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ON THE MULTIPLE MARKOV PROPERTY OF LEVY-HIDA

FOR GAUSSIAN PROCESSES

V. MANDREKAR*

The purpose of this note is to clarify relations between multiple
Markov properties (MMP) defined by Levy ([8], [9]) and Hida [5] for
Gaussian processes and to extend some work in Levy [8] and Hida [5].
In the stationary Gaussian case it has been shown ([5], [4]) that these
notions of MMP coincide. Interesting examples of (non-stationary) pro-
cesses satisfying MMP can be found in [5], [8]. We now set up some
notation: Let {x(t), teR} be a Gaussian stochastic process (GSP) and &t

for each t be the σ-field generated by {x(τ), τ < t}. (Henceforth, <Ft =
σ{xτ,τ < t}.) We denote by Y(t,s) = E{x{t)\^s) the conditional expecta-
tion of x(t) given 2F8. We note that Y(t, s) is the orthogonal projection
of x(t) onto H(x: s) where H(x: s) = ©{#(r),τ < s}υ. A GSP is said to
be N-ple Markov ([5], p. 128) if for each s fixed Y(ti9s) are linearly
independent (as elements of the vector space of square integrable func-
tions) for s < tx < t2 < . < tN and Y(ti9 s) are linearly dependent for
U (i = 1,2, , N + 1) satisfying s < tx < < tN+1. Our first result is
to show that if JS_0 = &t (or equivalents H{x: t) = H(x: t - 0)). Then
there exists an N-dimensional Martingale Gaussian process {u(t), teR)
and a non-random family of functions {/<(ί)}JLi such that

(0.1)

where (i) det {Mtj)} Φ 0 for any tx<t2< tN.
(ii) for all ί,{^i(ί), -—,uN(t)} is linearly independent set.

(0.2) (iii) u( ) = (̂ i( ), -,uN( ))* is an N-variate Martingale, that is
E{uί{t)\^s{u)) = Ui(s) with ^S(M) = σ{Ui(τ), τ < s, ί = 1, 2, . , N},

ί = l,2,. ,N,8<t.
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(iv) ^t{x) = SFt(u) (or equivalents, H(x: t) = H(u: ί) with H(u: t)

= <5{ui(τ),τ<t t , i = l , 2 , . .

This representation^ will be referred to as Levy representation in view
of Levy's definition ([9], [8], p. 158) of Markovian process of exactly
order N. We show that such a representation is unique. This repre-
sentation can be used to construct Λf-ple Markov process of multiplicity
N, which answers a question by Levy [9] regarding multiplicity of such
processes. The representation (0.1) is called proper if (0.2) (iv) is satisfied.
We examine the question regarding proper ness of the representation (0.1).
These results include some earlier work of Levy ([81, [9]) and Hida [5],
Finally, we give an interesting necessary and sufficient condition for a
differential operator to be factorable in terms of the multiple Markov
property of the solution of an associated stochastic differential equation.

During the preparation of this work the author had the privilege
of extensive discussions with Professor T. Hida whose suggestions led
to considerable improvement in content and presentation of the original
results announced in the preprint [11].

1. Let {u(t),teR} be an iV-variate GSP and for each t, let ^t{u) =
σ{Ui(τ), τ < t, i — 1,2, , N}. We say that {u{t), teR} is an iV-variate
Martingale if E(ut(t) | &Mi) = E(ut(t) \ u(s)) = u^s), ί = 1,2, . , N. We
now state our main representation theorem.

1.1 THEOREM. Let {x(f),teR} be an N-ple Markov GSP satisfying
ϊFt = ^t_0(x) = σ(IJw ^"t-i/nί^))* then there exists an N-variate Martingale
GSP {y(t),teR} such that the GSP x has representation (0.1) satisfying
(0.2).

Proof. Let s < τ, then for s < tγ < t2 < < tN < τ we get

(1.2) Y(τ, 8) = Σ α,(τ, t19 , tNmti9 s) .
ΐ = l

Also for s < Si < s2 < < sN < tγ < < tN we get

(1.3) Y(r, s ) = Σ Σ GfcO, ίi, , tN)aj(tk9 §!,-•-, sN)Y(sj9 s) .
j-l k=l

From (1.2), (1.3) and linear independence of {Y(sj9s)}f=1 and
we have

2) Originally this representation was obtained by using the multiplicity theory [5].
The present concise and improved proof was suggested by Professor Hida and Nomoto.
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!

N

( i ) 2 ak(τ> t19 ••-, tN)aj(tkf sl9 , s N ) = α / r , s 1 ? , s N )

(ii) det ((α/ίft, sx, , s^))) =£ 0 .

Following notation and argument as in Hida ([5], pp. 129-130) we

get that fs(τ) — a{τ, s)B(s, t) has an extension independent of s. We denote

it by /(τ) = (.Λ(r), ,/n(τ)). In view of (1.4) (ii) {/,(r)}f=1 satisfies con-

dition (0.1) (i)

(1.5) Γ(τ, 8) - α(τ, ί)Γ(ί, β) = ftfB'Ks, t)Y(t, s) - /(τ)^*3)(s, s, ί), s < τ .

For τ > t'N > . > tί > s'N > > si

(1.6) Y(τ,s) = /(r)^*(s,s',f).

Now (1.5), (1.6) and condition (1.4) (ii) imply u(s, s', t') = u(s, s, t),

τ > max(£^, tN), i.e., u(s) — u(s9 s,t) is well defined as a function s. We

thus get for s < τ

(1.7) E(x(τ)\^S) = Σ fitful) .
i = l

Clearly, for each ί, {%*(«), "̂,(05), s < r} is a Martingale giving for each

i,E\Ui(s)f is non-decreasing. Also using (1.7), (0.2) (i) and Jenssen

inequality for conditional expectation we get for s < τ, 2f=i sups<r E\Ui(s)\2

is finite. By Martingale convergence theorem ([3], Ch. VII) for each i,

a.e. limit of Uiis) as s | τ exists and if we denote by u^τ) — lim s t r ^(s)

we get {Ui(s),#Sfs < τ) is a Martingale where # r = α(Uί<r ^«) a n d £\

— g?s for 8 < τ. But by assumption # r = J^r and hence {u^s), ^Si s <τ]

is a Martingale for each i. Taking in (1.7) lim as s | τ on both sides

we get for all τ

(1.8) X(τ) - E(x(τ) \ ^Γ_o) = Σ fiM^iτ) .
i = l

By the construction, we get ^t(u) c J^^a;) for each ί. By (1.8), ^^a?)

ίΞ ^ίfe) giving (0.2) (iv). Linear independence of {^(s), i = 1,2, , N}

for each s follows from (1.7), iV-ple Markov property and the proved

property (0.2) (i) of the f€'a.

1.9 Remark. We note that although property ^t{x) — <^t_0(x) is
required for the Levy representation of iV-ple Markov processes, the

Denotes the transpose.
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GSP of the form (0.1) satisfying (0.2) is always ΛΓ-ple Markov.
With this in mind we state the following

1.10 THEOREM. A GSP {x(t),teR} of the form (0.1) satisfying (0.2)
is N-ple Markov. In this case, the functions f/s and the process
{u(t),teR} are unique in the sense that if x has representation (0.1)
with functions f'f (i = 1,2, -,N) and a process {u'(t)> t e R) satisfying
(0.2) then there exists a non-singular constant matrix K = ((fco ))^y=1 such
that f'j = Σi-ifitij <™d &(t) = Ku{t) where ((Sυ))fJ=1 = K'1.

Proof. Let s be fixed Y(t,s) = E(x(t)\^s) = Σtifiifiu^s) for s < t
in view of (0.2) (iii) and (iv). Now from (0.2) (i) and (ii) the first part
follows. To prove the uniqueness we note E(x(τ)\έFs) = Σf=i/ί(τ)^( s)
gives for any s < t, < t2 < < tN, u(s) = Φ'Kt)Y(t9 s) where Φ(t) =
((fi(tjWJ=1 and Y(ί, s) = (Y(t19 s), , Y(tnf έ))*. Also ^(s) = Φ'-\ϋm, s),
where 07(ί) = ((fiitjWj^. Hence we have n(s) = φ-\t)Φ'(t)u'(s). It
therefore suffices to prove Φ~\t)Φ'(t) is independent of t. Let s < t (that
is, S v < £i) Choose s' < sx. Then we get

2£(sO = Φ-XS)Φ'(S)U'(S') .

And

This implies φ-^Φ'fe) = φ-\t)Φ\t) for any s < t so that φ-Kt)Φ'(t) is
independent of t. Let K = Φ'-KOΦίί). Then we get

Also x(t) — (/ί(ί), - ,fN(t))u\t), giving, by linear independence of {u[(t),
• , u'N(t)}, the result.

2. In this section we examine the Hida-Cramer multiplicity ([1],
[5]) of GSP of the form (0.1) satisfying (0.2). In view of (0.2) (iv) we
get that the multiplicity of such processes is equal to the multiplicity
of a non-degenerate ΛΓ-variate Martingale {u(t), t e R}. Hence in view of
([101, P 12) we get the following theorem immediately.
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2.1 THEOREM. The multiplicity of N-ple Markov process of the form
(0.1) satisfying (0.2) is at most N.

The question raised by Levy was whether such iV-ple Markov
processes have multiplicity one. We give an example of an ΛΓ-ple Markov
process of multiplicity N. Naturally we use Theorem 1.10 and present the
process in terms of its Levy representation with the functions {fi(t)}?=1,
N — 1 times differentiate. Choose for each i a continuously N — 1
times differentiate function ft. Assume that ft satisfies the following
condition (JV), Wt(f19 ,/fc) φ 0, k = 1,2, , N where Wk (k = 1,2, .., N)
denote the Wronskian of order fc. For the existence of such systems
see Karlin ([7], p. 276). Also it follows from ([7], pp. 276-277) that
det (iMMj-jy) * ° f o r a n ^ ^-Points tx < < tN. Let {ξ?\k= ±1,
+ 2, , i = 1, , N} be a Gaussian system of independent random
variables with mean zero and Σ? ~-°° E(ξik))2 < °o for i = 1,2, , N, with
Eiξ^)2 > 0. x(t) = 2f=1 fat) Σk<t ίifc) where the infinite series converges
a.e. under the assumptions. For m — 1 < t < m (m = 0, ±1, ±2, •)
we get x{t) = Σfβl/4(t)w<(m - 1) where u^t) = Σ * ^ f ? } T h i s implies α?
is iV — 1 times differentiate in q-m4) in m — 1 < t < m. Now since
*M/i> ,Λr) Φ 0 we get ^(m - 1) e H(x: t). But ut(t) = ut{m - 1) giv-
ing ut(t) e H(x :t) (i = 1,2, . ,N) for m - 1 < t < m (m = 0, ± 1, •).
This implies that iϊfe: t) c jff(α;: t), yί. Clearly J?(^ t) c iϊfe: t). Prop-
erties (ii) and (iii) on the Levy representation follow from definition ut(t)
and mutual independence of {ff}}. The multiplicity of {x(t)9teR} is
therefore the same as {u(t), t e R}. But multiplicity of u is equal to
dimension of H(u: m) θH(u :m — 1) = N.

2.2 Remark, (i) In the above example chosing for all k, E(ξlk))2 = 0
for i = j + 1, - - ,N (X < j < N) we get that multiplicity of x is equal
t o j,Q <j< N ) .

(ii) Professor Hida informed me that Professor Hitsuda had an
example of a 2-ple of multiplicity 2, however {/i( )>/2(0} were chosen
non-diff er entiable.

3. Motivated by the work of Levy ([8], 4.7, p. 158) we call the
representation of a process of the form

(3.1)

4) At m-1 the right derivatives are considered.
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where {u(t), teR} is an 2V-variate Martingale, a Goursat representation
(GR). We say that the GR is proper if H(x: t) = H(u: t). We now
examine conditions on x,ft and u€ in order that the GR is proper.

3.2 THEOREM. Let (ί) the GSP {x(t),teR} have a GR, (ii) x be
N — 1 times differentiable in quadratic mean and (iii) tFt_Jiu) = ^tfe).
(iv) Z?acfo ft is N — 1 times continuously differentiable and WN(fl9

Φ 0. 27£0% £fce Gi? is proper.

Proof. We have

E(x(t)\^s(u)) = Σ/,(ί)%(s) for β < t .

Hence E(x(t) \ ̂ s(u)) is iV — 1 times continuously differentiable in t. This
implies that

(3.3) ~E(x(t) I &M) - Σ /ί*}(ί)Wi(β) for ft = 0, .., N - 1 and s < t .
dtk ί=i

By (3.3) and assumption (ii) we get that

(3.4) ^E(x(t)I&S) - E{x"k\t)\&t) for fe = 0,1,2, . ,N - 1

where ίc(ίί)(ί) denotes the kth q m derivative of x{t). Thus we get

(3.5) E{x™{t) I &.(3ύ) - Σ fΓ

Hence

(3.6) EWXt) I ^-.(M)) = f7(Σ ffKt)um I ̂ .(a)) for s < ί .

This implies E{xik\t)\^t_,{u)) = ί?(Σf-i/ί*'(ίMG)I^.-βOd) giving by con-
dition (iii)

Now condition (iv) and (ii) conclude the proof.

3.7 Remark. Observe that if u^t) = ί gi(u)B(du) with J5 repre-
J -oo

senting the Brownian motion on the line and for each interval (α, b]
there exists at least one gt Φ 0 on (α, 6], then H(u: t) == £f(B: t). This
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can be seen as follows. Since H(u: t) cz H(B: t). Suppose there is y e
H(B: t) orthogonal to u^τ) for τ < t and i = 1,2, , N. Since y =

h(u)B(du) and 7/ J_ iϊfe: £) implies that h(u)gi(u)du = 0 for all
J —CO J —CO

i = 1,2, ,N and τ <t. But this implies for all i,h(u)gi(u) = 0 a.e.
on (— oo,ί], giving Λ(̂ ) = 0. Since for Brownian motion H(B: ί — 0) =
iϊ(Z?: t) we get iϊfe: t) = I/(i£: £ — 0) in this case.

From the above remark, Theorem 3.2 has the following corollary.

3.8 COROLLARY. Let x(t) = Γ JJ^f^Dgii^Bidu) with x,fi's as in
J - o o

Theorem 3.2 and g^s as in Remark 3.7. Then (i) x has a proper GR.
(ii) x has multiplicity one.

The proof of (i) is clear once we observe that u(t) = (u^t), ,uN(t))*,

where ut{t) = gi(u)B(du) is Λf-variate Martingale since under the

assumption of Remark 3.7, H(u: t) = H(B: t) = H(x: t) from which (ii)

also follows.
We note that in view of [21, the GS Process occurring as solution

of the Nth order stochastic differential equation with input Brownian
motion B given by Ltx = B(du) x(0) = 0 has the form

x(t) = P G(t, u)B(du)
Jo

where G(t,u) is the Green's function of Lt. We therefore get

x(t)= Σ
θ i = l

where {/t(ί)}f=i is a fundamental system of solutions of LJ = 0 and
{̂ i( )}f=i is a fundamental system of solutions of L*g — 0 where L* denotes
the formal adjoint. Here we assume WN(f19 ,fN) φ 0. In view of
Corollary 3.8 and Remark 3.7. If {#<} satisfies the condition of Remark
3.7 one has H(x: t) = iϊ(^: ί) = ί ί (β: t). Hence the x has proper GR.
Also in this case H(x: t — 0) = H(#: £). Therefore x satisfies condition of
Theorem 1.1. We also know that since WN(f19 ,fN) Φ 0, {g19 g2, , gN)
are linearly independent. Thus using Theorems 1.1, 1.2, Corollary 3.8,
one deduces the following theorem

3.9 THEOREM. Let x(t) be the solution of Nth order stochastic
differential equations with input Brownian motion; viz,x(0) = 0 and
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Ltx — B(du). Let {g^ satisfy condition of Remark 3.7. Then x(t) is

N-ple Markov iff det ((/«(*,))£,.! Φ 0.

We say that a set {/Ί,/2, -,/N} oί N — 1 times continuously dif-

ferentiable functions satisfies property (W) if Wk(f19 -,fκ) φ 0, fc =

1,2, ...,2V.

The following lemma essentially due to Karlin ([7], p. 56) is now

needed to obtain structure of ft satisfying conditions of the above theorem.

3.10 LEMMA. Let {/i,/2, -,/N} be a set of (N — l)-tίmes continu-

ously differentiate real valued functions defined on [0, oo) such that

W(f19f29 -9fN) Φ 0 on [0, T], for each T finite. If for 0 < t, < t2 <

• < tN < T, det {fί(tj)}itj=lt2t...iN Φ 0. Then there exists a non-singular

constant N x N matrix B with {bij)ifj=lt2...tN such that the functions ht(t)

— Σf=i bijfiit) (i = 1,2, ,2V) have the property (W).

Proof of the lemma, except for trivial modification, is the same as

in Karlin ([7], p. 57) and hence is omitted.

3.11 Remark. We note that if {f19 -,fN} is a fundamental system

of solutions to the non-degenerate differential equation Luf — 0 and in

addition det ((/<(*,))) Φ 0 for 0 < tt < < tN < T (for each T finite),

then in view of the above lemma we can choose another fundamental

system {h19---9hN} satisfying condition (W). Thus we obtain from

Theorem 3.9 and Lemma 3.10 the following striking theorem.

3.12 THEOREM. Let x(t) be the solution of the stochastic differential

equation Ltx — B(dt) with x(0) — 0 and suppose the fundamental system

{gι,-'>9N} of solutions of L*g — 0 satisfy condition of Remark 3.7.

Then the following conditions are equivalent

(i) x is N-ple Markov.

(ii) The operator Lu is factorable in the sense of Ince ([6], p. 120).

Proof. In view of ([6], p. 120) we note that (ii) is equivalent to

Luf — 0 having a fundamental system of solutions satisfying condition

(W). Equivalence (i) to this is obvious from Theorem 3.9 and Lemma

3.10.

The functions {h19 h2, ««, hN) described in Lemma 3.10 can be explicitly

written in terms of finite systems of non-vanishing functions (see Karlin

[7], p. 276) in terms of iterated indefinite integrals. From this the

following lemma is immediate.
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3.13 LEMMA. The system {hlf -—fhN} satisfies condition (W) iff the
fundamental system {Klf ,KN) of solutions to the formal adjoint equa-
tion L*f = 0 satisfy condition (W).

Here Kj(s) = Wj(s)/W(hlf >,hN)(8) (j = 1,2, ,N), where Wj(s) is
the N x N determinant having the same elements as in WN(hίf , hN)(s)
except with (0, , 0,1) as its jth column.

In view of the above lemma, Theorem 3.13 can be interpreted as
strengthening of Levy-Hida theorem (Theorem II.7, [5], [8], p. 159) in
the sense of providing a partial converse to his theorem. This follows
since if a system satisfies condition (W) then gt satisfy of Remark 3.7
and since, if {/*}f=1 and {gι)f=1 are given by (11.29) and (11.25) of [5] then

x(t) = £; P Ut)9άu)B{du)
i = l J - c o

satisfies Ltx = B(du) with Lt as in ([5], p. 138). We also remark that
Theorem 3.12 provides a rigorous proof of Levy's claim ([8], 2°, p. 159).

Note added in Proof. After this work was with the referee, Prof.
L. Pitt informed me of some of his work which has several points of
contact with this one.
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