K. Fukui Nagoya Math. J. Vol. 54 (1974), 165-178

AN APPLICATION OF THE MORSE THEORY TO FOLIATED MANIFOLDS

KAZUHIKO FUKUI

In [5], R. Thom has started the study of the foliated structures by using the Morse theory. Recently K. Yamato [7] has studied the topological properties of leaves of a codimension one foliated manifold by investigating the "critical points" of variation equation of the given one-form.

In this note, using their methods we shall show that a codimension k foliation on a closed manifold is a "bundle foliation" under certain conditions (Theorem I), and give some topological properties of those leaves (Theorem II, III). By using Theorem I, we shall show the Stability Theorem of Reeb [3]. Furthermore, we shall show that bundle foliations satisfying some conditions, are stable under a small perturbation (Theorem IV). All manifolds, foliations and mappings considered here, are smooth (i.e., differentiable of class C^{∞}).

The author is grateful to Professors N. Shimada, M. Adachi, H. Imanishi and Mr. T. Matumoto for their kind advices.

§ 1. Definitions and statement of the results

Let V^n be a closed *n*-manifold, \mathscr{F}^k (0 < k < n) a codimension k foliation on V^n and $\{U_i, i = 1, 2, \dots, \ell_0\}$ a distinguished neighborhood covering of V^n . The local coordinate of a distinguished neighborhood is $(u_1, \dots, u_k, x_1, \dots, x_{n-k})$ such that each plate is defined by $u_i = \text{constant}$ for $1 \leq i \leq k$. At first we take a smooth function f on V^n , and for each distinguished neighborhood U_i , we define a mapping F_i of U_i into \mathbf{R}^{k+1} by

 $F_{i}(u_{1}, \dots, u_{k}, x_{1}, \dots, x_{n-k}) = (u_{1}, \dots, u_{k}, f(u_{1}, \dots, u_{k}, x_{1}, \dots, x_{n-k})).$

Received June 4, 1973.

 $x_1, \dots, x_{n-k} \in U_i$; corank $(F_i) = 1$ at $(u_1, \dots, u_k, x_1, \dots, x_{n-k})$. This definition is well-defined.

PROPOSITION A (Thom [5]). Let $f: V^n \to \mathbf{R}$ be a smooth function. Then there exists a smooth function g approximating f such that $\Gamma(g)$ is a closed k-manifold of V^n .

Proof. We have only to approximate f in each distinguished neighborhood U_i in order that $\Gamma(f) \cap U_i$ is a k-manifold. Then using Thom's notation, we have $\Gamma(f) \cap U_i = S_1(F_i)$. Hence the proposition follows from Thom [6].

For $p \in \Gamma(f) \cap U_i$, let $(u_1, \dots, u_k, x_1, \dots, x_{n-k})$ be a local coordinate around p such that $u_i(p) = 0, x_j(p) = 0$. We can assume that f is described as follows:

$$f-f(p)=u_1+\sum_{i,j}a_{i,j}x_ix_j+\sum_{s,t}c_s^tu_sx_t\cdots$$

where $(a_{i,j})$ is a symmetric (n-k)-matrix. Then the point p is said to be of type λ $(0 \leq \lambda \leq n-k)$ if the matrix $(a_{i,j})$ is non-singular and its signature is λ (i.e., the number of negative eigenvalues of $(a_{i,j})$ is equal to λ). Let $\Gamma_{\lambda}(f)$ denote the set of points of type λ . Next for each U_i , consider $F_i | \Gamma(f) \cap U_i \colon \Gamma(f) \cap U_i \to \mathbb{R}^{k+1}$. Then we define $S_1(\Gamma(f)) \cap U_i$ to be $S_1(F_i | \Gamma(f) \cap U_i)$. $S_1(\Gamma(f)) \cap U_i$ is the set of points where the above matrix $(a_{i,j})$ is singular. At $p \in S_1(\Gamma(f)) \cap U_i$, we can describe f"generically" as follows:

$$f - f(p) = u_1 - \sum_{i=1}^{\lambda} x_i^2 + \sum_{j=\lambda+1}^{n-k-1} x_j^2 + x_{n-k}^3 + u_1 x_{n-k} + \sum_{s,t} c_s^t u_s x_t + \cdots$$

(cf. [5]). Note that $S_1(\Gamma(f))$ is a (k-1)-dimensional submanifold of $\Gamma(f)$ and $\Gamma(f) = \Gamma_1(f) \cup \Gamma_2(f) \cup \cdots \cup \Gamma_{n-k}(f) \cup S_1(\Gamma(f))$.

THEOREM I. Let a foliated manifold (V^n, \mathscr{F}^k) $(n - k \ge 2)$ be given. Suppose that there exists a smooth function $f: V^n \to \mathbb{R}$ such that $\Gamma_1(f) = \phi$. Then V^n is the total space of a fiber bundle over $\Gamma_0(f)$ such that 1) the fiber is a connected, simply-connected, closed (n - k)-manifold, and 2) \mathscr{F}^k is a foliation such that each leaf is a fiber.

For k = 0, this is only a simple example of the ordinary Morse theory. The proof of this theorem for $k \neq 0$ will be given in §3.

THEOREM II. Let a foliated manifold (V^n, \mathscr{F}^k) $(n-k \ge 2)$ be given. Suppose that there exists a smooth function $f: V^n \to \mathbb{R}$ such that $\Gamma_i(f) = \phi$ for $1 \le i \le k$. Then $w^{n-k}(L) \ne 0$ for any leaf L if and only if $[\Gamma(f)]_2 \ne 0$ in $H_k(V^n; Z_2)$, where $w^{n-k}(L)$ is the (n-k)-th Stiefel-Whitney class of L and $[\Gamma(f)]_2$ is a mod 2 homology class of $\Gamma(f)$.

In §4, we shall give the proof of Theorem II, and furthermore obtain the orientable case of Theorem II (Theorem III).

Let $FOL^k(V^n)$ denote the space of codimension k foliations on V^n with C^{∞} -topology as usual. By definition \mathscr{F}^k is said to be stable under a small perturbation if there exists a small neighborhood $N(\mathscr{F}^k)$ of \mathscr{F}^k such that for any $\mathscr{F}^k \in N(\mathscr{F}^k), \mathscr{F}^k$ is integrably homotopic to \mathscr{F}^k . Remark that $\Gamma(f)$ is an invariant set modulo isotopy under a small perturbation of \mathscr{F}^k . Then we have the following corollary.

COROLLARY 1. Under the assumption of Theorem I, \mathcal{F}^{k} is stable under a small perturbation.

Furthermore, \mathscr{F}^k is said to be stable along a compact leaf L if there exist an open neighborhood U of L and a small neighborhood $N(\mathscr{F})$ of \mathscr{F} such that for $\mathscr{F}' \in N(\mathscr{F})$, there are a neighborhood W of L, in U, and a homeomorphism $h: W \to U$ satisfying $h(\mathscr{F} | W) = \mathscr{F}' | h(W)$.

COROLLARY 2. Let (V^n, \mathscr{F}^k) $(n - k \ge 6)$ be a (compact or noncompact) codimension k foliated manifold without boundary, and L a compact, simply-connected leaf. Then \mathscr{F} is stable along L.

Proof. By Reeb's argument [3], pp. 130–131, there exists an open neighborhood U of L which is diffeomorphic to the product $L \times \operatorname{int} D^k$, where D^k is a k-disk. We define a smooth function $f: U \equiv L \times \operatorname{int} D^k \to \mathbb{R}$ by f(y,z) = g(y), where $g: L \to \mathbb{R}$ is a nice function without singular points of index 1. Let p_0 (resp. $p_{n-k}) \in L$ be a singular point of index 0 (resp. n - k). Thus we have $\Gamma_0(f, \mathcal{F}) \equiv p_0 \times \operatorname{int} D^k, \Gamma_1(f, \mathcal{F}) = \phi$ and $\Gamma_{n-k}(f, \mathcal{F}) = p_{n-k} \times \operatorname{int} D^k$ in U. Next, we choose a sufficiently small neighborhood $N(\mathcal{F})$ of \mathcal{F} . Since U is open, $\mathcal{F} \mid U$ is a codimension k foliation on U for any \mathcal{F} . Since $\Gamma(f)$ is an invariant set modulo isotopy under a small perturbation, we may see that $\Gamma_0(f, \mathcal{F}') \equiv \Gamma_0(f, \mathcal{F}), \Gamma_1(f, \mathcal{F}')$ $= \phi$ and $\Gamma_{n-k}(f, \mathcal{F}') \equiv \Gamma_{n-k}(f, \mathcal{F})$. We discuss about $f \mid L'_{p_0 \times 0}; L'_{p_0 \times 0} \to \mathbb{R}$, where $L'_{p_0 \times 0}$ is a leaf of \mathcal{F}' which contains $p_0 \times 0$. Since $\Gamma_1(f, \mathcal{F}') =$ $\Gamma_{n-k-1}(f, \mathcal{F}') = \phi, f \mid L'_{p_0 \times 0}$ has not singular points of index 1 and also

n-k-1. Furthermore $L'_{p_0\times 0}\cap \Gamma_{n-k}(f,\mathscr{F}') \neq \phi$ because of compactness of L. So $f \mid L'_{p_0\times 0}$ has exactly one singular point of index 0 and also n-k. This function satisfies the "completeness" condition of section 2. Hence by Proposition B (see section 2) we see that $L'_{p_0\times 0}$ is compact and simply-connected. A natural projection $L \times \text{int } D^k \to L$ induces a diffeomorphism $\varphi: L'_{p_0\times 0} \to L$. The rest of proof is easy.

COROLLARY 3 (The Stability Theorem of Reeb [3: BII, 21]). Let (V^n, \mathscr{F}^k) $(n-k \ge 6)$ be a codimension k foliated manifold and L^{n-k} a compact leaf with a finite fundamental group. Given an open neighborhood U of L, there exist neighborhoods W of L, and $N(\mathscr{F})$ of \mathscr{F} such that if $\mathscr{F}' \in N(\mathscr{F})$, then every leaf of \mathscr{F}' meeting W is compact and has a finite fundamental group and is contained in U.

Proof. Take a neighborhood W_1 of L which is contractible to L. Let $p: \tilde{W}_1 \to W_1$ be a universal covering map and $\tilde{\mathscr{F}} = p^{-1}(\mathscr{F})$ is a codimension k foliation on \tilde{W}_1 . For each leaf L' of \mathscr{F} in $W_1, p^{-1}(L')$ is a union of leaves of $\tilde{\mathscr{F}}$ in \tilde{W}_1 . In particular, $p^{-1}(L) = \tilde{L}$ is a compact, simply-connected leaf of $\tilde{\mathscr{F}}$. Thus there exists an open neighborhood $\tilde{U}_1 (\equiv \tilde{L} \times \operatorname{int} D^*)$ of \tilde{L} , in \tilde{W}_1 , satisfying $p(\tilde{U}_1) \subset U$. Then we may prove this corollary by the same discussions used for the corollary 2.

THEOREM IV. Let V^n be a total space of L^{n-k} -bundle over a closed k-manifold M^k such that L^{n-k} is a closed, connected, simply-connected (n-k)-manifold $(n-k \ge 6)$, and the universal covering space of M^k is contractible. Then the foliation \mathcal{F}^k such that each leaf is a fiber, is stable under a small perturbation.

Remark. When L^{n-k} is a closed, connected (n-k)-manifold $(n-k) \ge 6$ with a finite fundamental group, a foliation ' \mathcal{F}^k , near to \mathcal{F}^k , is a foliation induced from a certain fiber bundle. I don't know whether \mathcal{F}^k is integrably homotopic to ' \mathcal{F}^k , but it seems true.

The proof of this theorem will be given in §5. Finally, we may give some examples by using Corollary 1, 2 and Theorem IV.

EXAMPLES. 1) $V^n = L^{n-k} \times M^k$, where L is a closed, connected (n-k)-manifold $(n-k \ge 6)$ with a finite fundamental group and M^k is a closed k-manifold. Then the foliation \mathscr{F}^k such that each leaf is $L \times \{m\}, m \in M$, is stable under a small perturbation.

2) Let V^n be a total space of S^{n-k} -bundle over a closed manifold

 M^k with SO (n - k) as structural group $(n - k \ge 2)$. Then the foliation such that each leaf is a fiber, is stable under a small perturbation.

3) Let (V^n, \mathscr{F}^1) $(n \ge 7)$ be a closed, transversally orientable codimension one foliated manifold. Suppose that there exists a compact leaf with a finite fundamental group. Then \mathscr{F}^1 is stable under a small perturbation.

4) Let V^n be a total space of L^{n-k} -bundle over $(S^1)^k$ or $(S^1)^{k-2\ell} \times (M^2)^{\ell}$, where L^{n-k} is a closed, connected, simply-connected (n-k)-manifold $(n-k \ge 6)$ and M^2 is a closed 2-manifold which is not diffeomorphic to a two dimensional sphere and a two dimensional projective space. Then the foliation such that each leaf is a fiber, is stable under a small perturbation.

Proof. 2) is obtained by finding a function on V satisfying the assumption of Corollary 1, and 4) is an immediate consequence of Theorem IV. For 1), consider $\tilde{L} \times M$, where \tilde{L} is a universal covering space of L. By using the same way as in the proof of Corollary 2, the foliation $\tilde{\mathscr{F}}$ such that each leaf is $\tilde{L} \times \{m\}, m \in M$, is stable under a small perturbation. Hence \mathscr{F}^k is so. 3) is a special case of the above Remark. The proof will be given in § 5.

§ 2. Morse theory on a non-compact manifold

The purpose of this section is to show the following Proposition B which plays an essential role in the proof of Theorem I. Our definition and argument in this section are based on Yamato [7]. Let M^m be a connected, paracompact, complete, Riemannian *m*-manifold without boundary, and $f: M^m \to \mathbf{R}$ a bounded smooth function such that all of its singular points are of Morse type. Denote by $\| \|$ the norm of tangent vectors or covectors of M. f is said to be "complete" if the gradient vector field of f (denoted by grad f) is complete and if there exist two families $\{E_i\}, i \in I, \{\tilde{E}_i\}, i \in I$ of open sets of M satisfying the following conditions: 1) for each singular point p of f, there is $i \in I$ such that $p \in E_i$, 2) $E_i \subset \tilde{E}_i$ for each i, and $\tilde{E}_i \cap \tilde{E}_j = \phi$ if $i \neq j$, 3) there exist three positive constants a_0, b_0, c_0 such that (a) $\|(\operatorname{grad} f)_x\| > a_0$, for $x \in M - \bigcup_{i \in I} E_i$, (b) dis $(E_i, M - \tilde{E}_i) > b_0$, for each i, and (c) diam $(\tilde{E}_i) < c_0$, for each i.

PROPOSITION B. Let $f: M^m \to \mathbf{R}$ be a bounded, "complete", smooth

function such that all of its singular points are of Morse type. If f has no singular point of index $1, M^m$ is compact and simply connected. In particular, f has exactly one singular point of index 0.

The proof of Proposition B will be preceded by some lemmas. Let $\{\psi_t; t \in \mathbf{R}\}$ be the one-parameter group of transformations generated by grad f.

LEMMA 1. There exist positive constants d, h such that for $x \in M$ and $\tau > 0$, if dis $(x, \psi_{\tau}(x)) > d$, then

$$f(\psi_{\mathfrak{r}}(x)) - f(x) > h .$$

Proof. It follows by putting $d = \max(b_0, c_0)$, $h = a_0 b_0$ and noting

$$f(\psi_{\tau}(x)) - f(x) = \int_{0}^{\tau} \|(\operatorname{grad} f)_{\psi_{t}(x)}\|^{2} dt$$

and

$$\int_0^t \|(\operatorname{grad} f)_{\psi_t(x)}\| dt \ge \operatorname{dis} (x, \psi_t(x)) .$$

LEMMA 2. Let p be a non-singular point of f. Then $\lim_{t\to\infty} \psi_t(p)$ exists and is a singular point of f.

Proof. By the boundedness of f and Lemma 1, we can easily see that $\bigcup_{t\geq 0} \psi_t(p)$ is bounded in M. Since M is complete, there is an infinite sequence $t_1 < t_2 < \cdots < t_n < \cdots \rightarrow \infty$ such that $\lim_{i\to\infty} \psi_{t_i}(p)$ exists in M. The rest of proof is easy.

LEMMA 3. f has at least one singular point of index 0 and also m.

Proof. Suppose that f has no singular point of index m. Let p_1 be a singular point of index $\lambda_1 (\neq m)$, and E_{i_1} an open set containing p_1 in the above definition. Then there exists a point $x_1 \in E_{i_1}$ such that $\psi_t(x_1) \ (-\infty < t < \infty)$ is a trajectory issued from p_1 . By Lemma 1, 2, $\lim_{t\to\infty} \psi_t(x_1) = p_2$ is a singular point of index $\lambda_2 (\neq m)$ and the inequality $f(\lim_{t\to\infty} \psi_t(x_1)) - f(p) > h$ holds. Similarly, there exists a point $x_2 \in E_{i_2}$ such that $\psi_t(x_2) \ (-\infty < t < \infty)$ is a trajectory issued from p_2 , and $\lim_{t\to\infty} \psi_t(x_2)$ exists and the inequality $f(\lim_{t\to\infty} \psi_t(x_2)) - f(p_2) > h$ holds. After iterating this process q-times, we get the inequality $f(\lim_{t\to\infty} \psi_t(x_q)) - f(p_q) > h$ and hence the inequality $f(p_{q+1}) - f(p_1) > q \cdot h$. This process can be continued infinitely because of the absence of a singular point of

index m. This contradicts the boundedness of f. Hence f has at least one singular point of index m. It is similar for the case of index 0.

LEMMA 4. Suppose that there is a non-singular, compact, connected submanifold J of $f^{-1}(r)$ for some r. Let δ_0 be a positive number satisfying the following condition: for any $\delta \in (0, \delta_0)$ and any $x \in J$, there exists a positive number $\tau(x, \delta)$ such that $f(\psi_{\tau(x,\delta)}(x)) - f(x) = \delta$. Let S be the subset of J consisting of those points x such that for any τ , the inequality $f(\psi_{\tau}(x)) - f(x) < \delta_0$ holds. If $S \neq \phi$, then $S_0(J) = \{\lim_{t \to \infty} \psi_t(x); x \in S\}$ is a finite set.

Proof. By the boundedness of f and Lemma 1, we can see that the set $S_0(J)$ is bounded in M. Since every element of $S_0(J)$ is a singular point of Morse type by Lemma 2, $S_0(J)$ must be a finite set.

LEMMA 5. Under the same assumption as in Lemma 4, if $S \neq \phi$, and if $S_0(J)$ contains no singular point of index 1, then the set $\tilde{J} = S_0(J)$ $\cup (\bigcup \{\psi_{\tau(x)}; x \in J - S\})$ is a compact, connected singular submanifold of $f^{-1}(r + \delta_0)$, where $\tau(x)$ is a positive function satisfying the equality $f(\psi_{\tau(x)}(x)) - f(x) = \delta_0$.

Proof. Using the trajectories issued from J, it is easily verified that \tilde{J} is a compact, connected, singular manifold. Since \tilde{J} has no singular point of index 1 by the assumption, \tilde{J} is a connected component of $f^{-1}(r + \delta_0)$.

Remark. If W^m is a compact, connected *m*-dimensional submanifold of M^m with J as the boundary, then there exists a compact, connected *m*-dimensional submanifold \tilde{W}^m of M such that $\operatorname{Int}(\tilde{W}^m) \supset W^m$ and $\partial \tilde{W}^m$ is a connected component of $f^{-1}(r + \delta_0 + \eta)$ for some $\eta > 0$. In particular we may suppose $\eta > h$, where h is a positive constant in Lemma 1.

Proof of Proposition B. By Lemma 3, f has at least one singular point of index 0. Let p be such a point and suppose f(p) = 0. For a sufficiently small $\varepsilon > 0$, a connected component of $f^{-1}([0, \varepsilon])$ which contains p, is a m-disk D^m . Since the boundary of D^m is an (m - 1)-sphere, there exists a compact, connected submanifold $W_1^m (\supset D^m)$ of M^m such that $f(\partial W_1^m) > h$, by Lemma 4,5 and Remark. The boundary of W_1^m is a compact, connected, non-singular level submanifold of M. Again by the use of Lemma 4,5 and Remark, there exists a compact, connected

submanifold $W_2^m (\supset W_1^m)$ of M^m such that $f(\partial W_2^m) > 2h$. After iterating this process q-times, we obtain a compact, connected submanifold $W_q^m (\supset W_{q-1}^m)$ of M^m such that $f(\partial W_q^m) > q \cdot h$. But by the boundedness of f, this process must finish at finite steps, i.e., there is a positive integer q_0 such that $M - \operatorname{Int} D^m = W_{q_0}^m$. Hence M^m is compact. Since M has no 1-handle, it is simply connected. In particular, the number of the singular points of index 0 is equal to one.

§3. Proof of Theorem 1

In order to prove Theorem I, we prepare the following lemma.

LEMMA 6 (Under the same assumption as in Theorem I). Let N be a sufficiently small neighborhood of $S_1(\Gamma(f))$ in $\Gamma(f)$. Then for any leaf L such that $N \cap L \neq \phi$, there exist a neighborhood A of $N \cap L$ in L and a modified function $g: L \to \mathbf{R}$ such that 1) g|L - A = (f|L)|L - A, where f|L is the restricted function to L of f, 2) g has no singular point in A, and 3) $\|grad g\| > a_0$ on A, where a_0 is a positive constant.

Proof. Since $S_1(\Gamma(f))$ is compact, there is a finite number of distinguished neighborhoods U_i , $i = 1, \dots, i_0$, such that $\bigcup_{i=1}^{i_0} U_i \supset S_1(\Gamma(f))$ and the norm of *u*-components in its local coordinate is small. In U_i which contains $p \in S_1(\Gamma(f))$, we may assume that f is described as follows:

$$f - f(p) = u_1 - \sum_{i=1}^{\lambda} x_i^2 + \sum_{j=\lambda+1}^{n-k-1} x_j^2 + x_{n-k}^3 + u_1 x_{n-k} + \sum_{s,t} c_s^t u_s x_t + \cdots$$

Then for any leaf L such that $L \cap U_i \neq \phi$, $f|(\text{component of } L \cap U_i)$ is the restricted function to the plate, $u_i = \text{constant for } 1 \leq i \leq k$, of the above function. Therefore, by Milnor's method [1] pp. 48-66, f|L is modified in U_i to g' such that 1) $(f|L)|L - U_i = g'|L - U_i$, 2) g' has no singular point in $L \cap U_i$, and 3) $||\text{grad } g'|| > a_0$ on $L \cap U_i$. Performing the same process in each small distinguished neighborhood U_i , we produce a modified function g satisfying the required properties. Hence we have only to put $N = (\bigcup_{i=1}^{i_0} U_i) \cap \Gamma(f)$ and $A = (\bigcup_{i=1}^{i_0} U_i) \cap L$.

Now we are in a position to prove Theorem I. By Lemma 6, for any leaf L of \mathscr{F}^k , all singular points of f|L or the modified function g are of Morse type. Let $T(\Gamma(f)) \subset \tilde{T}(\Gamma(f))$ be tubular neighborhoods of $\Gamma(f)$ in V such that dis $(T(\Gamma(f)), V - \tilde{T}(\Gamma(f))) > b_0$, and diam $(D_x) < c_0$ for

each $x \in \Gamma(f)$, where D_x is a fiber of $T(\Gamma(f))$ over x. We can regard as $D_x \subset L_x$ for $x \in \Gamma(f) - N$, where L_x is a leaf which contains x. Putting $\bigcup_{i \in I} E_i = L \cap (T(\Gamma(f)) | \Gamma(f) - N), \bigcup_{i \in I} \tilde{E}_i = L \cap (\tilde{T}(\Gamma(f)) | \Gamma(f) - N))$, we see that f | L or g is "complete". Since f | L or g is bounded, and has no singular point of index 1, f | L or g satisfies the assumption of Proposition B. Therefore, each leaf of \mathscr{F}^k has exactly one singular point of index 0. Hence every leaf of \mathscr{F}^k intersects $\Gamma_0(f)$ with exactly one point. We define a mapping $\pi: V \to \Gamma_0(f)$ by

$$\pi(x) = \Gamma_0(f) \cap L_x$$
 for any $x \in V$.

This implies that $\Gamma_0(f)$ can be identified with the leaf space V/\mathscr{F}^k . It is clear that π is a submersion. Since V is compact, π is a fiber mapping.

§ 4. Some topological properties of leaves in Theorem I

Let (V^n, \mathscr{F}^k) be a codimension k foliated manifold as in § 1, and fbe a smooth mapping of V^n into \mathbb{R}^p . As in § 1, we can define a subset $S_r(f, p; \mathscr{F}^k)$ of V^n , but in this section, we give the definition in another way. Let $\iota: V^n \to \mathbb{R}^m$ be an imbedding and $g: V^n \to \mathbb{R}^{m+p} = \mathbb{R}^m \times \mathbb{R}^p$ be an imbedding defined by $g(v) = (\iota(v), f(v))$ for $v \in V^n$. The Grassmann manifold of all (n - k)-dimensional vector subspaces of the space \mathbb{R}^{m+p} we denote by $G_{m+p-n+k,n-k}$. Then we define a mapping \overline{g} of V^n into $G_{m+p-n+k,n-k}$ by $\overline{g}(v) = T_v$, where T_v is the element of $G_{m+p-n+k,n-k}$ parallel to the tangent vector space of a leaf L_v at g(v). Let F_r denote the set $\{X \in G_{m+p-n+k,n-k}; \dim (X \cap \mathbb{R}^m \times 0) = n - k - p + r\}$. This F_r is a set of generic points of Schubert variety of type

$$(\underbrace{m+p-n+k-r,\cdots,m+p-n+k-r}_{n-k-p+r},\underbrace{m+p-n+k,\cdots,m+p-n+k}_{p-r})$$

(cf. [2]). Then we define a subset $S_r(f, p; \mathscr{F}^k)$ of V to be $\overline{g}^{-1}(F_r)$. The following proposition is easily obtained by t-regularity theorem.

PROPOSITION C. Let $f: V^n \to \mathbb{R}^p$ be a smooth mapping. Then there exists a smooth mapping g approximating f such that $S_r(g, p; \mathscr{F}^k)$ is a regular submanifold of V^n .

Remark. $S_1(f, 1; \mathscr{F}^k)$ is equal to $\Gamma(f)$ defined in §1. We can easily see that $S_1(f, p; \mathscr{F}^k)$ is a closed submanifold of V^n if $n \ge 2p + 2k - 2$ (cf. [6]).

Let $\xi: \mathbb{R}^{n-k} \to E(\xi) \to V^n$ be a completely integrable (n-k)-plane

bundle which defines \mathscr{F}^k . Then by the usual argument, we have the following proposition.

PROPOSITION D. The cohomology class dual to the mod 2 homology class of $S_1(f, p; \mathscr{F}^k)$ $(1 \leq p \leq n-k)$ is the (n-k-p+1)-th Stiefel-Whitney class $W^{n-k-p+1}(\xi)$ of ξ .

Proof of Theorem II. By Theorem I, V^n is the total space of a fiber bundle over $\Gamma_0(f)$. Furthermore from the assumption, the fiber is a k-connected, closed (n - k)-manifold. Therefore by Proposition D, we have only to show the following lemma.

LEMMA 7. Let $L^{n-k} \xrightarrow{\iota} E^n \xrightarrow{\pi} M^k$ be a smooth fiber bundle and suppose that L is k-connected. Then $\iota^*: H^{n-k}(E; Z_2) \to H^{n-k}(L; Z_2)$ is isomorphic.

Proof. At first, note that $H^{n-k}(L; Z_2) = Z_2$, $H^{n-k}(E; Z_2) \cong H_k(E; Z_2)$. Since L is k-connected, $\pi_*: \pi_i(E) \to \pi_i(M)$ is isomorphic for $i \leq k$. Therefore, $\pi_*: H_i(E; Z_2) \to H_i(M; Z_2)$ is so for $i \leq k$. In particular $H_k(E; Z_2)$ $\cong H_k(M; Z_2) = Z_2$. Next we shall use the cohomology spectral sequence for the fiber bundle. Since L is k-connected, we can easily see that $\iota^*: H^{n-k}(E; Z_2) \to H^{n-k}(L; Z_2)$ is epimorphic.

Finally we consider the orientable case. Let V^n be an oriented, closed *n*-manifold and \mathscr{F}^k a transversally orientable codimension k foliation on V^n . At first we orient $\Gamma(f)$ as follows. Let $p \in \Gamma(f)$ and U be a distinguished neighborhood at p, whose local coordinate is $(u_1, \dots, u_k,$ $x_1, \dots, x_{n-k})$. The orientation of V^n at p is given by

$$\left\{\left(\frac{\partial}{\partial u_1},\ldots,\frac{\partial}{\partial u_k},\frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_{n-k}}\right)_p\right\},\,$$

where $\{ \}$ is an equivalence class of the basis (). For $p \in \Gamma_{\lambda}(f)$, we can suppose that $T(\Gamma_{\lambda}(f))_p$ is spanned by $(\partial/\partial u_1, \dots, \partial/\partial u_k)_p$, where $T(\Gamma_{\lambda}(f))_p$ is the tangent vector space of $\Gamma_{\lambda}(f)$ at p. Then we define the orientation $\eta(p)$ of $T(\Gamma(f))_p$ at $p \in \Gamma(f) - S_1(\Gamma(f))$ such that $\eta(p) =$ $(-1)^{\lambda}\{(\partial/\partial u_1, \dots, \partial/\partial u_k)_p\}$ for $p \in \Gamma_{\lambda}(f)$. The orientation $\eta(p)$ of $T(\Gamma(f))_p$ at $p \in S_1(\Gamma(f))$ is naturally determined. This definition is well-defined. In the following Theorem, we shall suppose that $\Gamma(f)$ is oriented by η .

THEOREM III. Let (V^n, \mathscr{F}^k) $(n - k \ge 2)$ be a transversally orientable

codimension k foliated manifold. Suppose that there exists a smooth function $f: V^n \to \mathbf{R}$ such that $\Gamma_i(f) = \phi$ for $1 \leq i \leq k$. Then $[\Gamma(f)] = \chi(L)[\Gamma_0(f)]$ in $H_k(V; \mathbb{Z})$ for any leaf L, where $\chi(L)$ is the Euler characteristic of L and $[\Gamma(f)]$ is the integral homology class of $\Gamma(f)$ with the above orientation.

Proof. Let $\pi: V^n \to \Gamma_0(f)$ be a fiber map. $\Gamma_0(f)$ is already oriented as above. As in the proof of Theorem II, we see that $H_k(V; Z) = Z$ and $[\Gamma_0(f)]$ is its generator. Denote by π_1 the restriction of π to $\Gamma(f)$. Let $b \in \Gamma_0(f)$. We may assume that the map $\pi_1: \Gamma(f) \to \Gamma_0(f)$ is transversal to b. Let m_+ (or m_-) be the number of point p in $\pi_1^{-1}(b)$ such that $\pi_{1*}(\eta(p))$ is equal to $\eta(b)$ (or $\pi_{1*}(\eta(p))$ is not equal to $\eta(b)$). We define deg π_1 to be m if $\pi_{1*}([\Gamma(f)]) = m \cdot [\Gamma_0(f)]$, where $\pi_{1*}: H_k(\Gamma(f); Z) \to$ $H_k(\Gamma_0(f); Z)$. Note that deg $\pi_1 = m_+ - m_-$.

On the other hand, the Euler characteristic of leaf $\pi^{-1}(b)$ is equal to $\sum_{i=1}^{n-k} (-1)^i c_i$, where c_i is the number of singular points of index *i* of $f \mid \pi^{-1}(b)$. It is easily checked that $m_+ = \sum_{i: \text{ even }} c_i, m_- = \sum_{i: \text{ odd }} c_i$. Therefore, we obtain $[\Gamma(f)] = (\deg \pi_1)[\Gamma_0(f)] = (m_+ - m_-)[\Gamma_0(f)] = (\sum_{i=0}^{n-k} (-)^i c_i)$ $[\Gamma_0(f)] = \chi(L) \cdot [\Gamma_0(f)].$

§ 5. Proof of Theorem IV

Let \tilde{M} be a universal covering space of M and q its projection. \tilde{V} is a total space of a fiber bundle induced by q from the fiber bundle $\pi: V \to M$. Thus we have a commutative diagram:

$$L \xrightarrow{\gamma} \tilde{V} \xrightarrow{\tilde{\pi}} \tilde{M}$$

$$\downarrow \text{id} \qquad \downarrow p \qquad \downarrow q$$

$$L \xrightarrow{\iota} V \xrightarrow{\pi} M$$

Since \tilde{M} is contractible, there exists a diffeomorphism d of $L \times \tilde{M}$ onto \tilde{V} such that a following diagram commutes:

$$L imes ilde{M} \xrightarrow{\mathrm{pr}} M$$

 $\downarrow^d \qquad \qquad \downarrow^{\mathrm{id}}$,
 $ilde{V} \xrightarrow{\pi} M$

where pr denotes a projection. Thus we have the following diagram:

$$egin{array}{ccc} L imes ilde{M} & \longrightarrow & ilde{M} \ & & & & \downarrow p \circ d & & \downarrow q \ & V & \longrightarrow & M \end{array}$$

Now, we introduce a metric on M and then introduce a "bundle-like metric" on V (see [4] for a definition of a bundle-like metric). Furthermore, we consider a metric induced by $p \circ d$ (resp. q) as a metric on $L \times \tilde{M}$ (resp. \tilde{M}). Then the metric on $L \times \tilde{M}$ is also a bundle-like metric for pr.

Next, we define a topology on $\operatorname{FOL}^k(V^n)$ as follows. Any $\mathscr{F} \in \operatorname{FOL}^k(V^n)$ (We omit k from \mathscr{F}^k) corresponds to a section $f_{\mathscr{F}}: V^n \to E(\gamma_{n-k,k})$ which defines \mathscr{F} , where $E(\gamma_{n-k,k})$ is a total space of a bundle associated with the tangent bundle of V^n with Grassmann manifold $G_{n-k,k}$ as fiber. Then we define an ε -neighborhood of $\mathscr{F}, N(\mathscr{F}, \varepsilon)$, to be the set $\{\mathscr{F}' \in \operatorname{FOL}^k(V^n); \|f_{\mathscr{F}} - f_{\mathscr{F}'}\| < \varepsilon\}$, where $\| \|$ denotes a usual norm in the space of sections of $\gamma_{n-k,k}$. It is easy to show that \mathscr{F}' belongs to $N(\mathscr{F}, \varepsilon)$ if and only if \mathscr{F}' belongs to $N(\mathscr{F}, \varepsilon)$, where \mathscr{F} (resp. \mathscr{F}') is a foliation induced by $p \circ d$ from \mathscr{F} (resp. \mathscr{F}'). We define a smooth function $f: L \times \tilde{M} \to \mathbb{R}$ by f(y, z) = g(y), where $g: L \to \mathbb{R}$ is a Morse function without singular points of index 1. Then for any $\mathscr{F}' \in N(\mathscr{F}, \varepsilon)$ (ε is sufficiently small), $f \mid L'$ satisfies all conditions of Proposition B for any leaf L' of \mathscr{F}' . Therefore, we have the following commutative diagram:

$$egin{array}{cccc} L imes ilde{M} & \longrightarrow & ilde{\pi'} & & ilde{M} \ & & & & \downarrow p \circ d & & \downarrow q' \ & V & \longrightarrow & V/ \mathscr{F}' \end{array}, \ V & \longrightarrow & V/ \mathscr{F}' \end{array}$$

where $\tilde{\pi}'$ is a fiber map, V/\mathscr{F}' is a closed manifold, q' is a universal covering map and \tilde{M} is considered as $* \times \tilde{M}, * \in L$, since we have $\Gamma_0(f)$ $= * \times \tilde{M}$. Then we may easily check that $\| \operatorname{pr} - \tilde{\pi}' \| \leq N \varepsilon$ for some integer N > 0. Let δ be a small positive number. Then we may choose open neighborhoods $U_i \supset W_i$, $i = 1, \dots, \ell$, in M, such that 1) U_i (resp. W_i) is an open ball of radius δ , (resp. $\frac{3}{4}\delta$) centered at x_i , 2) $\bigcup_{i=1}^{\ell} W_i =$ M, and 3) π is trivial on U_i for each i. We construct a smooth isotopy of V inductively. Let $\tilde{U}_1 (\supset \tilde{W}_1)$ be a connected component of $q^{-1}(U_1)$ $(\supset q^{-1}(W_1))$. By putting $\varepsilon < \delta/8N$, we may check that $(\tilde{\pi}')^{-1}(\tilde{W}_1) \subset L \times \tilde{U}_1$.

Thus there exists a smooth isotopy $h_t(0 \leq t \leq 1)$ of $L \times \tilde{M}$ such that 1) $h_0 = \text{identity}$, 2) $h_t | L \times (\tilde{M} - \tilde{U}_1) = \text{identity}$, 3) h_t preserves $\tilde{M}(\equiv * \times M)$ pointwise, and 4) $h_1 | (\tilde{\pi}')^{-1}(\tilde{W}_1)$ is a bundle map. Since $p \circ d | L \times \tilde{U}_1$ is diffeomorphic, the composition $(p \circ d) \circ h_t \circ (p \circ d)^{-1}$ defines an isotopy g_t of V, i.e.,

$$g_t(z) = egin{cases} (p \circ d) \circ h_t \circ (p \circ d)^{-1}(z) \ , & ext{for } z \in (p \circ d) \ (L imes ilde U_1) = \pi^{-1}(U_1) \ , \ z, & ext{otherwise.} \end{cases}$$

Furthermore, this isotopy g_t induces an isotopy of $L \times \tilde{M}$. Next, we construct an isotopy on $\pi^{-1}(U_2)$ and so on. Thus we may define an isotopy of V, isotopic to the identity, which transforms \mathscr{F}' to \mathscr{F} . Hence \mathscr{F} is integrably homotopic to \mathscr{F}' . Thus we complete the proof.

Proof of Example 3). We may easily see that V^n is a total space of L^{n-1} -bundle over S^1 by Reeb [3]. By the above argument, we have two commutative diagrams:

$$egin{array}{lll} { ilde{L}} imes {m R} & { ilde{L}} imes {m R} & { ilde{L}} imes {m R} & { ilde{\mu}} { ilde{\pi}} {m R} & { ilde{\mu}} { ilde{\mu}} {m q} & { ilde{\mu}} & { ilde{\mu}} { ilde{\mu}} {m q} & { ilde{\mu}} { ilde{\mu}} { ilde{\mu}} {m q} & { ilde{\mu}} { ilde{\mu}} {m q} & { ilde{\mu}} { ilde{\mu}} { ilde{\mu}} {m q} & { ilde{\mu}} { ilde{\mu$$

Since $\|\mathbf{pr} - \tilde{\pi}'\| < N\varepsilon$ for some integer N > 0, there exists a diffeomorphism of $\tilde{L} \times \mathbf{R}$, isotopic to the identity, which transforms $\tilde{\mathscr{F}}'$ to $\tilde{\mathscr{F}}$ and preserves $* \times \mathbf{R}, * \in L$, pointwise. Let $[0, s_0)$ (resp. $[0, s_1)$) is a periodic interval for q (resp. q'). We may suppose that $|s_0 - s_1| < N\varepsilon$. Then we define $\bar{\varphi}: [0, s_0) \to [0, s_1)$ as follows:

$$ar{arphi}(t) = egin{cases} t, & ext{ for } t ext{ near to } 0 ext{ ,} \ t + (s_1 - s_0) ext{ ,} & ext{ for } t ext{ near to } s_0 ext{ ,} \end{cases}$$

and

 $\|ar{arphi}-\mathrm{id}\| < K arepsilon$, for some K > 0 .

So we define a diffeomorphism $\varphi: S^1 \to S^1$ by $\varphi(s) = \bar{q}' \circ \bar{\varphi} \circ \bar{q}^{-1}(s)$, where \bar{q} (resp. \bar{q}') is a restricted function to $[0, s_0)$ (resp. $[0, s_1)$). Since $\varphi \circ q$ is sufficiently near to $q', \varphi \circ \pi$ is sufficiently near π' in the C^{∞} -topology of the space of submersions of V^n to S^1 . Therefore, there exists a smooth homotopy $\pi_t: V \to S^1$ ($0 \leq t \leq 1$) such that for each t, π_t is a submersion and $\pi_0 = \varphi \circ \pi, \pi_1 = \pi'$. This homotopy gives an integrable homotopy of \mathcal{F} and \mathcal{F}' .

References

- [1] J. Milnor, Lectures on the h-cobordism theorem, Princeton, 1965.
- [2] L. S. Pontrjagin, Characteristic cycles on differentiable manifolds, A.M.S. Trans., Ser. 1, Vol. 7.
- [3] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actual. Sci. Ind., Hermann, Paris, 1183 (1952), 93-154.
- [4] B. L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math., 8 (1959), 119–131.
- [5] R. Thom, Généralisation de la théorie de Morse aux variétés feuilletées, Ann. Inst. Fourier, 14-1 (1964), 173-190.
- [6] R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier, 6 (1956), 45-87.
- [7] K. Yamato, Qualitative theory of codimension one foliation, Nagoya Math. J., 49 (1973) 155-229.

Mathematical Institute Kyoto University