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AN APPLICATION OF THE MORSE THEORY

TO FOLIATED MANIFOLDS

KAZUHIKO FUKUI

In [5], R. Thorn has started the study of the foliated structures by
using the Morse theory. Recently K. Yamato [7] has studied the
topological properties of leaves of a codimension one foliated manifold
by investigating the "critical points" of variation equation of the given
one-form.

In this note, using their methods we shall show that a codimension
k foliation on a closed manifold is a "bundle foliation" under certain
conditions (Theorem I), and give some topological properties of those
leaves (Theorem II, III). By using Theorem I, we shall show the
Stability Theorem of Reeb [3]. Furthermore, we shall show that bundle
foliations satisfying some conditions, are stable under a small perturba-
tion (Theorem IV). All manifolds, foliations and mappings considered
here, are smooth (i.e., differentiable of class C°°).

The author is grateful to Professors N. Shimada, M. Adachi, H.
Imanishi and Mr. T. Matumoto for their kind advices.

§ 1. Definitions and statement of the results

Let Vn be a closed ^-manifold, S?k (0 < k <n) a codimension k foli-
ation on Vn and {Ui9 i — 1,2, > 9£0} a distinguished neighborhood cover-
ing of Vn. The local coordinate of a distinguished neighborhood is
(u19 , uk, xu - - , xn_k) such that each plate is defined by ut — constant
for 1 :g ί <ί k. At first we take a smooth function / on Vn, and for
each distinguished neighborhood Ui9 we define a mapping Ft of £7* into
Rk+1 by

F i ( u ί f '•',Uk,X1,- , X n _ k ) = (Ulf , Uk, f ( M l f '-,Uk,X19 ', X n _ k ) ) .

T h e n , w e def ine a s u b s e t Γ(J) of Vn a s f o l l o w s : Γ(J) Π Ut = {(u19 --,uk,

Received June 4, 1973.

165



166 KAZUHIKO FUKUI

%i>-',%n-k) e Ui corank (Fi) = 1 at (u19 , u k 9 x19 ,xn-k)}- This defi-

nition is well-defined.

PROPOSITION A (Thorn [5]). Let f:Vn->R be a smooth function.
Then there exists a smooth function g approximating f such that Γ(g)
is a closed k-manifold of Vn.

Proof. We have only to approximate / in each distinguished
neighborhood Ui in order that Γ(f) Π Ut is a fc-manifold. Then using
Thorn's notation, we have Γ(f) ΓΊ Ut = S^Ft). Hence the proposition
follows from Thorn [6].

For p e Γ(f) Π Ui9 let (^, , uk9 x19 , xn.k) be a local coordinate
around p such that ι^(p) = 0, Xj(p) = 0. We can assume that / is
described as follows:

/ - Άv) = %i + Σ α<,̂ <»i + Σ Φ ί̂

where (atJ) is a symmetric (n — fc)-matrix. Then the point p is said to
be of type λ (0 ^ Λ ̂  n — k) if the matrix (α<fi) is non-singular and its
signature is λ (i.e., the number of negative eigenvalues of (aίfj) is equal
to X). Let Γx(f) denote the set of points of type λ. Next for each Ui9

consider Ft\Γ(f) Π ϋt: Γ(f) Π 17,-»Λ*+1. Then we define ^(Γ(/)) Π Ϊ7*
to be SάFilΠf) Π 17*). ^(Γί/)) Π ^ is the set of points where the
above matrix (aίtj) is singular. At p e S^Γif)) Π Ui9 we can describe /
"generically" as follows:

/ ~ f(V) = UX-ΣX\ + " J 1 X) + Xl-Jc + U&n-K + Σ ΦsXt +

(cf. [5]). Note that S^Πf)) is a (fc - l)-dimensional submanifold of Γ(/)
and Γ(f) = Λ(/) U Γ2(/) U U ΓΛ.fc(/) U

THEOREM I. Let a foliated manifold (V71,^*) (n — k ^ 2) δe given.
Suppose that there exists a smooth function f:Vn-^R such that Γ^f)
= φ. Then Vn is the total space of a fiber bundle over Γ0(f) such that
1) the fiber is a connected, simply-connected, closed (n — k)-manifold,
and 2) J^fc is a foliation such that each leaf is a fiber.

For k — 0, this is only a simple example of the ordinary Morse
theory. The proof of this theorem for k ^ 0 will be given in § 3.



FOLIATED MANIFOLDS 167

THEOREM II. Let a foliated manifold (Vn

9^
k) (n - k ̂  2) be given.

Suppose that there exists a smooth function f:Vn->R such that Λ(/)
= φ for 1 <^ i :g k. Then wn~k(L) Φ 0 for any leaf L if and only if
\Γ(J)\ ΦO in Hk(Vn: Z2), where wn-k(L) is the (n — k)-th Stiefel-Whitney
class of L and [Γ(/)]2 is a mod 2 homology class of Γ(/).

In §4, we shall give the proof of Theorem II, and furthermore
obtain the orientable case of Theorem II (Theorem III).

Let FOLfc (Vn) denote the space of codimension k foliations on Vn

with C°°-topology as usual. By definition 2Fk is said to be stable under
a small perturbation if there exists a small neighborhood N(^k) of !Fk

such that for any '&* e N(^k),^k is integrably homotopic to '&*.
Remark that Γ(f) is an invariant set modulo isotopy under a small per-
turbation of &*. Then we have the following corollary.

COROLLARY 1. Under the assumption of Theorem I, <Fk is stable
under a small perturbation.

Furthermore, tFk is said to be stable along a compact leaf L if
there exist an open neighborhood U of L and a small neighborhood N(^)
of fF such that for SFr e N{^), there are a neighborhood W of L, in U,
and a homeomorphism h:W-+U satisfying

COROLLARY 2. Let (V71,^10) (n — k^6) be a (compact or non-
compact) codimension k foliated manifold without boundary, and L a
compact, simply-connected leaf. Then 8F is stable along L.

Proof. By Reeb's argument [3], pp. 130-131, there exists an open
neighborhood U of L which is diffeomorphic to the product L x int Dk,
where Dk is a fc-disk. We define a smooth function / : U = L x int Dk

—> R by f(y, z) = g(y), where g: L —• R is a nice function without singular
points of index 1. Let p0 (resp. pn_k) e L be a singular point of index
0 (resp. n - k). Thus we have Γ*(/,&) = p0 X intZ)fc, Γ^f,^) = φ and
Γn-kify&O — Pn-k X int Dk in U. Next, we choose a sufficiently small
neighborhood N{JF) of &. Since U is open, ίF \ U is a codimension &
foliation on £7 for any J^. Since Γ(f) is an invariant set modulo isotopy
under a small perturbation, we may see that Γo(/, <F') = Γo(/, &?), Γλ(f, &')
= φ and Γn_k(f,^;) = Γn_k(f,^). We discuss about / |L; o X O ; L;oXO — /?,
where LpoXO is a leaf of JΓ / which contains p0 X 0 Since Z7^/, Ĵ O =
Γn.jdif,^') — φ, f\L'PoX0 has not singular points of index 1 and also
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n — k — 1. Furthermore L'PoXQ Ω Γn_k{f,^f) ^ φ because of compactness

of L. So f\L'voXO has exactly one singular point of index 0 and also

n — k. This function satisfies the "completeness" condition of section 2.

Hence by Proposition B (see section 2) we see that LpoXO is compact

and simply-connected. A natural projection L x int Dk —• L induces a

diffeomorphism ψ: Z/poXO —> L. The rest of proof is easy.

COROLLARY 3 (The Stability Theorem of Reeb [3:BΠ, 21]). Let

{Vn,^k) (n — k^>6) be a codimension k foliated manifold and Ln~k a

compact leaf with a finite fundamental group. Given an open neighbor-

hood U of L, there exist neighborhoods W of L, and N(<F) of !F such

that if &' e N&), then every leaf of !Ff meeting W is compact and has

a finite fundamental group and is contained in U.

Proof. Take a neighborhood Wx of L which is contractible to L.

Let p: Wλ —> Wγ be a universal covering map and β = p~\tF) is a codi-

mension k foliation on Wτ. For each leaf 1/ of IF in Wl9p~\U) is a

union of leaves of # in Wx. In particular, p~\L) = L is a compact,

simply-connected leaf of # . Thus there exists an open neighborhood

Ux ( = L X int Dk) of L, in W19 satisfying p(Uι) c U. Then we may prove

this corollary by the same discussions used for the corollary 2.

THEOREM IV. Let Vn be a total space of Ln~k-bundle over a closed

k-manίfold Mk such that Ln~k is a closed, connected, simply-connected

(n — k)-manifold (n — k ^> 6), and the universal covering space of Mk is

contractible. Then the foliation ^ k such that each leaf is a fiber, is

stable under a small perturbation.

Remark. When Ln~k is a closed, connected (n — fc)-manifold (n — k

>̂ 6) with a finite fundamental group, a foliation /^rk, near to J^fc, is a

foliation induced from a certain fiber bundle. I don't know whether

^ k is integrably homotopic to '&*, but it seems true.

The proof of this theorem will be given in § 5. Finally, we may

give some examples by using Corollary 1, 2 and Theorem IV.

EXAMPLES. 1) Vn = Ln~k x Mk, where L is a closed, connected

(n — &)-manifold (n — k >̂ 6) with a finite fundamental group and Mk is

a closed fc-manifold. Then the foliation fFk such that each leaf is L x

{m}, meM, is stable under a small perturbation.

2) Let Vn be a total space of Sn"fc-bundle over a closed manifold
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Mk with SO (n — k) as structural group (n — k >̂ 2). Then the foliation

such that each leaf is a fiber, is stable under a small perturbation.

3) Let (V71,^1) (n}>Ί) be a closed, transversally orientable codi-

mension one foliated manifold. Suppose that there exists a compact leaf

with a finite fundamental group. Then J^1 is stable under a small

perturbation.

4) Let Vn be a total space of L*-*-bundle over (Sι)k or OS1)*"2' x

(M2Y, where Ln~k is a closed, connected, simply-connected (n — ̂ -mani-

fold (n — k >̂ 6) and M2 is a closed 2-manifold which is not diffeomorphic

to a two dimensional sphere and a two dimensional protective space.

Then the foliation such that each leaf is a fiber, is stable under a small

perturbation.

Proof. 2) is obtained by finding a function on V satisfying the

assumption of Corollary 1, and 4) is an immediate consequence of Theorem

IV. For 1), consider L x M, where L is a universal covering space of

L. By using the same way as in the proof of Corollary 2, the foliation

# such that each leaf is L x {m}, meM, is stable under a small per-

turbation. Hence lFk is so. 3) is a special case of the above Remark.

The proof will be given in § 5.

§ 2 Morse theory on a non-compact manifold

The purpose of this section is to show the following Proposition B

which plays an essential role in the proof of Theorem I. Our definition

and argument in this section are based on Yamato [7]. Let Mm be a

connected, paracompact, complete, Riemannian m-manifold without bound-

ary, and f:Mm->R a bounded smooth function such that all of its

singular points are of Morse type. Denote by || || the norm of tangent

vectors or covectors of M. f is said to be "complete" if the gradient

vector field of / (denoted by grad /) is complete and if there exist two

families {E^, i e I, {E^, i e I of open sets of M satisfying the following

conditions: 1) for each singular point p of /, there isiel such that p e Ei9

2) Et c Et for each i, and Et Π Es = φ if i *? j , 3) there exist three

positive constants ao,bo,co such that (a) ||(grad./%|| > a0, for xeM —

U<ei Ei> 0>) dis (Eiy M - Eτ)> 60, for each i, and (c) diam (E^ < c0, for

each ί.

PROPOSITION B. Let f:Mm->R be a bounded, "complete", smooth



170 KAZUHIKO FUKUI

function such that all of its singular points are of Morse type. If f has
no singular point of index l,Mm is compact and simply connected. In
particular, f has exactly one singular point of index 0.

The proof of Proposition B will be preceded by some lemmas. Let
{ψt t e R} be the one-parameter group of transformations generated by
grad/.

L E M M A 1. There exist positive constants d,h such that for xeM

and τ > 0, if d i s (x, ψτ(x)) > d, then

- fix) > h .

Proof. It follows by putting d = max (&0, c0), h = aobo and noting

fiψXx)) -fix) = Γl|(grad/)tl(x)||
adt

Jo

and

Γ||(grad/)+ί(β) | |dί ^ dis(x,φτ(x)) .
Jo

LEMMA 2. Let p be a non-singular point of f. Then l i m ^ ψt(p)
exists and is a singular point of f.

Proof. By the boundedness of / and Lemma 1, we can easily see
that Uί£oΨί(p) is bounded in M. Since M is complete, there is an
infinite sequence tι<t2< < tn < -> oo such that l i m ^ ψti(p)
exists in M. The rest of proof is easy.

LEMMA 3. / has at least one singular point of index 0 and also m.

Proof. Suppose that / has no singular point of index m. Let px

be a singular point of index λλ (^m), and Eiχ an open set containing p1

in the above definition. Then there exists a point xιeEίχ such that
Ψt(Xi) (—oo < ί < oo) is a trajectory issued from pλ. By Lemma 1,2,
l i m ^ ψt(Xi) — Ί>2 is a singular point of index λ2 (=^m) and the inequality
/(lim^eo ψt(Xi)) — f(p) > h holds. Similarly, there exists a point x2 e Έu

such that ψί(ίc2) (—oo < t < oo) is a trajectory issued from p2, and
l i m ^ ψt(

χ2) exists and the inequality / ( l i m ^ ψίί^)) — f(p2) > h holds.
After iterating this process g-times, we get the inequality / ( l i m ^ ψt(xq))
— fiVq) > Λ and hence the inequality f(pq+ί) — f(pd > q h. This process
can be continued infinitely because of the absence of a singular point of
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index m. This contradicts the boundedness of /. Hence / has at least
one singular point of index m. It is similar for the case of index 0.

LEMMA 4. Suppose that there is a non-singular, compact, connected
submanif old J of f~\r) for some r. Let δ0 be a positive number satisfy-
ing the following condition: for any δ e (0, δ0) and any x eJ, there exists
a positive number τ(x,δ) such that fiψτ(X,δ)ix)) —fix) — δ. Let S be the
subset of J consisting of those points x such that for any τ, the inequality
fiψXx)) - fix) < δ0 holds. If S ±? φ, then S0(J) = { l im^ ψt(x) xeS} is
a finite set.

Proof. By the boundedness of / and Lemma 1, we can see that
the set S0(J) is bounded in M. Since every element of SQiJ) is a singular
point of Morse type by Lemma 2, SoiJ) must be a finite set.

LEMMA 5. Under the same assumption as in Lemma 4, if S ^ φ,
and if SQiJ) contains no singular point of index 1, then the set J — SQ(J)
U (U {Ψπx) > x € J — S}) is & compact, connected singular submanif old of

f~\r + δ0), where τix) is a positive function satisfying the equality
fiψτ{x)(x)) - fix) = δ0.

Proof. Using the trajectories issued from J, it is easily verified
that J is a compact, connected, singular manifold. Since J has no
singular point of index 1 by the assumption, J is a connected component
of f'\r + δ0).

Remark. If Wm is a compact, connected m-dimensional submanifold
of Mm with / as the boundary, then there exists a compact, connected
m-dimensional submanifold Wm of M such that Int iWm) D Wm and dWm

is a connected component of f~\r + δQ + η) for some η > 0. In particular
we may suppose η > h, where h is a positive constant in Lemma 1.

Proof of Proposition B. By Lemma 3, / has at least one singular
point of index 0. Let p be such a point and suppose fip) = 0. For a
sufficiently small ε > 0, a connected component of f^HO, ε]) which con-
tains p, is a ra-diskί)m. Since the boundary of Dm is an (m — l)-sphere,
there exists a compact, connected submanifold Wψ iZD Dm) of Mm such
that fidWΐ) > h9 by Lemma 4,5 and Remark. The boundary of Wψ is
a compact, connected, non-singular level submanifold of M. Again by
the use of Lemma 4,5 and Remark, there exists a compact, connected
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submanifold TF2

m(=) Wψ) of Mm such that f(dWf) > 2h. After iterating

this process g-times, we obtain a compact, connected submanifold

TFJ(D Wΐ-d of M w such that f(dWf) > q-h. But by the boundedness

of /, this process must finish at finite steps, i.e., there is a positive

integer qQ such that M — Int Dm = ΐF™. Hence Mm is compact. Since

M has no 1-handle, it is simply connected. In particular, the number

of the singular points of index 0 is equal to one.

§ 3. Proof of Theorem 1

In order to prove Theorem I, we prepare the following lemma.

LEMMA 6 (Under the same assumption as in Theorem I). Let N be

a sufficiently small neighborhood of Sx(Γ(f)) in Γ(f). Then for any leaf

L such that N Π L ^ φy there exist a neighborhood A of N Π L in L

and a modified function g: L-* R such that 1) g\L — A = (f\L)\L — A,

where f\L is the restricted function to L of /, 2) g has no singular

point in A, and 3) | |grad#| | > α0 on A, where a0 is a positive constant.

Proof. Since Si(Γ(/)) is compact, there is a finite number of dis-

tinguished neighborhoods Ui9 i = 1, ,i0, such that (Jί-i Ut 3 Sx(Γ(f))

and the norm of ^-components in its local coordinate is small. In Ut

which contains p e S^Πf)), we may assume that / is described as

follows:

Then for any leaf L such that L Π TJi ̂  φ,f\ (component of L Π Z7*) is

the restricted function to the plate, ut = constant for 1 rg i <̂  k, of the

above function. Therefore, by Milnor's method [1] pp. 48-66, f\L is

modified in Ut to gf such that 1) (f\L)\L - Ut = g'\L - Uif 2) gf has no

singular point in L Π Ui9 and 3) Hgrad^H > a0 on L Π 17*. Performing

the same process in each small distinguished neighborhood Ui9 we produce

a modified function g satisfying the required properties. Hence we have

only to put N = O°=i U%) Π Γ(f) and A = (Uft-i UJ Π L.

Now we are in a position to prove Theorem I. By Lemma 6, for any

leaf L of J ^ , all singular points of f\L or the modified function g are

of Morse type. Let Γ(Γ(/)) c Γ(Γ(/)) be tubular neighborhoods of Γ(/)

in V such that dis (Γ(Γ(/)), 7 - Γ(Γ(/))) > 60, and diam (DJ < c0 for
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each x e Γ(f), where Dx is a fiber of T(Γ(f)) over x. We can regard

as Dx c Lx for x e Γ(f) — N, where Lx is a leaf which contains x.

Putting {JieiEi = L Π (T(Γ(f))\Γ(f) - N), VJieIEt = Lf) (Γ(Γ(/)) | Γ(f)
— N), we see that f\L or g is "complete". Since / | L or # is bounded,

and has no singular point of index 1, f\L or g satisfies the assumption

of Proposition B. Therefore, each leaf of 3Fk has exactly one singular

point of index 0. Hence every leaf of &h intersects Γ0(f) with exactly

one point. We define a mapping π: V —> Γo(/) by

π(x) = Γo(/) Π Lx for any ^ G F .

This implies that Γo(/) can be identified with the leaf space V/^K It

is clear that π is a submersion. Since V is compact, π is a fiber mapping.

§ 4. Some topological properties of leaves in Theorem I

Let (yn,^k) be a codimension k foliated manifold as in §1, and /

be a smooth mapping of Vn into Rp. As in § 1, we can define a subset

Sr(fy V ^k) of Vn, but in this section, we give the definition in another

way. Let c: Vn -> Rm be an imbedding and g: Vn -^ Rm+P = Rm x Rp be

an imbedding defined by g(v) = (c(v),f(y)) for v e F π . The Grassmann

manifold of all (n — fc)-dimensional vector subspaces of the space RΊ71+P

we denote by Gm+p_n+ktn_k. Then we define a mapping p of Vn into

Gm+p_w+fe,w_ fc by g(v) = Γυ, where Tυ is the element of Gm+p_w+fc,n_ fc parallel

to the tangent vector space of a leaf Lv at g{v). Let F r denote the set

{X e Gm+p_n+k>n_k dim (X Π β m x 0) = n — k - p + r}. This Fr is a set

of generic points of Schubert variety of type

(m + p — n + k — r, ,m + p — ̂  + & — r, m + p — n + k, - -,m + p — n + k)
n-k-p+r p-r

(cf. [2]). Then we define a subset Sr(f,p;^k) of 7 to be g-ι(Fr). The

following proposition is easily obtained by ^-regularity theorem.

PROPOSITION C. Let f: 7 n -> Rp be a smooth mapping. Then there

exists a smooth mapping g approximating f such that Sr(g, p ^k) is a

regular submanifold of Vn.

Remark. S^/, 1; tFk) is equal to Γ(f) defined in § 1. We can easily

see that S^f, p &rk) is a closed submanifold of Vn if n > 2p + 2k — 2

(cf. [6]).

Let ξ: Rn~k -> E(ξ) -> 7 ra be a completely integrable (n — fc)-plane
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bundle which defines ^ k . Then by the usual argument, we have the

following proposition.

PROPOSITION D. The cohomology class dual to the mod 2 homology

class of S^f, p Sfk) (1 ^ p <̂  n — k) is the (n — k — p + ϊ)-th Stief'el-

Whitney class Wn-k-p+ί(ξ) of ξ.

Proof of Theorem II. By Theorem I, Vn is the total space of a

fiber bundle over Γo(/). Furthermore from the assumption, the fiber is

a λ -connected, closed (n — fc)-manifold. Therefore by Proposition D, we

have only to show the following lemma.

LEMMA 7. Let Ln~k —'-> En ~^U Mk be a smooth fiber bundle and

suppose that L is k-connected. Then c* : Hn~k(E; Z2) -> Hn~k(L; Z2) is

ίsomorphίc.

Proof. At first, note that Hn~k(L Z2) = Z2J Hn~k(E Z2) ^ Hk(E Z2).

Since L is fc-connected, π*: π^E) -» Kt(M) is isomorphic for i <̂  k. There-

fore, π*: Hi(E Z2) -> H^M Z2) is so for i <̂  k. In particular Hk(E Z2)

^ Hk(M Z2) — Z2. Next we shall use the cohomology spectral sequence

for the fiber bundle. Since L is fc-connected, we can easily see that

ε* : Hn~k(E Z2) -> Hn~k(L Z2) is epimorphic.

Finally we consider the orientable case. Let Vn be an oriented,

closed ^-manifold and ίFk a transversally orientable codimension k folia-

tion on Vn. At first we orient Γ(f) as follows. Let p e Γ(f) and U be

a distinguished neighborhood at p, whose local coordinate is (u19 , uk,

%i> -9%n-k)- The orientation of Vn at p is given by

^! ? ' duk' dxx ' 9 dxn_k

where { } is an equivalence class of the basis ( ). For p e Γλ(f), we

can suppose that T(Γx(f))p is spanned by (d/duu -,d/duk)p, where

T(Γλ(f))p is the tangent vector space of Γλ(f) at p. Then we define the

orientation η{p) of T(Γ(f))p at p e Γ(f) - S^Γif)) such that η(p) =

(-lyίO/SMx, •• ,3/3w*),} for peΓλ(f). The orientation ?(p) of T(Γ(f))p

at p 6 SiiΓif)) is naturally determined. This definition is well-defined.

In the following Theorem, we shall suppose that Γ(f) is oriented by η.

THEOREM III. Let (Vn

9^
k) (n - k ^ 2) be a transversally orientable
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codίmension k foliated manifold. Suppose that there exists a smooth
function f:Vn->R such that Γt{f) = φ for 1 <L i <L k. Then [Γ(/)l =
Z(L)[Γ0(/)] in Hk(V;Z) for any leaf L, where X(L) is the Euler charac-
teristic of L and [Γ(f)] is the integral homology class of Γ(f) with the
above orientation.

Proof. Let π: Vn —> Γ0(f) be a fiber map. Γ0(f) is already oriented
as above. As in the proof of Theorem II, we see that Hk(V Z) = Z
and IΓO(/)] is its generator. Denote by πλ the restriction of π to Γ(f).
Let beΓ0(f). We may assume that the map πx: Γ(f) -* Γ0(f) is trans-
versal to b. Let m+ (or m_) be the number of point p in πϊι{b) such
that π^iηip)) is equal to 37(6) (or π^(η(p)) is not equal to η(b)). We define
deg Γ, to be m if τr^([Γ(/)]) = m [Γo(/)], where πlitt: Hk(Γ(f); Z)->
Hk(Γ0(f) Z). Note that deg ^ = m+ - m_.

On the other hand, the Euler characteristic of leaf π~\b) is equal
to Σi=i ( — V)ίcί> where ct is the number of singular points of index i of
/1 π~\b). It is easily checked that m+ — Σu even cu m_ = J^t. odd ct. There-
fore, we obtain [Γ(/)l - (deg ^)[ΓO(/)1 = (w+ - m_)[Γ0(/)] - (Σϊ- ίC-)^)

§ 5. Proof of Theorem IV

Let M be a universal covering space of M and # its projection. V
is a total space of a fiber bundle induced by q from the fiber bundle
π: F —> M. Thus we have a commutative diagram:

L<=—

1"'
> 7 —3

I ' '
• V :

l

Since M is contractible, there exists a diίfeomorphism d of L x I onto
V such that a following diagram commutes:

LxM—>M

1" " I "

where pr denotes a projection. Thus we have the following d iagram:
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LxM >M
I p r i

F °d ίq

V >M
π

Now, we introduce a metric on M and then introduce a "bundle-

like metric" on V (see [4] for a definition of a bundle-like metric).

Furthermore, we consider a metric induced by pod (resp. q) as a metric

on L x M (resp. M). Then the metric on L x M is also a bundle-like

metric for pr.

Next, we define a topology on FOLfc (Vn) as follows. Any !F e

FOLfc (yn) (We omit k from J^fc) corresponds to a section / ^ : Vn ->

E(ϊn-k,k) which defines &, where E(γn_ktk) is a total space of a bundle

associated with the tangent bundle of Vn with Grassmann manifold

Gn_ktk as fiber. Then we define an ε-neighborhood of J^iVC^ε), to be

the set {&' e FOLfc (Vn) \\f, - f,,\\ < ε}, where || || denotes a usual norm

in the space of sections of τv-*.* It is easy to show that IF' belongs

to iV(JSε) if and only if # ' belongs to 2V(#,ε), where & (resp. # 0 is

a foliation induced by p ° d from IF (resp. J^O We define a smooth

function f:LχM-*R by /(#,z) = #(?/), where g: L-> R is a Morse

function without singular points of index 1. Then for any # ' 6 N(β,ε)

(ε is sufficiently small), f\U satisfies all conditions of Proposition B for

any leaf U of J5'7. Therefore, we have the following commutative

diagram:

L x M —Γ->

V •
π'

M

v.
where πr is a fiber map, F/eF' is a closed manifold, q; is a universal

covering map and M is considered as * χ M , * e L , since we have Γo(/)

= * x M. Then we may easily check that | |pr — it'll < Nε for some

integer N > 0. Let <5 be a small positive number. Then we may choose

open neighborhoods C7< 3 T7<, ί = 1, , ί, in M, such that 1) Z7< (resp.

Wf) is an open ball of radius δ, (resp. f3) centered at xi9 2) (J^=1 Wi =

M, and 3) TΓ is trivial on [7̂  for each i. We construct a smooth isotopy

of V inductively. Let ΪJx{Z)Wύ be a connected component of q~\U^

(D <rWi)) By putting ε < δ/SN, we may check that OtTWd ciLxϋ,.
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Thus there exists a smooth isotopy ht(0 <^ t <̂  1) of L x M such that

1) h0 = identity, 2 ) ^ | L χ (M — ϋΊ) = identity, 3) /^ preserves tf( = * χ l )

pointwise, and 4) fei | (τf/)"1(Wri) is a bundle map. Since pod\L x Ux is

diffeomorphic, the composition (pod)ohto(po d)~ι defines an isotopy gt of

V, i.e.,

(pod)oft to(pod)-\z) , for z 6 (pod) (L x ϋΌ - TΓ-̂ ZJ,) ,

otherwise.

Furthermore, this isotopy gt induces an isotopy of L χ £ Next, we

construct an isotopy on π~ι(U2) and so on. Thus we may define an

isotopy of V, isotopic to the identity, which transforms SFr to 8F. Hence

2F is integrably homotopic to 2F'. Thus we complete the proof.

Proof of Example 3). We may easily see that Vn is a total space

of LTO "^-bundle over S1 by Reeb [3]. By the above argument, we have

two commutative diagrams:

LxR >R LxR—-> R
pr * Ip r I

V - ^ p V

Since ||pr — π'\\ < Nε for some integer iV > 0, there exists a difFeomorphism

of L x R, isotopic to the identity, which transforms # ' to # and preserves

* X R, * e L, pointwise. Let [0, s0) (resp. [0, sx)) is a periodic interval

for q (resp. qf). We may suppose that |s0 — sx\ < Nε. Then we define

ψ [0, s0) -• [0, Si) as follows:

t, for £ near to 0 ,
ψit) —

[t + (s1 — s0) , for t near to s0 ,

and

\\φ - id|| < Ke , for some K > 0 .

So we define a difFeomorphism φ: S1 -> S1 by ^(s) = q'°φ°q~ι(s), where q

(resp. qf) is a restricted function to [0, s0) (resp. [0, s^). Since 990 ̂  is

sufficiently near to q',φoπ is sufficiently near 7r7 in the C°°-topology of

the space of submersions of Vn to Sι. Therefore, there exists a smooth

homotopy πt: V —> S1 (0 ^ ί ^ 1) such that for each t, πt is a submer-

sion and τr0 = φ o 7r, ̂  = π'. This homotopy gives an integrable homotopy

of & and &'.
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