])
that the inertia group Go of K over k is a semi-direct product Go = J X
Gp, where / is a cyclic group of order relatively prime to p and Gp is
a normal p-subgroup of G.

The author has proved in [3] that if Δ(f, S, G) is a 77-principal
hereditary order, then Gp is Abelian; the purpose of the present note
is to extend this result by showing that the inertia group Go must also
be Abelian. The reader should refer to [3] for definitions and notation.

PROPOSITION. If the crossed product Δ(f, S, G) is Π-principal, then
i) the inertia group Go is Abelian,

ii) J is a normal subgroup of G.

Proof. To prove that Go is Abelian, it suffices to show that Δ(f, S, Go)
is a commutative ring. According to Prop. 1.6 of [3] we may consider
a splitting field L of Δ(f,S,G0), so that Δ(J> L, Go) is isomorphic to the
trivial crossed product J(1,L, Go). Now rad J(1,L, Go) is generated by
rad z/(l,L, Gp), (see the exercise on p. 435 of [1]), from which it follows
that J(1,L, G0)/rad J(l, L, Go) = J(1,L,J). Therefore the factor ring
Δ(f, L, G0)/rad (/, L, Go) is isomorphic to J(l, L, J).

We proceed to show that Δ(f, S, Go) is isomorphic to a subring of
the commutative ring Δ(l, L, /). The inclusion (rad Δ(f, L, Go)) Π Δ(f, S, Go)
c rad Δ(J, 5, Go) follows from Lem. 2.4 of [2], and rad Δ(J, S, Go) = (0)
because Δ(f, S, G) is i7-principal these facts combine to show that the
natural map Δ(f, S, Go) —> Δ(f, L, G0)/radJ(/, L, Go) is a monomorphism,
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and this together with the observations in the preceding paragraph
completes the proof of part i).

Assertion ii) follows from i) and Prop. 3.2 of [3].
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