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ON FAMILIES OF MEROMORPHIC MAPS INTO

THE COMPLEX PROJECTIVE SPACE

HIROTAKA FUJIMOTO

§ 1. Introduction.

In [10], P. Montel defined the notion of a quasi-normal family of
meromorphic functions and obtained several results relating to this.
Afterwards, in [13], H. Rutishauser generalized some of them to the case
of meromorphic functions of several variables. By definition, a quasi-
normal family of meromorphic functions on a domain D in Cn is a family
ίF such that any sequence in SF has a subsequence which converges com-
pactly outside a thin analytic subset of D. We introduce in this paper
the notion of a meromorphically normal family of meromorphic maps into
the iV-dimensional complex projective space PN(C), which is defined as
a family IF satisfying the following condition:

Any sequence {/(p)} in ^ has a subsequence {f(Pk)} with the property
that, on some neighborhood U of each point in D, each f{Vk) can be
written

f(Pk) fiPk) f(Pk) . f(Pk)
J —JO /l J N

for fixed homogeneous coordinates on PN(C) so that {f\Vk)} (0 <̂  ί <. N)
converges compactly on U to a holomorphic function ft and at least one
ft does not vanish identically.

The main purpose of this paper is to give some sufficient conditions
for a family of meromorphic maps of a domain D ( c Cn) into PN(C) to
be meromorphically normal.

After some preparatory considerations (§ 2 and § 3), by the full use
of the results of W. Stoll in [16] we shall show in § 4 the following im-
provement of H. Rutishauser's result.

For a family & of meromorphic maps of D into PN(C), if there exist

2N + 1 hyperplanes Hj (0 <; j <̂  2N) in PN(C) located in general position
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such that f(D) ςzί Hj(f e JO and for any compact set K c D the areas of
f~ι{Hj) Π K inclusive of multiplicities are bounded above by a fixed con-
stant, then ϊF is meromorphίcally normal (Theorem 4.3).

We can define the characteristic function T(r, /) (0 < r < R) of a
meromorphic map / defined on a sphere B(R) in Cn with center at
the origin and radius R and give some elementary properties on the
analogy of H. Cartan's work [1].. It will be shown that, for a family
SF, T(r,f) (0 <r < R, fe&O are bounded above by a constant depend-
ing only on r if and only if J^ is meromorphically normal and normal
at the origin (§5). The fundamental inequality given in [1] will be also
generalized to the case of meromorphic maps of several variables under
suitable assumptions (§6). As its consequence, we shall give in §7 a
defect relation for meromorphic maps of several variables and its appli-
cation.

In the last section, using the fundamental inequality, we shall give
the proof of the following theorem, which was firstly stated in the case
of n = 1 by G. Valiron.

Let 3F be a family of meromorphic functions on a domain in Cn with-
out indetermination points. Suppose that for mutually distinct values a19

α2, 9 aq any <p(z) — aj (φ e &) has no zeros of multiplicity < mό and

Then, ŷ : is p normal family.

For a family of meromorphic maps into PN(C), we shall give also
an analogous sufficient condition for 2F to be meromorphically normal
(Theorem 8.1) and a Schottky-Landau type theorem (Theorem 8.7).

§ 2. Preliminaries.

Let G be a domain in Cn and / a not identically zero holomorphic
function on G. For a point a = (a19 a2, , an) e G we expand / as a
compactly convergent series

f(uλ + a19 , un + an) = Σ ~ = o Pm(Ui> un)

on a neighborhood of a, where Pm is either identically zero or a homo-
geneous polynomial of degree m. The number
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Vf(a): = min {m Pm(u) =£ 0}

is said to be the zero multiplicity of / at α. By definition, a divisor
on G is an integer-valued function v on G such that for every ae G
there are holomorphic functions g(z)(^ 0) and h(z)(^ 0) on a neighbor-
hood U of a with v(z) — 1̂ (2) — yΛ(2) on U. The carrier of a divisor P
is defined as an analytic set

\v\: = {zeG;v(z)Φθ}

in G. As is easily seen, for a holomorphic function /(Ξ£ 0) on G,
equals the zero multiplicity of / at z in the sence of Definition 2.1 in
[7] whenever z is a regular point of \v\.

Let us consider next a meromorphic maps / of G into PN{C). For
any α e G, f has a representation

on some neighborhood £7 of α with fixed homogeneous coordinates
wQ: wx: : w# on PN(C) and holomorphic functions /*(£) (0 ^ i ^ N) on
[/, where we can choose them so as to satisfy the condition

codim {fo(z) = fλ{z) = .. - /*(s) = 0} ^ 2 .

A representation of / satisfying this condition is referred to as an admis-
sible representation of / on U in the following sections.

Take a hyperplane H in PNiC) with f(G) <£ H defined by

H: a°w0 + aιwx + + aNwN = 0 .

For every aeG, taking an admissible representation / = f0: fλ: : fN

on a neighborhood U of a, we consider a holomorphic function

F : ^aQfQ + aιfx + ... + α * / * •

Then, the divisor v(f, H) (z): = vF(z) (z e C7) is determined independently
of a choice of admissible representations and hence is well-defined on
the totality of G. A meromorphic function φ on G induces a meromor-
phic map φ* of G into Pλ{C) defined by φ*(z): = fQ(z): fλ(z) on a connected
open set U if φ = fo(z) /fx(z) for holomorphic functions / 0,/i(^0) on £7.
In this case, v°: = v(^*,iϊ0) and i£: = i^p*,!^) are nothing but the
divisors of zeros of φ and of poles of φ respectively, where Hi — {wι = 0}
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Let v be a non-negative divisor on a sphere B(R): = {\\z\\ < R}

(0 < R <^ + oo), where for z = fa, z2> > sw)

DEFINITION 2.1. Suppose that 0 < m <̂  +oo and 0 < s < r < R.

We define

Vm(r,v): = minW^jm^^!^) in case of π > 1
J MΠS(r)

= ΣLzi^min (>(>), m) in case of n = 1

and

where ^ = (i/2) Σl=i dzk A dzk, vn_x = (l/(w - 1) l)v, Λ ̂  Λ Λ v, ((n - 1)-

times), W: = (πn~ιj(n— 1)!) and the integral over |y| Π 5(r) means the

integral over the manifold consisting of all regular points of |y|IΊ 2?(r).

And, we put V(r, v) = VJx, v), N(r9 s v) = N^ir, s v) and Nm(r, v): =

+oNmCr, s; v) for the case 0 β | y | .

Since B(i2) is a Cousin-II domain, any given divisor v on β(β) can

be written

V = Vg —Vg

with holomorphic functions # ( ^ 0 ) and fe(ΐθ) on B(R). Consider holo-

morphic functions g\{u) = ^(α^) and feU^) = h(au) of w for each a —

(au a2, , αn) e S(l): = {\\z\\ = 1}, where α^ = {axuy a2u, . . , αw^). The set

E : - { α e S ( l ) g«a(u) = 0 or A (w) = 0}

is obviously a set of measure zero in S(l). Define

for each a e S(ϊ) — £7. We have then

(2.2) Γfeβrβ exists α subset F ( 3 £7) o/ measure zero in S(l) $uch that

v[a](u) = v(αw) (0 < 1̂ 1 < R) for any αeS(l) - F (c.f., [7], Proposition 2.7).

Following W. Stoll [16], we put Φ(r): = (2πn/(n - 1) Or271"1 and denote

by σr the Euclidean volume element of S(r): = {||2|| = r}. As was shown

in [16], pp. 162-164, it holds that
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(2.3) VJχ,v) = ^ - ί

and

N m ( r , s;v) = — ί - ί
Φ(l) J

We have also the following Jensen's formula ([16], Proposition 1.6).

(2.4) Let <P(^ΞO) be a meromorphic function on B(R). Then

N(r9s v°φ) = N(r,s »;) + _ L _ f log\φ\σr - _ L - f log\φ\σs ,
Φ ( r ) Jfif(r) Φ(S) J5f(β)

where 0 < s <r < R. For the case 0 g |vj| U | ^ |

;) - iV(r, i;;) + — L - f log 1̂ 1 σr -
Φ(r) J^(r)

DEFINITION 2.5 (c.f., [16], p. 176). Let {vλ;λeΛ} be a directed set

of non-negative divisors on a domain G ( c O ) . It is said to converge

to a non-negative divisor v on G if and only if any aeG has a neigh-

borhood U such that, for suitable holomorphic functions P ( ί 0) and

h(Ξ£Q) on t/, ^ = vhmj υ = vh and {h{λ): ^e^i} converges compactly to ft

on £/.

The space S+(G) of all non-negative divisors on G has a Hausdorff

topology which is compatible with this notion of convergence.

In the following sections, we need

(2.6) A subset Jί of @+(B(R)) is relatively compact if and only if

V(r, v) (0 < r < R, v e Jί) are bounded above by a constant depending only

on r ([16], Theorem 2.24).

(2.7) Let H(B(r)) be the space of all holomorphic functions on B(r)

endowed with the compact convergence topology, where 0 < r < R. Then,

there exists a continuous map.

r : ®ί(B(R)) : = {ve 3+(B(R)) v(0) = 0} -> H(B(r))

(0<r<R) such that v = vΦ) for any v e @Z(B(R)) ([16], Theorem 3.6).

(2.8) // a sequence {vp} converges to v in @+(B(R)), then {|vp|} con-

verges to \v\ in the sense that \v\ coincides with the set of all z such that

every neighborhood U of z intersects \vp\ for all but finitely many p and,
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simultaneously, with the set of all z such that every U intersects \vp\ for

infinitely many p ([16], Theorem 4.10).

Let S be an analytic set of codimension >̂ 2 in G. By the well-known

Thullen-Remmert-Stein's theorem (c.f., [17]), any divisor ve@+(G — S)

can be uniquely extended to ΰe@+(G). Moreover, we have

(2.9) If {vp: p = 1,2, •} in @+(G - S) converges to v on G - S,

then {ΰp} converges to v in <3+(G), where ί>p and v are the extensions of

vv and v to G respectively.

In fact, according to [11], Theorem II, {vp} is normal i.e., relatively

compact in @+(G) because any pseudoconvex domain which includes

G — S includes necessarily the totality of G. On the other hand, the

limit of any convergent subsequence of {ΰp} is obviously equal to v. There-

fore, {vp} itself converges to ί) on G.

§ 3. Definition and some properties of m-convergent sequences.

Let {f(p); p = 1,2, •} be a sequence of meromorphic maps of a

domain G(aCn) into PN(C).

DEFINITION 3.1. We shall call {f(p)} to converge meromorphically

(or simply m-converge) on G to a meromorphic map / if and only if,

for any a e G, each / ( p ) has an admissible representation

f(p)(z): - fp\z): fί*Kz): : f&Kz)

on some neighborhood U of a such that {fip)} (0 <̂  ί ^ N) converge com-

pactly to holomorphic functions ft(z) with the property

f(z) = fo(z): fλ{z): : fN(z)

on U, where fio(z) Ξ£ 0 for some i0.

We note first the following fact.

(3.2) Consider another system of admissible representations

of each f(p) on U such that l inip^ glp) = gt exists for any i and Qh Ξ£ 0

for some j 0 . Then, there is a nowhere zero holomorphic function h on

U such that
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gt(z) = h{z)Uz) (z e V)

for any i (0 <^ i <; N).

In fact, by the definition of admissible representations, we can
describe g\p) — h(p)ffp) (0 ̂  i ̂  2V) with a nowhere zero holomorphic func-
tion h(p). Then, h(z) = l i m ^ /^'(s) exists evidently on 17 — {/<0 = 0}
and, hence, on the totality of U by the maximum principle. Accord-
ing to the classical Hurwitz theorem, we have then either h = 0 or h Φ 0
everywhere. On the other hand, the assumption gjo ̂  0 implies that
i ΐ O . This leads to (3.2).

For a meromorphic map / into PN(C) we denote by /(/) the set of
all points of indetermination of /, which is given by the condition

I(f)Γiϋ = {zeUifάz) = /&) = ••• - fN(z) = 0}

if / has an admissible representation f — f0: fx\ : fN on an open sub-
set U of G. So, we have codim/(/) ̂  2.

Now, following H. Rutishauser ([13]), we give

DEFINITION 3.3. A sequence {f(p)} of meromorphic maps of G into
PN(C) is said to be quasi-regular if any ae G has a neighborhood U with
the property that {f(p)} converges compactly on U outside a thin analytic
subset S of £7, i.e., for any domain D with D <c U — S there is some
p0 such that I(f(p)) Π ΰ = φ (p^p0) and {f(p)\D;p^p0} converges com-
pactly to a holomorphic map of D into PN(C). And, we shall call {f(p)}
to be regular at α 6 G if {/(p)} converges compactly on some neighbor-
hood of α.

Let {/(p)} be an m-convergent sequence of meromorphic maps defined
on G whose limit / has representations

f — JU fu ' * * JN£

on open sets f/̂  satisfying the condition in Definition 3.1, where G =
{J£ Us. By (3.2) we can define an analytic set S with

SnE7, = {s6E7,;/M(s)= . . . =/*,(«) = 0}

for any ^. Obviously, {/(p)} converges compactly on G — S. So, we see

(3.4) An m-convergent sequence is always quasi-regular.
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Take a hyperplane

H: a°w0 + a1w1 + + aNwN = 0

in PN(C) with f(G) ςt H. Put

Ft: = α ° / M + α 1 / M + ••• + aNfNt

on £7̂  and define a divisor yH on G by vH = i ^ on each [7*, which is
well-defined by (3.2). Then, {v(f(p),H)} converges to vH in the sense of
Definition 2.5.

For example, a sequence

= —ίZ + —V
zΛ v2)

is not m-convergent on C because {v°φ(p)} has no limit, though it is quasi-
regular and the limit is of constant.

PROPOSITION 3.5. Let {f{p)} converge to a meromorphic map f on G
excluding a thin analytic set S. If there exists a hyperplane H such
that f(G - S)gtH and {v(f{p\H)} converges in @+(G), then {f(p)} is m-
convergent.

Proof. Without loss of generality, we may assume that H = {w0 — 0},
G — B(R), 0 g S and {/(p)} converges compactly on B(R) — S to a holomor-
phic map / with f(0)eH. By (2.7), for any r (0<r<R), we can
choose holomorphic functions F ( ί O ) and h(^0) on B(r) such that
v(f{p\H) = vh<»9 v = vh for the limit v of {v(f(p\H)} and {h{p)} converges
compactly to h on B(r). Then, each f(p) has an admissible representation

f(p) . . . . . fiv)iv)

with suitable holomorphic functions / ί

( p ) (0 ̂  i ̂  iV) on β(r). For our
purpose, it suffices to show that {//p)} converges compactly on B(r). The
problem is of local. For any aeB(r), take neighborhoods U and V of
a such that V c t/ c B(r), (EΓ - V) Π (S U {h = 0}) = 0 and

(3.6) sup {1̂ (3)1; z e Ϊ7 - 7} - sup {|^)|; β e U}

for any holomorphic function φ(z) on a neighborhood of U. It may be
assumed that h(p) (p — 1,2, •) has no zeros on U — V. We have thus
representations
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f(p) f(p)
f(p) _ . J . J 1 . . J N

' h(p)

and, moreover,

with holomorphic functions ^ : = lim^.^ (fi(p)/h(p)) on U — V because

l i m ^ f(p) = f on U - V. On the other hand, since fip) = hip)(fip)/h(p))9

{fίp)} converges compactly on U — V. Then, by the use of (3.6), we can

easily conclude that {f}p)} converges compactly on the totality of U. This

completes the proof.

COROLLARY 3.7. // a sequence {f(p)} is regular at every point in a

domain G except an analytic set S of codimension ;> 2, then {f(p)} is m-

convergent on the totality of G.

Proof. Put / : = lim^^ f(p) on G — S and take a hyperplane H in

PN(C) with f(G -S)ξH. Then, {v(f(p),H)} converges to v(f,H) on G

— S. By the assumption and (2.9), it converges also on the totality of

G. Proposition 3.5 gives Corollary 3.7 directly.

For later use, we give here

PROPOSITION 3.8. Let {f(p)} be an m-convergent sequence of meromor-

phic maps of B(R) into PN(C) with the limit f. Then, for any r

(0 < r < R), each f(p) has an admissible representation

J —JO Jl JN

on B{r) such that {fip)} converge compactly to holomorphic functions fi

on B{r) satisfying the condition

f — Jo fl ' * ' / N y

where fίo(z) ^ 0 for some ί0.

Proof. By Definition 3.1, B{f) can be covered by finitely many

open sets Ue such that each f{p) has admissible representations

on Ue and limp^00///) = fu exist, where we may assume /0/0) Φ 0,

Φθ for any I and p. Then, {v(f(p\HQ)} converges to a divisor v(=vfoi

on each U4), where Ho — {w0 = 0}. By (2.7), there are holomorphic
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functions h{p) and h on B(r) such t h a t vh<P, = v(f(p),H0), vh = v0 and {h{p)}

converges compactly to h on B(r). Since h(p)/f0

(

£

p) are nowhere zero
holomorphic functions and fit I ftp = ft£lfi£ on U£ΠUm, we obtain
admissible representations

f(*>=ftp):ftp): •• : / r

on the totality of J?(r) with holomorphic functions

f(p) . _
Jo . —

J oe

f (p)

on each 17,. On the other hand, {h(p)/f(p)} converges compactly to
on Ϊ7, — {/ô  = 0} and, hence, on the totality of U& to a holomorphic
function fe//w by the maximum principle. Therefore, {fip)} (0 ^ i ^ N)
converges on B(r) to holomorphic functions ft: = (h/fQt)fu (0 ^ i ^ 2S7),
which satisfy the condition / = / 0 : /i: •' /γ This completes the proof.

§ 4. An improvement of H. Rutishauser's result.

Let us consider a family 3* of meromorphic maps of a domain G in

Cn into Ptf(O-

DEFINITION 4.1. We shall call J^ to be meromorphically normal (or
simply m-normal) if any sequence in &> has an m-convergent subsequence
and to be normal at a(eG) if any sequence in ϊF has a subsequence
which converges compactly on some neighborhood of α, maybe, depending
on each sequence.

The definition of m-normalcy coincides with the definition given in
§ 1. Because, we can assert

(4.2) Let {f(p)} be a sequence of meromorphic maps of B{R) into
PN(C). Suppose that each f(p) has a (not necessarily admissible) repre-
sentation

f ( p ) — f ( p ) . f ( p ) . . . . . f(P)
J —Jo J1 JN

such that {fip)} converge compactly to holomorphic functions ft on B(R),
where fio =£ 0 for some i0. Then, {/(p)} has an m-convergent subsequence.

To see this, take a hyperplane

H: a°w0 + aιwx + + aNwN = 0
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with f(B(R)) ςzί H, where / : = / 0 : : fN. Since {f(p)} is obviously quasi-
regular, by Proposition 3.5 we have only to show that {v(fip),H)} has a
convergent subsequence. Consider holomorphic functions

F(p): = a°f(

o

p) + aιf[p) + + aNfψ ,

Then, since {vFiP)} converges, by (2.6) V(r,vF<p)) are uniformly bounded
for any fixed r(0 < r < R). On the other hand, v(f(p),H) ^ vF<p) on B(R)
and so

(Q<r<R). Therefore, V(r,v(f{p\H)) are also uniformly bounded. By
(2.6), we obtain the desired conclusion.

We give now the following improvement of H. Rutishauser's result.

THEOREM 4.3. Let ^ be a family of meromorphic maps of B(R)
into PN{C) and Hj (0 <: j <* 22V) be 22V + 1 hyperplanes in PN(C) located
in general position such that for any fe^ f(B(R)) gt Hj. If V(r, v(f, Hj))
(0 fg j ^ 22V) are uniformly bounded for any fixed r(0 < r < R), then ϊF
is m-normal.

Proof. Take an arbitrary sequence {f{p)} in <F. By the assumption
and (2.6), choosing a subsequence and changing indices if necessary, we
may assume that {v(f(p\Hj)} converges to a non-negative divisor vs on
B(R) (0 ̂  / ̂  22V). Then, each {|K/(ί)),#, )|; p = 1,2, -} converges to
\vj\ as a sequence of closed subsets of B(R). We put S: = UJΐoM* which
is a thin analytic subset of B(R). Let D be an arbitrary domain with
D c B(R) - S. Since I(f(p)) c \v(f(p\Hj)\ for any p and every aeB(R)
-S has a neighborhood U such that [7 Π \v(f(p),Hj)\ = ̂  for all but
finitely many 29, taking a sufficiently large po> we see that every f(p) is
holomorphic on D and

for any p ̂  p0. Then, {/(ί)) | D} has a compactly convergent subsequence as
a sequence of holomorphic maps of D into PN(C) because of J. Dufresnoy's
theorem (c.f., [3], Critere fondamental [6] and [9], Corollary 3). There-
fore, by the usual diagonal argument, we can find a subsequence of {f(p)}
which converges on B(R) — S in the sense of Definition 3.3. From the
beginning, {f(p)} itself may be assumed to converge to a holomorphic
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map / of B(R) - S into PN(C). We can take here some j0 with f(B(R)
— S) ςt Hjo because Hά (0 <; j <Ξ 2N) are located in general position. On
the other hand, {v(f(p\Hh)} is convergent in @+(B(R)). Thus, the as-
sumptions of Proposition 3.5 are satisfied. We can conclude that {fip)}
is m-convergent on B(R). The proof is complete.

COROLLARY 4.4. In the same situation as in Theorem 4.3, if, for
any complex line £ in B(R) through the origin, either t c f~\Hj) or
the number of elements in t Π f~\Hj) counted with multiplicities are
bounded above by a constant qό not depending on each t and each f e SF,
then ϊF is m-normal.

Proof. For any fixed / e ^, take an arbitrary a e S(l) such that
£: = {au; \u\ < R} g£ \v(f,Hj)\. By the assumption, we have

(0 ^ j ^ 22V, 0 < r < #). By (2.3) we conclude

This gives Corollary 4.4 as a result of Theorem 4.3.

Remark. H. Rutishauser proved that, under the assumption of
Theorem 4.3 or of Corollary 4.4, any sequence in J^ has a quasi-regular
subsequence in the case n = 2 and N — 1 (c.f., [13], Satz 18).

COROLLARY 4.5. For 2F and Hό with the property as in Theorem 4.3
and an arbitrarily fixed s(0 < s < R), if N(r,s; v(f,Hj)) are bounded by
a constant depending only on r(s < r < R), then SF is m-normal.

Proof. This is a consequence of the inequalities

where p(r < p < R) is arbitrarily fixed and

§ 5. Characteristic functions for meromorphic maps into PN{C).

We shall give first the definition and elementary properties of the
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characteristic functions of meromorphic maps of B(R) into PN(C) along
the lines of H. Cartan's work [1]. For brevity, we assume all meromor-
phic maps treated in the following sections to be holomorphic at the
origin unless otherwise stated.

Let / be a meromorphic map of B(R) into PN(C) with an admissible
representation / = f0: fx\ : fN on B(R). We put

u(z): = max log |/t(«) | .

DEFINITION 5.1. The characteristic function is defined by

Φ(T) JS(r)

Remark, (i) T(r,f) is monotone increasing and convex as a function
of logr, because u(z) is plurisubharmonic.

(ii) In [14], W. Stoll called the function

Φ(T) Js(r) Φ(S) J

the characteristic function of /, where 0 <; s < r < R and ||/||2 = |/0|
2 +

|/i|2 + + \/N\2 for an admissible representation / = fQ: fλ: : fN. As
is easily seen,

\T{ryf)-T(r)\^K

for some constant K.

(5.2) T(r,f) is uniquely determined independently of a choice of
admissible representations of f.

In fact, this can be proved in the same manner as in [1], p. 8 by
the use of (2.4).

Let E be the set of all points a in S(l) such that {ua \u\ < R} c /(/),
which is of measure zero in S(l). For any a e S(l) — E consider a mero-
morphic map f*a(u): = fiau) of {u;\u\< R}(cz C) into PN{C). Since

Γ(r,/*) = ̂ L Γu(areίθ)dθ - u(0) ,
2π Jo

for any aeS(l) — E, we have by Lemma 1.1 and Lemma 1.2 in [16]
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(5.3) T{r, /) - — ί - ί T(r, /»>,(*) .
Φil) Jaesa)

Take a non-singular matrix ((αj 0 <: z, / <̂  N)) and consider a mero-

morphic map g — gQ'. gι'. : gN defined by holomorphic functions g3 —

ΣS-itfU τ h e n >

(5.4) \T(r,f)-T(r,g)\^K

for some constant K depending only on a) (c.f., [1], pp. 7 — 8).

DEFINITION 5.5. Let <p(^0) be a meromorphic function on B(R).

Define

1 Γm(r,<p): = log+ \φ(z)\σr(z) ,

Φ(r) J S(r)

where log+ x = max (log a?, 0) for any x ;> 0.

(5.6) // Og|r^| U \v™\ for a meromorphic function ψ{z) on B(R)9 then

T(r,<p) = T(r, — ) = N(r,v~) + m(r,φ) — log+ |p(0)| .
\ φ /

This is an immediate consequence of Jensen's formula (2.4) as in

[1], P. 9.

DEFINITION 5.7. Let / = fQ:fx: :fN be an admissible represen-

tation of a meromorphic map / of B(R) into PN(C). Take a hyperplane

H: a°w0 + aίw1 + + aNwN — 0

with /(O)esH, where we assume Σf= 0 |^ | 2 = 1. Putting F: = aQf0 + a>fγ

+ + α^/ar, we define

rCΛJΪ): - log|F(0)| - max log 1^(0) I .

Take another hyperplane

H': b°w0 + bιwx + + bNwN = 0

with f(B(R)) φ Hf and put FΊ = b°f0 + + bNfN. We define

(5.8) Suppose that /(0) &HΌH'. Then,

T(r, φ(f H, HO) ̂  Γ(r, /) - ?Γ(/, HO + K
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where K is a constant depending only on H and H'.

This will be shown by giving the precise estimation of constant terms

of inequalities obtained in [1], p. 10. By (5.4) it may be assumed that

H = {w0 — 0} and H' = {wx = 0}. We can write φ: = φ(f; H,H') = go/gι

with holomorphic functions gt such that codim {g0 = gx — 0} >̂ 2 and

^(0) = 0 for u1(z):= max i = 0 ) I log | $ φ ) | . Then, putting h = fo/go (= fjgj,

we have

,/) ^ —L- f (^ω + \og\h(z)\)σr(z) - u(0)

^ T{r,ψ) + iφ) + log|fc(0)| + N(r,vh)

On the other hand,

log IM0) I - log 1 (̂0)1 - log I ^(0)1 ^

because log|^(0)| ^ ^(0) = 0. This leads to (5.8).

(5.9) Let H be a hyperplane with f(0)&H. Then,

N(r,v(f,H)) ^ T(r,f) - Ψ(f,H) + K ,

where K is a constant depending only on H.

To see this, refer to [1], p. 11.

As is easily seen, a family 3F of holomorphic functions on the unit

disc is normal if τn(r, f) (/ e IF) are uniformly bounded. We shall

generalize this to the case of meromorphic maps into PN(C).

THEOREM 5.10. Let $F be a family of meromorphic maps of B{R)

into PN(C) each of which is holomorphic at the origin. The characteristic

functions T(r,f) (/e J^, 0 < r < R) are bounded by a constant depending

only on r if and only if ?F is m-normal and normal at the origin.

Proof. Suppose that

for a constant Kr (0 < r < R). Take an arbitrary sequence {f(p}} in IF.

Replacing it by a suitable subsequence, we may assume that linip^ f(p)(0)

= v exists in PN(C). Choose 2N + 1 hyperplanes Hj (0 <; j ^ 22V) in

general position such that v&(J)Z0Hj and consider the quantities ¥(f(p\Hj)
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as in Definition 5.7 for arbitrarily fixed homogeneous coordinates. Then,
{Ψ(f{p),Hj): p = 1,2, •} are all convergent and so we can find a con-
stant JBΓ'OO) such that

for any p and j . Therefore, by (5.9)

(f<*>,Hj)) ̂ Kr + K' + K ,

where K is a constant not depending on each p. Now apply Corollary
4.5 to the family {f(p)}. We can choose a subsequence {f(Pk)} of {f(p)}
which is m-convergent on B(R). To show that / is normal at the origin,
we have only to prove that there exists a neighborhood U of the origin,
such that Un\v(f(p*\H,)\ = φ for all but finitely many k. In fact, in
this case, choosing homogeneous coordinates w0: w1: : wN with Ho =
[wQ = 0}, we can take admissible representations

f{Pk) — 1 ,ΛPk) ' ,ΛPk) . . . (ΛPk)

with holomorphic functions ^p*} on U such that lim*^ ^Pfc) exist, which
leads to the desired conclusion. Assume the contrary, i.e., for any
δ > 0 let infinitely many pk satisfy the condition

Then, for such pk, by Lemma 1.10 in [16]

V(t,v{f^\H)) ^ W{t - δ)2n~2 ,

where δ ^t < R. Therefore, we have

On the other hand,

lim ίr « ~ ^ - 2 dt = co .

This shows that, for a fixed r, N(r,v(f(Pk\H0)) becomes larger than any
given number if a sufficiently large k is taken, which is a contradiction.

Conversely, suppose that & is m-normal and normal at the origin
and, moreover, there exists some r(0 < r < R) such that, for each p, at
least one felF, say f(p\ satisfies the condition
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After a suitable change of indices, it may be assumed that {/(p)} converges
meromorphically on B(R) to a meromorphic map / and converges com-
pactly on B(δ) for some δ > 0. In this situation, using Proposition 3.8
we can choose admissible representations

on B(r') such that l i m ^ flp) = fi exists on Bif) and / = f0: fλ: . : fN

and, moreover, {/0 = /x = = /^ = 0} Π B(δ) = 0, where r' (r < r' < R)
is arbitrarily fixed. Put

up(z): = max log\f?\z)\

and

: = max log \ft{z)\ .

Obviously, {up(z)} converges compactly to u{z) on B(rf) — {u(z) = — oo}
and, particularly, on the totality of B(δ). There is a positive constant
M such that

MP(0) ^ -M

for any p. On the other hand, since S: = {u(z) — — oo} is a thin analytic

subset of β(rθ, we can find a compact set C in B(rf) — S such that

sup {v(z): z e B(τ)} <I sup {v(z): zeC}

for any plurisubharmonic function viz) on B(r'). This concludes that
( ^ ) ^ β ( r ) , p = l,2, •••} are bounded above by a constant M7 uni-
formly. In conclusion, we have

T(r,f^) = -L- f wp(«)(jr(2) - up(0)

^M' + M ,

which is a contradiction. The proof of Theorem 5.10 is complete.

§ 6. The fundamental inequality.

Let Hj (1 ̂  j 5g q) be g (̂ > JV + 2) hyperplanes in general position
and / a meromorphic map of B(R) into PN(C) satisfying the condition
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U j = i ^ We may take homogeneous coordinates wQ:w1: ---:wN

on PN(C) such that Hi+ι = {wt = 0} (0 ̂  i ^ N). Let / = / 0 : fx: . . . : fN

be an admissible representation / on B(R), where ft(Q) Φ 0 (0 ̂  i <£ 2V).
We expand each /, as

on B(R), where Pf(z) is either identically zero or homogeneous polynomial
of degree m. Consider the function

W

DO D O
* 0> * 1 >

o > * l > " * ' y Γ
 N

which is a homogeneous polynomial of degree N(N + l)/2 and uniquely
determined independently of a choice of admissible representations.

DEFINITION 6.1. We define

Wj: = l o g IT

Remark, ( i ) The quantity PF̂  is determined only by the values
of <̂  2V-th derived functions of /< at the origin. For the particular case
n = l, Wf(l) is nothing but the values of the Wronskian of a system of
holomorphic functions /0,/i, ,fN at the origin divided by a constant
multiple of /oW/̂ O) fN(0).

(ii) Put Pain) = f(au) for almost all αeS(l). As is easily seen,

W* =

Now, we give the following fundamental inequality.

THEOREM 6.2. In the above situation, it holds that, for any r
(0 < r < R),

(q-N- ,H,)) + S(r) ,

where, for any given ε(>0) and p (r < p < R)9 S(r) is evaluated as
follows
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S(r) ^ Ko + Kx log+ p + K2 log+ _ 1 — + K3 log+ A
p — r r

+ # 4 Σ? = 1 iog + W,#,) | + ΣU+*V(f>Hj)
+ eT(p,f)- W*

with constants Ko depending only on ε, HjQ <^ j <. q) and with constants
Kκ(l <, K <; 4) depending only on N.

We consider first Theorem 6.2 for the case n — 1. In [11, it was
proved that the quantity S(r) in Theorem 6.2 is evaluated as

(6.3) S(r) <ί Lx ΣU Σf-V

with some constants Lj and L2, where ^ : = φif Hj,!!^ (c.f. Definition
5.7) and, as its consequence,

Sir) - O (log+ Γ(r,/)) + O (log+ —

outside some sufficiently small set of r in the case n = 1 and β < oo.
For the proof of Theorem 6.2, we have to obtain more precise estimation
of Sir). By observing H. Cartan's proof of (6.3) ([1], pp. 12-15) carefully,
it is not difficult to ascertain that the constant Lλ of (6.3) can be chosen
independently of each r, / and, moreover, the constant L2 can be replaced
by

(6.4) M + ΣU+* ψ(f> HJ) ~ Wf >

where M is a constant depending only on Hj (1 ̂  j ^ q). To estimate
the other terms, we need

LEMMA 6.5. Let φ(z) be a meromorphic function on {\z\ <R}(cC)
with φ(0) Φ 0, oo. For any r,p (0 < r < p < R) and a positive integer £,
there are some constants K[ (0 ^ K <̂  5) depending only on £ such that

(
r
>

 J
rrτ(

i
ττ-)) ^

 κ
o + κ[ iog

+
 p + Ki iog

+
 — 1 — + xί iog

+
 -

\ d^" 1 V 9(2;) / / p — r r

+ K'4\og+ I log I p(0)| I + XJlog

Proof. We can prove Lemma 6.5 along the same lines of the proof of
Lemma 2.3 in [8] by adding some considerations. We describe here only
the outline of the proof. At first, suppose that φ(z) Φ 0, 00 on {|#| = r}
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\J{\z\ = p}. We denote by aμ (1 ^ μ fg n0) all zeros of ^(2) in {|£| :g }̂ and

by bv (l ^v^n^) all poles of φ{z) in {|£|<^}. By differentiating the

well-known Poisson-Jensen's formula (e.g., [8], p. 1) ί times, we have

dθ
dz1'1 \ φ{z) (pe

ίθ - z)ί+1

w h e r e 0 < r — \z\ < p. P u t δ(z): = m i n ^ {\z — aμ\,\z — b,\} a n d n(p)

n0 + %„. As in the proof of Lemma 2.3 in [8], by the inequalities

and

p-r

1- Γ I log \ψ{reiβ)\\ dθ = m(r, ψ) + m(r, -)
iπ Jo \ φ I

>) + |lθg|ί<0)||

2π

etc., we get

φ'(z)(
dze~ι \ φ(z)

( ^ \lθg\φ(0)\\}

n(p)(£ - 1) ! J7 r V I r Y\

re \\ δ(z)) \p-r)ί '

Since log+ x,x2 • • • xn g Σ? = 1 log+ xt and log+ (Σ?=i * t) g log w +

for any xt ^ 0, we obtain by the use of Lemma 2.2 in [8]

V dz'-1 \ φφ(z)
l o g +

(6.6) + ^ log* r + (24 + 1) log+

dθ

- ! — + 4 log+ 1
p — r r

+ log+ I log |^(0)|| + log+ Tip, ψ) + (2£ + 1) log+ n{p)

for an absolute constant 2£*. We note here that (6.6) remains valid with-

out the assumption φ(z) Φθ,oo on {\z\ — r} \J {\z\ = p}9 because the both

sides of (6.6) are continuous functions of r and upper semi-continuous

functions of p.
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Now, for arbitrarily given r and p (0 < r < p < R), replace p in
(6.6) by p':=ip + r)/2. As in [8], p. 37,

nip') ^
9~ 9

and hence

log+ n(p) rg log+ p + log+ — ? — + lOg+ Tip, φ)
p-r

+ log+\log\φi0)\\ + K

for some constant K. By substituting this into (6.6) and using the mono-
tone property of functions log+ p and Tip,φ), we can easily obtain the
desired conclusion.

Proof of Theorem 6.2. By (6.3), (6.4) and Lemma 6.5, we can write

Sir) ^ K'o' + Kϊ log+ p + E!i log+ — 1 — + E!{ log+ -
p — r r

( 6 ' 7 ) +zrΣ?= 2iog+ | iog|^ (0)ii

with some constants K" (0 ^ Λ: ̂  5). On the other hand,

log+ I log 19/0) 11 ^ log+ \W(f,Hj) - Wif9Hx)\

^ log+ \¥if,Hj)\ + log+ \Ψ{f,Hλ)\ + log 2

by Definition 5.7 and

log+ Tip,Ψj) ^ log+ Tip,/) + log+ Wif,!!^ + K

for some constant K by (5.8). We can rewrite (6.7) as

Sir) ^K. + K, log+ p + K2 log+ — ! _ + Z3 log+ -
p — r r

+ Kδlog+Tip,f)- W*

with suitable constants ίĈ  (0 ^ A: ̂  5). Then, replacing the above Ko by
a new constant, maybe depending on ε, we can conclude the desired
fundamental inequality, because there is a positive constant K(ε) such
that K4 log+ x 5g εx + K(ε) for any x ^ 0.

Now, we proceed to the proof of Theorem 6.2 for the general case.
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Consider the meromorphic map (f)%u): = f(zu) for any z e SO) except

a set of measure zero. Using the above shown result for the case n —

1, we have

(q-N- l)Γ(r,/») ^ ΣUNN(r9v(f\>#,)) + Ko

+ Kλ log+ p + K2 log+ — 1 — + Z 3 log+ ~
r r^ — r

log+ I Ψ(f, Bj) I + ΣU+,

for any r, /? with 0 < r < ^ < R. We calculate the .mean values of SO)

of both sides of (6.8). By (5.3), (2.3) and Remark (ii) to Definition 6.1,

we conclude Theorem 6.2.

Remark. In Theorem 6.2, if R = oo and / is rational, i.e., / has

a representation / = / 0 : fx: : fN with polynomials fu then we can

show easily S(r) = 0(1).

§ 7. A defect relation for meromorphic maps into PN(C).

Let / be a meromorphic map of B(R) into PN(C) which is assumed

to be holomorphic at the origin and H a hyperplane with f(B(R)) φ H.

DEFINITION 7.1. We define the modified deficient function as

r, f)

where 0 < m ^ oo. And, we put δ(f9 H): = <L(/, H).

As is easily seen, we have 0 ^ δ(f,H) <; 1, if l i m ^ T(r,f) = oo.

DEFINITION 7.2. We shall call / to be transcendental if and only if

lim ! V'J' — oo in case of R = oo
r-oo . log r

and

lim yr>J) _ oo i n c a S e of R < oo
r - log (1/(22-r))

(7.3) For α meromorphic map f of Cn into PN(C)9 f is not trans-

cendental if and only if f is rational.



FAMILIES OF MEROMORPHIC MAPS 43

This is a result of W. Stoll ([14], Satz 24.1). Because, according to
Remark (ii) to Definition 5.1 the transcendency of / is equal to what
was defined by W. Stoll in [14].

Now, we give a defect relation for a meromorphic map.

THEOREM 7.4. Let f satisfy the condition WJ Φ -oo and Hj (l<Lj<: q)
be arbitrarily given hyperplanes in the PN(C) located in general position
such that /(0) g Uy-o ffj If R = oo or R < oo and f is transcendental,
then

Remark. Since δ(f,Hj) ^ δN(f,Hj), we have

as a consequence of Theorem 7.4. This is a special case of a defect
relation given by W. Stoll in [14], § 23.

Proof of Theorem 7.4. We shall prove Theorem 7.4 in the case
R < oo only, because the analogous argument can be applied for the
case R = oo too with some simple modifications. Since limr_^ Γ(r, /) = oo
by the assumption and Γ(r, /) is a monotone increasing continuous func-
tion of r, we have by Lemma 2.4 in [8]

R-r Λ ^ 2T(r,.
eT(r,f)

outside a set EQ of r with

drI. β-r
< oo .

Therefore, we can choose some r g EQ (0 < r < R) which is arbitrarily
close to R. Substitute p — r + [(R — r)/eT(r,f)] into the fundamental
inequality in Theorem 6.2. Then, for any ε > 0,

Sir) ^Lo + L, log* (r + R ~ r ) + L2 log*
\ eT(r, /) /

) + L2 log ^
eT(r, /) / R — r

+ L 3 l o g + - + 2eΓ(r,/)
r

by the assumption Wf =£ — oo, where S(r) is the quantity given in
Theorem 6.2 and Lκ (0 ^ /c <; 3) are constants not depending on each r.
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It can be rewritten

S(r) ^ Lί + Lί log+ Γ(r, /) + L'2 log —-1 + 2εT(r, /)
β — r

with new constants L£ (0 <̂  Λ; ̂  2) if r is sufficiently close to R. Thus,
wejhave

lim

because / is transcendental. Consequently,

Since e is arbitrary, we conclude the desired defect relation.

We examine here the meaning of the condition WJ = -oo in the

case R = oo. Consider first the case n — 1. In this case, WJ = — oo

means that the Wronskian W(f09fu -,fN) of a system of holomorphic

functions /0,/i, -,fN vanishes at the origin for an admissible represen-

tation / = / 0 : fx: : fN on Cn. If W(fo,f19 •• , / Λ r ) ΐ 0 , namely, the

image of / are not included in any hyperplane in PN(C), then we can

choose global coordinates on Cn such that / satisfies all assumptions of

Theorem 7.4. Let us consider next the case n ^ 2. Since \og\Wf(z)\ is

a plurisubharmonic function of z,

is a monotone increasing function of r. Therefore, WJ — M(l) = — oo

implies that M(r) = — oo for any r > 0 and hence W/O) Ξ 0. And, this

holds if and only if W((f0)*, (/O*, , (fN)t) vanishes at the origin for

any z e S(l), where we put (fi)l(u): = fi(zu) for an admissible represen-

tation / = /0:/i." :/γ If there exists at least one complex line £

such that £ φ f~\H) for any hyperplane H in PN(C), then the assump-

tions of Theorem 7.4 are all satisfied after a suitable change of global

coordinates on Cn. In the particular case N = 1, this means that / is

not of constant.
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COROLLARY 7.5 (c.f., [1], p. 19). Let f be a meromorphic map of
Cn into PN(C) such that, for some complex line £ in Cn, f is holomorphic
at a point in £ and f(S) cannot be included in any hyperplane in PN(C).
Suppose that there exist q (^>N + 2) hyperplanes Hό (1 <, / <̂  q) in general
position such that, for some positive integers ms (1 ̂  j ^ q), v(f,H3) ^ m3-
everywhere on \v{f,H3)\ for any j . Then

^ J = ι mj ~ N

Proof. As is stated above, after a suitable change of global co-
ordidates we may assume that /(0) g {Jq

J=ιHj and W$ Φ — oo. We have

N N ( r , V{f, H j ) ) £ N . * T ' ~ -'* T T ^ ^ N

by (5.9) for some constant M not depending on r and so

δ (f H ) > 1 - —

This gives Corollary 7.5 as a consequence of Theorem 7.4.

We can give also another application of Theorem 7.4.

COROLLARY 7.6. For a meromorphic map f with the same property
as in Corollary 7.5, suppose that there exist N + 2 hyperplanes H3 (1 ̂  j
ίg N + 2) in general position such that each f~ι(H3) is an algebraic set
in Cn. Then f is necessarily rational.

Proof. Assume that / is transcendental. As is well-known, for a
divisor v on Cn\v\ is algebraic if and only if there exists some constant
K not depending on each r such that

(7.7) Vλ(r,v) ^ R
r2n-2

(c.f., [13], Satz 23, for the case n = 2 and [15], Theorem 7.15, for the
general case). We can easily conclude from the assumption that

l i m NtrMf.Hj)) < o o

r->oo log r
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Therefore,

T(r,f) ~ r̂ -o logr

which means δ(f,H3) = 1 for any / (I <* j <. N + 2). We have thus a
contradiction

N + 1 ^ Σ™*(f>Hj) - N + 2 .

This completes the proof.

Remark. Theorem 7.6 was firstly shown by P. Thullen ([17]) for
the case N = 1.

§8. A sufficient condition for m-normal families.

Let «f be a family of meromorphic maps of B(R) into PN(C) each
of which is assumed to be holomorphic at the origin. As a consequence
of Theorem 6.2, we can give the following sufficient condition for IF to
be m-normal.

THEOREM 8.1. Suppose that there exist q (^>N + 2) hyperplanes
Hj (1 fg j <̂  q) in PN(C) satisfying the condition that

( i ) the values /(0) (/ e 8F} are contained in a fixed compact subset
of PN(C)-UUHj,

(ii) WJ(fe^) are bounded below by a fixed constant and
(iii) v(f,H3) ^ m i everywhere on \v{f,Hό)\ for some fixed positive in-

tegers m3- (1 <̂  j <; q) with

^ = 1 ^ 7 N

Then, !F is m-normal and normal at the origin.

Proof. As in the proof of Corollary 7.5,

NN{r,v{f,H3)) ^ *Lτ(rJ) + Ks

for some constant K3(l ^ j ^ q) because |Ψ(f,Hj)\(fe&) are uniformly
bounded by the assumption (i), where 0 < r < R. Therefore, we have

((? - N - 1) - ΣU —)τ(r,f) ^ S(r) + ΣjK3 ,
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where S(r) is the quantity given in Theorem 6.2. Put 3: = q — N — 1 —
Σqj=\ (N/nij), which is positive by the assumption. Taking some ε with
0 < 3ε < 3 and using the assumptions (i) and (ii), we can estimate S(r) as

(8.2) S(r) rg Lo + Lx log+ p + L2 log+ - A - + L3 log+ A + eΓQ*,/)
p — r r

for some constants L X ( 0 ^ Λ : ^ 3 ) . By virtue of Theorem 5.10, we have
only to show that T(r,f) (/e JO are bounded above by a constant not
depending on each fe !F. Without loss of generality, we may assume
that T(r,/) ^ 1 for any r and /e«f. Apply here Lemma 2.4 (ii) in [8].
For any given r (0 < r < R), taking some s with R — ((R — r)/e2) < s < R
arbitrarily, we can find a real number r7 with r < ¥ < s such that

Replace r and p in (8.2) by r7 and p = / + {{R — r')/eΓ(r/,/)) respec-
tively. We have then

L£ + Lί log+ ^ + U log+ - - i — + V, log+ 1
R — r* r*

for new constants Uκ (0 ^ Λ: ̂  4). On the other hand, it holds that

log+ r r ^ log+ β, log+ — - — ̂  log+ — - — , log+ — S log+ —
R — r' R — s rf r

and

for some constant K(ε) depending only on ε. Therefore,

δT(r',f) ̂  U

for a new constant L" not depending on each fe^. This shows that
T(r,f)(^T(r',f)) are bounded above by a constant (1/(3 - 3ε))L^ not
depending on / e &. The proof is complete.

Remark. As is easily shown by the above proof, the assumptions
(i) and (ii) of Theorem 8.1 can be replaced by the condition that

κ< ΣU i°g+ \Πf,Hj)\ + ΣU+2Πf,Hj) - w*
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are uniformly bounded, where KA is a constant given in Theorem 6.2.

For the case N = 1, we have more precise conclusion (c.f., [18], p. 21).

THEOREM 8.3. Let ^ be a family of meromorphic functions on B(R)

each of which gives a holomorphic map into P^C). Suppose that there

exist mutually distinct values al9 α2, , aq (q ^ 3) such that, for any φ e IF,

φ(z) -φ a3,φ{z) — a$ has no zeros of multiplicities <mό (1 <: j ^ q) and

JL + JL+ ... + JL<q-2.
m1 m2 mq

Then, 2F is a normal family.

Proof. For our purpose, we may assume that n = 1. In fact, ac-

cording to T. Nishino's result ([11]), a family of meromorphic functions

is normal if and only if it is normal with respect to each variable sep-

arately. On the other hand, if a holomorphic function φ(zx, ••-,«») has

a zero of multiplicity m a t α = (α1,α2, ,α n), then φ(zl9a2, ,an) has a

zero of multiplicity ^>m at z1 — αL as a holomorphic function of z1 when-

ever φ(z19 a2, ., an) & 0.

We shall prove Theorem 8.3 for the case n = 1 by the analogous

argument as in the proof of Theorem 2 in [2]. The domain B(R) may

be assumed to be Δ: = B(l) = {\z\ < 1}. For suitable homogeneous co-

ordinates w0: wλ on Pλ{C), we can write a): a) (1 ^ j ^ q), where αx = 1: 0,

a2 = 0: 1 and |α5|2 + \a)f = 1 (3 ^ / ^ g). In this case, if p(0) ^ 0, oo,

the quantity TF* is given by log|p'(0)/p(0)| and we have

,α, ) = log|αj - a) φ(0)\ - log+

particularly, Ψ{φ,ax) = - log + |p(0)| and ?Γ(^,ίi2) = log|^(0)| - log+

where Ψ(φ, a3) = Ψ(φ, H3) for H3 = {αjwo - < ^ i = 0} (1 ^ y ^ g). On the

other hand, as in [2], p. 236,

log \u\ + A log+ log+ ^ log + |^ | + A log A

if A > e. Therefore, we obtain

(8.4) K4 Σ j . i log+ | r ( P , α, )| + Σ?=s ^ , α )̂ ^ Mo

for some constants Mo and M19 where ίί4 is a constant given in Theorem

6.2 which may be assumed to be larger than e. For our purpose it
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suffices to show that $F is normal at any zoeA. There is no loss of

generality in assuming that z0 is the origin. Take an arbitrary sequence

{φ(p)} in J^. Firstly, we assume that there exists a positive constant

M* such that, for some sequence {ak} in Δ and a subsequence {φ(Pk)} of

φ(p\ lim fc_ ak = 0, φ{pk)(ak) Φ 0 ( = 1: 0), ^oo ( = 0: 1) and

(8.5) log ψ
y{ak)

where M1 is a constant given in (8.4). As in [2], put φk(z): —

<p(Pk)(z){(z — ak)/(akz — 1)} and consider a family <F>': = {φk}. Then, by

Remark to Theorem 8.1 and (8.5), &' is normal at the origin. So, by

virtue of Lemma Γ in [2], we can conclude that {φ(pk)(z)} has a subse-

quence which converges compactly on a neighborhood of the origin.

Now, let us consider the case that (8.5) does not hold. Then, we

can find some r o ( > 0) and M(r0) (> 0) such that

(8.6) ^ M(TO)

on {z: \z\ <; r0}, where £ is an arbitrarily chosen integer with

fact, by the assumption, there is some r0 > 0 such that

In

log
φ{pk))z)

on {z: \z\ ̂  r0} for all but finitely many φ(Pk). Then, since

log - log

we have

log — ^l-log2(>0)

which gives (8.6). The inequality (8.6) means that {(φ(Pk)y} satisfies the

condition in Theorem 6.3 in [8]. Consequently, {(φ(Pkψ} is normal. Then,

{φ(Pk)} itself is obviously normal. We have thus Theorem 8.3.

We shall prove lastly a generalized Schottky-Landau type Theorem.

THEOREM 8.7. Let Hj (1 <̂  j <; q) be q(}> N + 2) hyperplanes in gen-
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eral position. Suppose that there is a meromorphic map f of B(R) into
PN(C) such that /(0) e \J3-i BJf Wf ψ -oo and v(f,Hj) ^ mj on Hf9Hj)\

for some positive integers m* with Y.q

1ml— < q ~* ~ .
mj N

Then,

for a fixed constant Ro depending only on Hj9 m ; (1 <^ j <^ g), the value /(0)
and the quantity Wf.

Proof. Assume the contrary. Then, we can find a sequence of
positive numbers

Rx < R2 < -. < Rp < . .

with liuip^ Rp = oo such that for each 2? there exists a meromorphic
maps /<J)) of B(Jξp) into PN(C) with /(2))(0) = v0 and W*(i)) = K satisfying
the condition that v{fiv\H3) ^ m$ on |v(/(p),HJ )|, where a point voeP^(C)
— (JJ.iffj and a constant i£ are fixed. By Theorem 8.1, a sequence
{f(p) -P^Vo} is an m-normal family of meromorphic maps of B(RPo) into
PN(C) and, moreover, normal at the origin. By the diagonal argument,
we can find a subsequence {/(Pft)} which converges compactly on a neigh-
borhood of the origin and converges meromorphically on B(RP) for any
p. The limit / is a meromorphic map oί Cn into PN(C) which is
holomorphic at the origin and satisfies the condition that /(0) = w0,
Wf = K and v(f, H3) ^ mό on | v(f, Hό) |, because limp_ v(f(p\ Hό) = v(f, Hs).
This contradicts Corollary 7.5. We have Theorem 8.7.
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