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§ 1. Introduction

Let X = (X(t) teR) be a real stationary mean continuous Gaussian
process with expectation zero which is purely nondeterministic. In this
paper we shall investigate the structure of splitting fields of X having
finite multiple Markovian property using the results in [6]. We follow
the notations and terminologies in [6].

We shall remember three kinds of definitions of the iV-ple Markovian
property (NeN).

DEFINITION 1.1. We say that X has the N-ple Markovian property
in the broad sense if the splitting field FχJ'{t) is generated by N linearly
independent random variables in M for any t e R.

It is known that X has the iV-ple Markovian property in the broad
sense if and only if X has a rational spectral density of degree 2N ([1],
[5]).

DEFINITION 1.2. We say that X has the iV-ple Markovian property
in the narrow sense if X has the iV-ple Markovian property in the broad
sense and F^~(t) is equal to the germ field dFx{t) for any teR.

It is also known that X has the iV-ple Markovian property in the
narrow sense if and only if its spectral density is the reciprocal of a
polynomial of degree 2N ([1], [5], [6]).

The third definition is

DEFINITION 1.3. We say that X has the iV-ple Markovian property
in the sense of T. Hida if, for any N + 2 real numbers t0 < tx < < tN+l9
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{E(X(tn)\Fx(t0));l < n < N} is linearly independent and {E(X(tn) | Fx(tQ))
1 < n < N + 1} is linearly dependent.

It is shown in [3] that, if X has the Λf-ple Markovian property in
the sense of T. Hida, X has a rational spectral density of degree 2N.

In this paper we shall consider the case where X has the iV-ple
Markovian property in the broad sense.

In § 2 we shall give a formula for the canonical representation kernel
of our process X (Theorem 2.1). In the proof of Theorem 2.1 we shall
use Theorem 8.1 in [6], which gives a formula for the canonical repre-
sentation kernel of process X having the Markovian property. By the
Markovian property we mean that X satisfies Fχf~(t) = dFx(t) for any
teR ([5], [6]).

In § 3 we shall construct an JV-dimensional stationary Gaussian proc-
ess X = (X(t) teR) satisfying

(1.1) {the n-th component of X(t) 1 < n < N} is lineary independent
in M and

(1.2) Fjf-(t) = Fi'-(t) = (7(I(ί)) for any t eR (Theorems 3.2 (ii) and
3.3). We can give an expression of the linear predictor of X(t) (t > 0)
using the past Fx(0) in terms of the process & (Theorem 3.2 (i)). The
relation (1.2) implies that X has a simple Markovian property.

In §4 we shall investigate the structure of X from the point of
view of Markov processes, and show that a Markov process (X(t),
P( \X(0) = x); t > 0, xeRN) is a recurrent Gaussian diffusion process
with transition probability density and has a unique invariant measure
(Theorem 4.3).

We shall prove in § 5 that the 2V-dimensional stationary Gaussian
process X satisfying (1.1) and (1.2) is unique up to multiplicative non-
singular N x IV-matirices (Theorem 5.1).

In § 6 we shall define a nonsingular N X JV-matrix T and an asso-
ciated Λf-dimensional stationary Gaussian process <3ί = (<&(t) teR)) =
(!F-ιX(t) teR). We note that the matrix T can be definitely expressed
in terms of the spectral density of X. Then we shall prove that the
2V-th component process of <3f (=Y) has the iV-ple Markovian property
in the narrow sense and satisfies

(1.3) fS>-(ί) = Fp~(t) = dFγ(t) (t e R)

(Theorem 6.2). We can also give an alternative expression of the linear
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predictor of X(t) (ί > 0) using the past FX(O) in terms of the process

& (Theorem 6.3 (i)).

Finally in §7 we shall give three applications of our results. At

first we shall characterize the Markovian property of stationary Gaussian

processes from the point of view of representations and then give a

necessary and sufficient condition for the 2V-ple Markovian property in

the sense of T. Hida (Theorems 7.1 and 7.2). Next we shall characterize

the linear predictor of X(t) (ί > 0) using the past Fx(0) as a unique solu-

tion of an initial value problem of a differential equation, which is derived

from the spectral density of X. As the third application, we shall give

an expression of nonlinear predictors of X(t) (t > 0) using the past Fx(0)

in terms of the Gaussian diffusion process (#"(ί), P( |#(0) = x); t > 0,

xeRN) defined in §4 (Theorem 7.4).

§ 2. Rational weights

Let N be a positive integer and let Δ = A(λ) be a rational function

of degree 22V which is nonnegative, symmetric and integrable. Then

we have the following decomposition:

(2.1)

Q ( ^ ) 2 QeR),

Vp = c+ , F ρ c C+Ui? , VP Γ\ VQ = φ and
i V - l ΛΓ

Q(«) = 2] 6Λ(—i«)w , P(«) = Σ on(—iz)n , bn,
71 = 0 71 = 0

where Vs denotes the set of zero points of a polynomial S. Such a

decomposition is unique up to multiplicative constants of absolute one.

2.1. We denote by F the Fourier transform of the reciprocal of a

function P(- ) in (2.1):

(2.2) F = (P(-.)~ir

It is easy to see that F = 0 in (-oo,0) and F{n) e J/((0, OO)) Π L2((0, OO))

in = 0,1,2, •)• By Lemmas 8.5, 8.6 (ii) and Proposition 8.1 in [6] we

have

LEMMA 2.1. ( i ) F(n)(0 + ) = 0 (0<n<N-l), FίN~1)(0 + ) = 2π(-l)Nc^\

(ii) F{n) e L\R) (0 < n < N — 1) (distribution derivatives),

(iii) {F(n) 0 < n < N — 1} is linearly independent in L2(R).
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We define for any n e {0,1, , N — 1} an L2-function Fn by

(2.3) Fn{t) =

N-n-1

1 Σ < +1(-iy+ψ^(t) (t > 0),

lo (t < o).

In particular we have

(2.4) F ^ = {-2π)'ιcNF .

Then it follows from Lemmas 8.2, 8.3 and Proposition 8.1 in [6] that

LEMMA 2.2. ( i ) F0(0+) = 1, Fn(0 + ) = 0 (1 < n < N - 1),

(ii) Fn = (2ττ)-1Σl- (r-1c? ι+A;+1(-l) fc+1F ( fc) (1 < n < N - 1),

(iii) F£} = δ — (2π)-ιcQF, F™ = — F n - 1 - (2τr)~1cnF (1 < n < N - 1),

(iv) {Fn; 0 < n < N — 1} is linearly independent in L\R).

Furthermore it follows from Theorem 8.1 in [6] that

LEMMA 2.3. For any se(-oo,0), t e (0, oo) and ne{0, ,N — 1},

(i) F(jt - s) = ΣΪΓo1 (-l)nF<n\t)Fn(-s),

(ii) Fn(t - s) =

By using Lemmas 2.1 (i), 2.2 (i) and 2.2 (iii), we can show

LEMMA 2.4. n m ) ( 0 + ) = ( - 1 ) " ^ . (0 < m,w < Λ̂  - 1).

Next we shall prove

LEMMA 2.5. Γλere exist N positive numbers ί0 < ί, < < ί

# 0.

Proof. Assume that det (F<m)(tn)) = 0 for any N positive numbers

ί0 < tx < < tN_λ. Differentiating it n times with respect to tn for

each n e {0,1, •, N — 1} and then letting ί0 < ίt < < ίΛr_1 tend to

zero, we see from Lemma 2.1 (i) that

det

0

LI

11

This is absurd. Therefore we have the desired result. (Q.E.D.)
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Finally in subsection 2.1 we shall show

LEMMA 2.6. The following (i) and (ii) are equivalent:

(i) det CF^CU^m^iv-i Φ 0 for any N positive numbers ί0 < tx <

(ii) F P c {z e C+ Re z = 0}.

Proof. We decompose P(s) = dx Π S UTO + is), where dx is a constant

and ReΛn > 0 (0 < n < N — 1). Denoting by / n the Fourier transform

of (λn -i>yι(0<n<N - 1), we find that fn{t) = 2ττ(Re {λn)yιe-^(t > 0),
fn(t) = 0 (ί < 0) and F — d2fQ*fx* */iV_1 with some constant d2- At

first we assume that (ii) holds and so λn e R (0 < n < N — 1). We define

N + 1 functions τ;n in ^((0, oo)) (0 < n < N) by

vo(t) - d r 1 ^ ,

vn(t) = ew - a - ι ) i (1 < n < iV - 1) ,

vN(t) = e -^- x i

and then iV functions Gn in J/((0, OO)) (1 < w < N) by

Γί Γίi ΓtN-n

Gn(t) = v^(ί) vN^{tddtx vN_2(t2)dt2 - \ vn_ί(tN,n+ι)dtN_n+ι .
Jo Jo Jo

It may be easily seen that P(—A\GU = 0 in (0, oo) (1 < n < iV). Since

^π

?s are positive, we can apply (II, 30) in [3] to get that det (Gm(tn)) Φ 0

for any N positive numbers ί0 < ίx < < tN_λ. Since Pi )Fn — 0

\ i dt)

in (0, oo) (0 < n < N — 1), we see from Lemma 2.1 (iii) that there exists

a nonsingular iV x 2V-matrix C satisfying (Flm)(tn)) — C(Gm(tn)) and so (i)
holds. Next let's assume that (ii) does not hold. Since P(X) = P(—X)

(λeR), we then may assume and do that λQ&R and λx — — λQ. By an

easy calculation it is shown that / = / 0*/i is equal to d3 sin(ReλO't)e~ίImλ°'t

in (0, oo) for some constant d3. Since / 2 * / 3 * */V_i is a fundamental

solution of a differential operator S\ ) of order N — 2 with constant
V i dt)

coefficients, we find that S[ )F — dxf. This implies that, for any N
\ i dt)

positive numbers t0 < tx < < tN_l9
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det tn)) = d< det

where c£4 is a constant. Since /(»ττ(Re λ^'1) = 0 (n e N), we find that
(i) does not hold. Thus we have proved Lemma 2.6. (Q.E.D.)

2.2. We denote by E the Fourier transform of a function

(2.5)

By (2.2) we have

(2.6)
i dt

We define for any n e {0,1, , N — 1} an //-function En by

(2.7)

lθ (t < 0) .

In particular we see from (2.4) and (2.6) that

(2.8) EN_, = {-2πYιcNE .

Immediately from Lemma 2.3 and (2.7) we have

THEOREM 2.1. For any se(-oo,0), ie(0,oo) and we{0,1, •- ,iV—1},

(i) β(ί - β) = ΣtΌ1 ( - l ) n F ι n ) ( ί W - β ) ,
(ϋ) s n (ί - a) = (&)-1 Σi'o1 ( - m Σ l V 1 (-Dfc+1cw+fc+1F^^>(ί))^(-s).

Moreover it follows from Lemmas 2.2 (iii) and 2.4 that

LEMMA 2.7. (i) £7w(0+) = bn (0 < n < N - 1),
(ii) #ί(t) = (-2τr)-1c0£7(ί), ί?ς(t) = - ^ ^ ( ί ) - (2τr)-1cw£7α) (t > 0,1 < n <
N - 1).

Finally we shall prove

LEMMA 2.8. {En: 0 < n < N — 1} ίs linearly independent in L\R).

Proof. Let ocn (0 < n < N — 1) be real constants such that Σ S tf^n
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= 0. We then see from (2.7) that θ(i—VΣ»-o1α»*\») - 0 in R - {0}
\ i dtJ

in the sense of distributions. Therefore, there exists a polynomial Q1

such that Q(i4-)(ΣZ-*1(χnFJ = Qι(-ίτ)δ B ^ t a k i n ^ t h e i n v e r s e

% dt) \ % dt)

Fourier transform of both sides, we find that Q(—λ)Q ξ̂~o anFn(X)) =

Qά-λ) (λeR). Since Lemma 2.2 (ii) implies that Fn(λ) = (-27Γ)"1

(Σto'^n+m+iW)" 1 )^- O^Ue J?), there exists a polynomial Q2 of at most

degree N-l such that Q(λ)Q2(λ)P(λ)~1 = Q,(λ) (λeR). Hence we see

from (2.1) that Q2 = 0 and so Qt = 0. This implies that Σ S ^ Λ = 0

and so an = 0 (0 < n < N — 1) by Lemma 2.2 (iv). Thus we have proved

Lemma 2.8. Q.E.D.

§3. F^-it) (I)

In the sequel we shall consider a real stationary Gaussian process

X =z (X(t); teR) having the spectral density Δ of the form (2.1). We

assume that X has expectation zero. Since P(r )~ιQ(—) is an outer

function of the Hardy weight Δ, we get from (2.5) the following canon-

ical representation:

(3.1) X(t) = V2Ϊ"1 Γ E(t - s)dB(s) ,
J —oo

where (B(t) teR) is a standard Brownian motion satisfying

(3.2) Fjt(t) = σ i B ί s J - B(s2) s , , s 2 < ί ) f o r a n y t e R .

Using U-ίunctions En in (2.7) we define random variables Xn(t)

(t 6 R, 0 < n < N - 1) by

(3.3) Xn{t) = V2i-> Γ En(t - 8)dB(s)

and then an iV-dimensional stationary Gaussian process X — (^"(ί) t e R)

by

(3.4)

Particularly we see from (2.8) that

(3.5) Z^.^ί) = {-2πYιcNX(t) {teR) .

We define an N x N-matrix A and an N-vector b by
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(3.6) A =

0 α0

- 1 ' . 0 ax

- 1 * .

o
0 " .

b =

where an — cnc£ (0 < n < N).
In the same way as Theorem 9.1 in [6] we can show from (2.8)

and Lemma 2.7 that

THEOREM 3.1. For almost all ω

- B(s)) + Γ AX{u)du (s < t) .
J s

In particular &(t) is continuous in teR.

Noting (3.2) we see fivom Theorem 2.1 (i) and Lemma 2.8 that

THEOREM 3.2. ( i ) For any s and teR, s <t,

N-l

E(X(t)\Fχ(s)) = 2 (-l)nF ί n )(t — s)Xn(s) .

(ii) {Xn(t) 0 < n < N — 1} is linearly independent in M for any teR.

We define for any teR an N x iV-matrix A(t) ~ (A(t)mn) by

N-m-l

Then we shall show

L E M M A 3 . 1 . ( i ) For any s and teR9s<t,

= A(t -

(ii) A(t) = etΛ (ί > 0).

Proof. By Theorem 2.1 (ii) we have (i). We particularly see from
Lemma 2.8 that A(s + t) = A(s)A(t) (s > 0, t > 0). Since A(t) is contin-
uous in ίe(0, oo) and A(0 + ) = /, this implies that there exists an
N x iV-matrix A satisfying A(t) = ea (t > 0). Since B(t) - 5(0) (t> 0)
are independent of F (̂0) and ^(0) is F^(0)-measurable by (3.2), we see
from Theorem 3.1 and Lemma 3.1 (i) that
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= eα&ϋΰ) it > 0) .

By Theorem 3.2 (ii) we get

eα = f Aett2dw (ί > 0) .
Jo

Differentiating both sides at t — 0, we find that A = A. Thus we have
proved Lemma 3.1. (Q.E.D.)

In the same way as in the case of X, we shall consider the past
fields F;(ί), the future fields F+(t) and the splitting fields Fi'-(i)(tei?)
associated with & (Definition 9.1 in [6]). We then see from (3.2), (3.3)
and (3.4) that

(3.8) F-χ(t) = Fχ(t) (teR).

Now we shall prove the following main theorem.

THEOREM 3.3. Fi'-(i) = Fί'-tf) = σ(#(t)) for any teR.

Proof. By virtue of Lemma 2.5, we see from Theorem 3.2 that
M+/~{t) is equal to the closed linear hull of {Xn(t); 0<n< N- l}(ί eR).
This implies by Lemma 2.1 (iii) in [6] that F$f-(t) = σ(3T(t)) for any
ί ei?. It is clear that σ(&(t)) c F;(ί) Π FJ(t) c Fί'-(ί) since ^(t) is con-
tinuous in ίei?. On the other hand, it follows from Lemma 3.1 that,
for any teR and any h > 0,

Xn(t + h) = A(hW(t)n + V&'1 ΓhEn(t + h- s)dB(s) (0 < n < N -

Since B(£ + z) — β(ί) (« > 0) are independent of Fί(ί) for any ί e i? by
(3.2) and (3.8), we can see that F#(t) is independent of F£(t) under the
condition that σ(&(f)) is known, and so that F^'it) c σ(S£(jb)). Thus we
have proved Theorem 3.3. (Q.E.D.)

§ 4. A Gaussian diffusion process

From Theorem 3.3 we find that a Gaussian process (#"(ί),P( \&(0)
= x) ί > 0, x e RN) has the usual Markovian property. In this section
we shall investigate several properties of such a Gaussian Markov proc-
ess.

By (3.2) and Lemma 3.1 we have
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L E M M A 4.1. ( i ) En(t) = ^-\etAb)n (t> 0,0 <n < N - 1),

(ϋ) %(t) = e(t-s)Λ&(s) + V&r 1 Γ ea~u)AbdB(u) (s < ί).

We denote by μ(t, x) and R(t, x) the mean vector and the covariance
matrix, respectively, under the condition that 3Γ(0) = x (t > 0, x e 2?^):

^ΓtV.t'j *v UJ\CO \v)*AJ \\J) j ZZ> \\J) — JU)

It then follows from Lemma 4.1 that

μ{i9 x) — e x ,

R(t, x) =

We shall prove

THEOREM 4.1. {Anb; 0 < n < N — 1} is linearly independent.

As an application of Theorem 4.1 we find that R(t) is a positive
definite matrix for each t > 0. Before the proof of Theorem 4.1, we
shall prepare several lemmas.

LEMMA 4.2. For any n e {0,1, , N — 1} we set

VmbmF«+™\t) (ί > 0) ,

10 (t < 0) .

Then

{Gn 0 < n < N — 1} ΐs linearly independent in L\R) .

Proof. Let αrn (0 < n < N — 1) be real constants such that 2 S otnGn

= 0. We define a polynomial S(z) = Σn-o1 ̂ w(^)w Since GJί) = Gίw)(ί)

for any t eR - {0}, we find that s (- ί—V o = 0 in R - {0} in the sense
\ % dt)

of distributions. Therefore, there exists a polynomial Qx such that

s(— Ύ-)G* = Qif—— V i n Λ Noting that GQeL2(R) and taking the

inverse Fourier transform of both sides, we find that S(—X)G0(λ) = Q^—λ)
WeΛ). On the other hand, we see that G0(λ) = Q(-^)FU), since Go =
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L*L)F. Hence, it follows from (2.2) that S(X)Q(λ) = Q1(λ)P(λ) (λe R).
i dt/

Since S is a polynomial of at most degree N — 1, this implies by (2.1)
that S = 0 and so an = 0 (0 < n < N — 1). Thus we have proved Lemma
4.2. (Q.E.D.)

LEMMA 4.3. For any m, n e {0,1, , iV — 1} we set

Then the N x N-matrix (γmn)o<m,n<.N-i is nonsingular.

Proof. Differentiating (i) in Lemma 2.3 £ + m t imes at s = 0, we

have

F w + T O ) (t) = Σ 1 ( - 1 ) n ί 7 ( n ) ( ί ) F Γ w ) ( 0 + ) (t > 0,0 < £,m < N - 1) .
M = 0

Multiplying it by (—1)^ and then summing up with respect to £, we
get

NΣ (~l)%F^m\t) = NΣ (-DnγmnF
(n)(t) (t > 0) .

£ = 0 71 = 0

Therefore, by Lemmas 2.1 (iii) and 4.2, we obtain the desired result.
(Q.E.D.)

LEMMA 4.4. The N x N-matrίx (2^m)(O + ))o<m,τι̂ -iis nonsingular.

Proof. Differentiating (ii) in Theorem 2.1 m times at t = 0 and
then letting s tend to zero, we have

On the other hand, differentiating (i) in Lemma 2.3 m times and k +
times at t = 0 and s = 0, respectively, we get

Therefore it follows from Lemma 2.7 (i) that

j=0
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By Lemma 2.1 (i), the matrix (F(m+j)(0 + ))0^j<LN_1 must be nonsingular.

Therefore, we obtain the desired result noting that cN is not zero and

using Lemma 4.3. (Q.E.D.)

LEMMA 4.5. The N x N-matrίx (£ r ( m + n )(0 + ))0<m)W<î _i is nonsingular.

Proof. Differentiating (i) in Theorem 2.1 £ times and m times at

t = 0 and s — 0, respectively, we have

Therefore, by Lemma 4.4, we get the result. (Q.E.D.)

LEMMA 4.6. {Ana;0 <n <N —1} is linearly independent, where

a = (α0 aN_^*

Proof. Since Aα = — (0α0 aN_2)* + aN_1a, we have the result not-

ing that d0 is not zero. (Q.E.D.)

LEMMA 4.7. For any £, m and n e {0,1, , N — 1},

Proof. Differentiating etA k times at t = 0, we obtain the result

from (3.7) and Lemma 3.1 (ii). (Q.E.D.)

LEMMA 4.8. Σ#-j (—ϊ)nbnA
n is nonsingular.

Proof. We denote by at the £ + 1 row of the matrix ΣnΓo1 (-l)"6wAn

and set e, = ( - (- l ) n + 1 c / + n + 1 •)* (0 < £ < N - 1), where cm = 0 for

m > Λ/" + 1. By (2.6) and Lemma 4.7 we have

N-l N-\

at = (2π)-K-iy Σ Σ (-Dk

Q k 0
«+n)

en
=0

Therefore, since det(^0 ^- i ) = ((—1)^^)^ is not zero, we have the

desired result from Lemma 4.5. (Q.E.D.)

After these preparations, we are in a position to prove Theorem 4.1.

Proof of Theorem 4.1.: Let an (0 < n < N — 1) be real constants
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such that Σin=o anA
nb == 0. Since Ab = — (060 * δ v-2)* + bN_1a, we have

AN + nb = (_ 1 ) iV-l i g ( _ l ) m 6 m A m + nα (0 < W < iV - 1) .
m = 0

Then operating the matrix AN to both sides, we get

(Σ (-irbmAA(Σ anA
na) = ΣccnA

N+nb = 0 .

and so an = 0 (0 < n < N — 1) by Lemmas 4.8 and 4.6. This completes
the proof of Theorem 4.1. (Q.E.D.)

As an application of Lemma 4.4 we shall show the following

THEOREM 4.2. ( i ) There exist N positive numbers t0 < tx < < tN_x

such that the matrix (£r(w)(ίn))0<n<^_1 is nonsingular.
(ii) In order that for any N positive numbers t0 < tx < < tN_x

the matrix (E(m)(tn))Q^m>n^N_ι is nonsingular, it is a necessary and sufficient
condition that the zero points of P are located in the positive imaginary
axis.

Proof. Differentiating (i) in Theorem 2.1 m times at s = 0, we have

\Eim)(t) = Σ\-l)nFw(t)Eίm)(0 + ) (t > 0) .

Therefore, combining Lemmas 2.5, 2.6 and 4.4, we obtain the result.
(Q.E.D.)

Now we shall apply Theorem 4.1 to get several properties of the
Gaussian Markov process (#*(ί),P( |«3Γ(0) — x); t > 0,xeRN). It is easy
to see from (4.1) that the covariance matrices R(t) it > 0) are positive
definite. Therefore it follows from (4.1) that the Gaussian Markov
process (^(ί),P( |#(0) = x) t > 0,xeRN) has a transition probability
density P(t,x,y);

(Pmt) e dy I #(0) = x) = P{t, x, y)dy ,

\P(t,x,y) = (2π)-

Since b is not zero, it follows from Theorem 3.1 that

(4.3) σ(B{s) - B(t) ;s,teD) c FX(D) for any open set D in R .

Therefore, by (3.2), (3.8) and (4.3), we can apply K. Ito's formula to the
stochastic differential equation in Theorem 3.1 and find that the Gaussian
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Markov process (3Γ(£),P( |3Γ(0) = x); t > 0,x e RN) becomes a diffusion

process whose infinitesimal generator &% is given by

(4.4) 9X = iiV^-'b-F)2 + (Ax) F .

From Theorem 4.1 we find that this differential operator ^ is hypoel-

liptic ([4]).

It is easy to see from (2.1) and (3.6) that the characteristic equation

of the matrix A is equal to (-l)NCχΨ(i-ιλ):

(4.5) det (λ - A) = (-ircjfΨii-iλ) = (-I)* Σ *»(-*)* .

This particulary implies that the real part of all eigenvalues of A is

negative. Noting this fact and applying Theorems 4.1, 6.1 and 7.1 in

[2] to our Gaussian diffusion process, we have

THEOREM 4.3. The Gaussian diffusion process (#"(ί),P( |#*(0) = x);

t > 0, x e RN) is recurrent and there uniquely exists an invariant measure

μ(dy):

iμ{dy) = φ(y)dy ,

where R~ι(oo) is the inverse matrix of a positive definite matrix R(oo)

= l i m ^ R(t).

Remark 4.1. It follows from (4.1) that

(4.7) β(oo) = ( W 1 Γ e"bme"bndt))
\ JO /0<m,n<.N-l

§5. Fϊ'-{t) (II)

We have constructed in § 3 an example X of N-dimensional station-

ary Gaussian processes <& — (&(t) t e R) satisfying the following condi-

tions :

(5.1) %/(t) is continuous in the mean;

(5.2) For any t e R, each component of &(t) belongs to M and {the n-

th component of &(t) 1 < n < N} is linearly independent

(5.3) ^ " ( ί ) = σ(f8f(ff) for any t e R.

In this section we shall show the next theorem about the uniqueness

of such a process.
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THEOREM 5.1. For any N-dimensional stationary Gaussian process
<8f = {%/(t)\ teR) satisfying (5.1), (5.2) and (5.3), there uniquely exists a
constant nonsingular N x N-matrix T such that %/(t) = T&(t) for any
teR.

Before proving this theorem, we shall prepare three lemmas. We
define for any t e R an N x iV-matrix K%(t) by

(5.4) KS) = #(#Xί)3Γ(0)*) .

By Theorem 3.2 (ii) and Lemma 3.1 we have

LEMMA 5.1. ( i ) Kχ(Q) is symmetric and positive definite,

{etAKM (t>0),

ϊ(0)e"M (ί < 0) .

We define a symmetric N x iV-matrix B by

(5.5) B — \UmVn)θ<m,n<N-I '

Then we shall prove

LEMMA 5.2. AKx(0) + Kx(0)A* = -(2πYιB.

Proof. Since # = (#(ί) . ί e J?) is stationary, it follows from (3.2),
(3.8) and Lemma 4.1 (ii) that

Jfî O) - etAKMetΛ* + (2π)~ι Γ esΛBesA*ds (t > 0) .
Jo

Differentiating it at t = 0, we obtain the result. (Q.E.D.)
Next we shall show the following general statement.

LEMMA 5.3. Let A, B and K be real N x N-matrices such that

( ί ) B = (&m&n)0<;m,n<:tf-l> * = (&0 * * &tf-l)* =£ 0 .

(ii) Z is symmetric and positive definite,
(iii) AZ + ZA* = - β

and
(iv) {AWΛ; 0 < n < N — 1} is linearly independent.

If an N x N-matrix A satisfies

eaKea* = etΛKetΛ* for any teR ,

then

A = A.
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Proof. Since K has a symmetric and positive definite root K5> we
can define Ax = K^AKK A, = Kr*AX> and B2 = K^BK'K It then fol-
lows that

(5.6)
A, + A* = ~BX ,

for a n y

Since Si is a symmetric, nonnegative definite matrix of rank one, there
exist an orthogonal matrix Px and a positive number ε such that Bx =

"eo 0^

Pλ ' Pi"1 and so ε"1 J^ζ^ (B1)nn = 1. Therefore we can find an-

0 0

other orthogonal matrix P2 such that (P2)w0 = <Jέ~\K~*b)n (0 <n < N — 1),

because {B^)nn = (Z~^)^. It is then easy to see that P 2

Bx. Hence, setting A2 = P^ιAλP2, A2 = PςιA1P2 and T =

we see from (5.6) and Theorem 4.1 that

(5.7) A2 + At = T ,

(5.8) etMea* __ etA*etA* f o r a n y t e R

and

(5.9) {((AJDOO, (AJΓ)1O, , {An

2T)N_x 0 )* 0 < n < N - 1}

0

0
*

0

0

p-i _
x 2 —

0"

0

is linearly independent.

We define a sequence (Z)p)~=0 ofNx iV-matrices by

(5.10) Dp - A ^ . ! + Dp.xAf (p = 1,2, •), A = /

Since A = Γ by (5.7), we have

(5.11) Dp+ι = = 0,1,2, . . ) .

Setting L = A2 — A2 and then differentiating (5.8) at t = 0, we get

(5.12) LDP + DPL* = 0 (p = 0,1,2, .) .
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Therefore, putting S = [L,A2] ( = LA2

(5.12) that

A2L), we see from (5.10) and

(5.13) SDP + DPS* = 0 (p = 0,1,2, ..) .

From (5.12) in the case of p = 1 we have

(5.14) L + L* = 0 .

Furthermore, applying (5.12) in the case of p = 1, we find that [L, T]

-So 01

= 0. Therefore, since T =

0

, we get

0

(5.15) LT =TL = 0 .

Similarly it follows from (5.13) in the case of p = 0 and p = 1 that

(5.16) S + S* - 0

and

(5.17) ST = TS = 0 .

Fixing any p o e {0,1,2, •} we shall assume that SAξT = TAξS = 0 for

any p e {0, - ,p0}. By (5.7), (5.11), (5.13), (5.16) and (5.17), we find that

01

SAξ*+1T - Since Γ = , this implies that (SAξo+\

0 0

= 0 for any ne {1,2, . -,N — 1}. Moreover we see that GSA?0+1)0o = 0

because SQn for any ne {0,1, ,JV — 1} by (5.17). For this reason it

follows that SAξ0+1T = TAf0+1S = 0. By mathematical induction on p0,

we conclude that SAξT = 0 for any p e {0,1,2, •}. Therefore, using

(5.9), we find that S = 0. Since this conclusion implies that L commutes

with A2, it follows from (5.15) that LAξT = 0 for any pe{0, l , •••}.

Consequently, using (5.9) again, we see that L — 0 and so A = A. Now

we complete the proof of Lemma 5.3. (Q.E.D.)

After these preparations, we are in a position to prove Theorem 5.1.

Proof of Theorem 5.1: Since the subspace of M whose elements

are FJ^"©-measurable is equal to the space M+/~(t) with the algebraic

dimension N9 it follows from (5.2) and (5.3) that there exists a non-

singular N x iV-matrix T(t) satisfying <&(f) = T(t)&(t) (t e R). For any
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s and t e R, s < t, we define an N x ΛΓ-matrix C(t, s) by

C(t,s) = T(t)ea~s)ΛT(s)-1 .

Then it follows from Lemma 3.1 and (5.2) that

(5.18) C(u, s) = C(u, t)C(t, s) (s<t<u)

a n d

(5.19) E(W(t) I Fi(s)) - C(t, s)<W(s) (s < t) .

Since <Bί = (&(t); teR) is stationary, we see from (5.2) and (5.19) that

C(ί,β) = C(t - s,0) (s < t). Setting C(t) = C(ί,0) (t > 0), we can show

from (5.1), (5.2) and (5.18) that Cit) is continuous in t e [0, oo), C(0) = /

and C(s + t) = C(s)C(t) (s, t e [0, oo)). Therefore, there exists an N x N-

matrix A such that C(t) = e™^1?™-1 (t > 0). Since it is easily seen that

Tit) is real analytic in teR, we obtain

(5.20) T(t) = T(0)eae-tA for any t e R .

On the other hand, by Lemma 5.1 and (5.19), we have

C(t - s)T(0)KMT(0r = T(t)e«~s)AKMT(s)* (s < t) .

Combining this with (5.20), we get

a a * (teR) .

Therefore, by Theorem 4.1, Lemmas 5.1 (i) and 5.2, we can apply Lemma

5.3. to obtain the conclusion. (Q.E.D.)

EXAMPLE 6.1. Using N positive numbers tn m Lemma 2.5, we

define a nonsingular N x iV-matrix T = ((-l)wF (w)(U)o<m,^i\r-i and a

stationary Gaussian process Φ = ( ^ ( ί ) ; t e R ) = (Tar(f) teR). It follows

from Theorem 3.2 (i) that the n + 1-th component of $/(t) is equal to

E(X(t + tn) I F~x(t)) (t e R, 0 < n < N - 1).

§ 6 . FJ/-(t) (ΠI)

Using the L2-function F in (2.2) and the Brownian motion B in (3.1),

we define a real stationary Gaussian process Y — (Y(t) teR) such that

(6.1) Y(t) = V&r1 Γ F(t - s)dB(s) (teR) .
J - o o
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It is easy to see that this representation is canonical and Y has the N-

ple Markovian property in the narrow sense. Since Q is a polynomial

of at most degree N — 1, we see from Lemma 2.1 (i), (2.6) and (3.1)

that

(6.2)
% dt

Now we define an N x iV-matrix T by

(6.3) T = (b(-A)b (-A)N-'b) ,

which is nonsingular by virtue of Theorem 4.1. Since the characteristic

polynomial of A is (—ΐ)Ncjr

ιP(i"1λ)9 it follows from Caley-Hamilton's

theorem that Σ ί = f l α n ( - A ) n = 0 ((4.5)). Therefore we can easily see

that

(6.4)

and

(6.5)

Tιb - (10 . . . 0)*

T'ιAT =

Using this matrix T we define an iV-dimensional stationary Gaussian

process <& = (^(ί); ίei?) satisfying (5.1), (5.2) and (5.3) as follows:

(6.6) (ίelf) .

We denote by Yn{t) the n + 1-th component of <&{$) (0 < n < N - l,te R).

By (2.3), (3.3), (3.7), Lemma 3.1 (ii) and 4.1 (i), we can show t h a t

(6.7)

and

(6.8)

(1

0

oj

dB(s) (t e R)

1
0

LoJ

= Fn(t) (t > 0,0 < n < N - 1) .

By (2.4), we particularly find
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(6.9) YN^{t) = (-2ττ)-1ciVYα) (ί e R) .

By (3.8) and (6.6) we note

(6.10) Fi(t) = Fi{t) .

Using Theorem 3.1, Lemmas 3.1 and 4.1 (ii), we see from (6.4) and

(6.5) that

THEOREM 6.1. For almost all ω

( i ) <3ί(t) - <8ί(β) = V2ϋ-KB(t) - B(s), 0, - , 0)* + Γ AW(u)du (s < t),

( i i ) W(t) = e{t-*)A<8f(s) + ^2π~ι Γ β (5 < t),

loJ

Noting (3.6) we can show from (6.6), (6.9) and Theorem 6.1 (i) that

(6.11) F , φ ) = FJUO) = FY(D) for any open set D in R

and

(6.12) Fp~(t) = dFγ{t) f o r a n y t e R .

Therefore, combining these with Theorem 3.3, we get

THEOREM 6.2.

F i ' - ( t ) = F p - ( t ) = σ(Φ(t)) = F ί 7 ~ ( ί ) = 3 F y ( ί ) / o r a n y t e R .

Finally we shall give an alternative expression of the linear predic-

tor by using the process <&.

THEOREM 6.3. (i) For any s and teR, s < t,

E(X(t)\Fϊ(s) = *Σ (-DnEίnKt - s)Yn(s) .

(ii) {Yn(t) 0 < n < N — 1} is linearly independent in M for any

teR.

Proof. By Theorem 3.2 (i) and (6.6) we have (ii). It follows from

Theorem 2.1 (i) and Lemma 4.1 (i) that

E(t - s) = 2] (-iyF{i>(t)(e-8Ab)4 (s < 0, t > 0) .
^ = 0
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Differentiating both sides n times at s = 0, we get

Eit) = "Σ (~lYFw(t)(Anb)£ (0 < n < N - 1) .

Therefore, by Theorem 3.2 (i) and (6.6), we obtain (i). (Q.E.D.)

§ 7. Applications

7.1. Markovian property.

At first we shall characterize the Markovian property of stationary
Gaussian processes from the point of view of representations. In [6]
we have proved

THEOREM 7.1. ([6]) In order that a real mean continuous, purely
nondeterminίstic stationary Gaussian process X has the Markovian prop-
erty :

(7.1) Fi'-(t) - dFx(t) for any teR ,

it is a necessary and sufficient condition that there exists a canonical
representation (^/2π~ιE(t),B(t)) possesίng

(7.2) σ(B(s) - B(t) ;s,teD) c FX(D) for any open set D in R .

We shall give another proof of Theorem 7.1 in case X has a rational
spectral density Δ of the form (2.1). Now let's assume (7.2). It then
follows from (3.5), (3.6) and Theorem 3.1 that #(ί) is dFx(£)-measurable
for any teR. Therefore, by Theorem 3.2 (i), we find that E(X(u)\Fx(t))
is dFx(£)-measurable it < u) and so that (7.1) holds. Conversely let's
assume (7.1). It then follows from Lemma 2.5 and Theorem 3.2 (i) that
&(t) is dFx(£)-measurable for any teR. Therefore, by (3.6) and Theorem
3.1, we obtain (7.2) since b is not zero. (Q.E.D.)

Next we shall characterize the JV-ple Markovian property in the
sense of T. Hida ([31). Immediately from Lemma 2.6 and Theorem 3.2
(i) we can show

THEOREM 7.2. In order that a real mean continuous, purely non-
deterministic stationary Gaussian process X has the N-ple Markovian
property in the sense of T. Hida, it is a necessary and sufficient condi-
tion that X has a rational spectral density Δ of the form (2.1) with an
additional property
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(7.3) v a {z e C+ Re z = 0} .

7.2. Initial value problem.

We shall characterize the linear predictor using the past as a unique

solution of an initial value problem. We define an N x 2V-matrix D =

(7.4) JDwn = (-l)»Jg7<«+

which is nonsingular by Lemma 4.5.

THEOREM 7.3. We denote by Z(t,ω) the linear predictor of X(t) using

the whole past;

Then, for almost all ωe Ω, Z(t, ω) (t > 0) is a unique solution of the fol-

lowing initial value problem (7.5):

(7.5)

Π L2((0,oo)),

pίλ £)z(t, ω) = 0 in (0, oo) ,
V i dtJ

Z{n\0+, ω) = (D&(0))n (0 < n < N - 1) .

Proof. Since F{n) e J / ( (0 , OO)) Π L2((0, OO)) (n - 0, 1, 2, . . •) and

JLA)F = 0 in (0, oo), it follows from Theorem 2.1 (i) that E(n)es/
i dt)

((0, oo)) Π L2((0, oo)) and p(— ^-)EW = 0 in (0, oo) (n = 0,1,2, . ). There-

\ i dt)

fore, by Theorem 6.3 (i), we have (7.5). It is clear that Z( 9ω) is a

unique solution of (7.5), because P is a polynomial of degree JV.

(Q.E.D.)

Remark 7.1. By Theorem 6.3 (ii) we note that {(D®r(0))n 0 < n <

N — 1} is linearly independent.

7.3. Nonlinear prediction.

As the last application, we shall give an expression of nonlinear

predictors of X(t) using the past Fί(0) in terms of the transition prob-

ability density P(t,x,y) of the Gaussian diffusion process (^(t),P( | #"(())

= x); t > 0,xeRN). Immediately from (3.5), Theorem 3.3 and (4,2) we

have
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THEOREM 7.4. For any bounded measurable function f (or any

polynomial) on R and any t > 0,

E(f(X(t)) IF~x(ϋ)) = ί f(~2πc^yN^)P(tf <T(0), y)dy0 dyN_λ .
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