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ON A CLASS OF NON-ELLIPTIC BOUNDARY PROBLEMS
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YOSHIO KATO

Introduction.

Let Ω be a bounded domain in Rι (I > 2) with C°° boundary Γ of
dimension I — 1 and let there be given a second order elliptic differential
equation

I I

(1) An = - Σ diidijdjtt) + Σl aAu + au = / i n f l ,

where dά — djdXi and all coefficients are assumed, for the sake of sim-
plicity, to be real-valued and C°° on Ώ = β uΓ. It is also assumed that
aij = aji o n Ω and that there exists a positive constant c0 such that

Σ cQ\ξf

holds for all xeΏ and ξ e RK

Then we consider a boundary condition

(2 ) Bu — advu + γu + βu = φ on Γ ,

where α, β are real-valued C°° functions on Γ, p is a C°° real vector field
tangent to Γ, and d;̂  denotes the conormal derivative of u, i.e.,

I

n = (nlf ',nt) being the exterior normal of Γ. Moreover, throughout
this paper, we assume a > 0 on Γ.

In case p = 0 on Γ, the boundary problem (l)-(2) was discussed in
[2,3] by using the Hubert space technique and the elliptic regularization.
This paper is a continuation of their studies and is especially nothing
but a slight improvement of [2].
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Now we state the results obtained. The notations appearing will

be made clear in § 1.

THEOREM 1. If we assume that

( 3 ) l r * ( i ) + i 3 > o on Γo = {αeΓ;«(a0 = O},
Δ

it then follows that for every feHk~2 (Ω p) and every φeHk~ι(Γ) (k

integer >2), the boundary problem

((A + X)u = f in Ω
( 4 ) {

[(B + t)u = φ on Γ

has the unique solution u in Hk(Ω p), provided λ > λ09 a number which is

a constant not depending on k, and t > tk, a number which is a constant

depending in general on k.

Moreover it follows that there exists a constant Ck > 0 independent

of t >tk such that

( 5 ) \\u;p\\k<Ck(\\f;p\\k_2

COROLLARY. Assume^ in addition to (3), that

( 6 ) γ = 0 in a neighbourhood of Γo.

Then we can take as tk — 0 for every k.

The following example shows us that condition (6) is necessary for

Theorem 1 to be valid for tk — 0.

EXAMPLE. Let Ω be a bounded domain in the (#,?/)-plane whose

boundary Γ is a C°° curve and contains an open interval ω s (0,0) in the

#-axis. In (1) and (2) we take as A = J, a = 0 in ω, γ = —xd/dx in

ω, β > 1 integer and φ = adv/dn + γv + βv, where v is a harmonic func-

tion whose boundary value is C°° except the origin and is equal to \xf

in ω. Clearly we have φeC°°(Γ).

Then u = v is a solution belonging to Cβ~ιΦ) of the problem

in β

= <p on Γ ,

but does not belong to Cβ(Ώ). Here it is easily seen that (3) is satisfied
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but not (6).

THEOREM 2. // Γo is a C00 manifold of dimension I — 2 and γ is trans-

versal to Γ09 it then follows that for every f e Hk~2 (Ω p) and every

φeHk~ι (Γ) (k integer >2) the problem (4) with t — 0 has the unique

solution u in Hk(Ω p), provided λ > λλ which is a constant not depending

on k. Moreover the u satisfies (5).

In case β = 0, this is nothing but a class of the oblique derivative

problems, which was already discussed in [1] by the slightly different

manner (cf. §7 of [1]).

The plan of the paper is as follows. § 1 is devoted to preliminaries

of the proof of Theorem 1, which will be given in §2. Corollary and

Theorem 2 will be briefly proved in §§3 and 4, respectively, by the

similar argument as in Theorem 1.

§ 1. Preliminaries.

Let γ be a C°° real vector field tangent to Γ. The adjoint γ* of γ

is defined by the identity

γU'vdσ— u-γ*vdσ , u,veC°°(Γ) ,

where dσ is the Lebesque measure on Γ.

Let {Uj}, j ~ 1, - *,N, be a family of open subsets of R\ covering

Γy and assume that there exists a C°° coordinate transformation y — Kj(x)

on Uj such that Ω Π Uj is mapped in a one-to-one way onto an open

portion Σj of a half space yt < 0 and Γά• = Γ Π Uά is transformed onto

an open portion τs of yt = 0. Moreover assume that dy = Jjdx and

dσ = UL,d#' <y = ylf , T/^X)).

Let {Cy(ί«?)} be a partition of unity of Γ belonging to {Uj}, i.e.,

ζj e Co(Uj), ζj > 0 and Σ f ^ ζ / ^ ) = 1 on Γ. Using the partition of unity

{Uj,ζj}> we can easily prove

LEMMA 1. There exists a C°° function b(x) on Γ such that γ* =

Proof. We assume that by the transformation Λ̂  the vector field γ

is altered to
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0* = d/dyk) .Σ

Then we have

γu vdσ = Σ I r(Cy )̂ vdσ

= Σ f Σ cJkdk(ζju).vKjdy' = - Σ f Σ ZJU'dk(cJkKJv)dy'
j Jyι=θ k j Jyι=o k

= - Σ f Σ CMcjtKA* + dk(cjkKj)v}dy'
j Jyι=o k

= -Σf Cjtt Σ ί c ^ s ^ z ^

- Σ f Cί« Σ dk(,cjkK^KγvK}dy'
j Jyi=O k

= - Σ f C^ r^^ - Σ f ^{CΛ71 Σ afc(c,

which completes the proof.

The following lemma can be easily proved. So we omit the proof.

LEMMA 2. Under condition (3) we can find a function q(x) e C°°(Ώ)

satisfying

( i ) q > 0 in Ω and q = a on Γ.

(ii) There exist two positive constants C and d such that C dis (x, Γ)

< q(x) in Ωd = {x e Ώ dis (x, Γ) < d}.

(iii) There exists a positive constant cx such that

~dvq + ~f(D + β > cx on Γ .

LEMMA 3. For any δ > 0 there exists a constant Cδ > 0 such that

\\u\\l0 < tWpduWla + Cδ\\pu\\lΩ , ueC~(Ώ) ,

dx andwhere p = Vtf, ||w||o fl =

Proof. This lemma is due to [2]. Let ζ0O) e Cj°(fl) such that ζ0 =

1 - Σf-i Cj in fl and = 0 outside of Ώ. Then w = Σf=i C^ + Cô  in Ω.

Hence we have
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< const, ( f ί \Vjf dy + \\pu\)lΩ) ,

where vd = VTjζjU is in C^(Σj U τ, ). It was indicated by Hayashida in

[2] that for any ε > 0 the inequality

ί \vj\2dy<ε\ \yι\\dιvj\
2dy + ± [ \yι\\vjfdy

JΣJ JΣJ S JΣjΣJ

holds. Thus we can establish the proof with the aid of Lemma 2.

Now we introduce an integro-differential bilinear form:

Q[u, v] = B[u,qv] + (γu + βu)-vdσ ,
J Γ

where

B[u,v] = ( Σ diβiU-djU + 2 didiU'V + aU'V)dx .
J Ω\i,j = l i = l /

It is easily seen that u e C2(Ω) satisfies (1) and (2) if and only if it satis-

fies

( 7) Q[u, v] - {qf, v)Ω + (φ, v)Γ , ve C°°(Ώ) ,

where (, )Q and (, ) Γ denote the usual inner products in L\Ω) and L\Γ),

respectively. Hence we have only to deal with (7). This idea was used

in [4].

Throughout the paper we always assume condition (3).

PROPOSITION 1. There exist two positive constants c2, λQ such that

QΛ.u,u] > c2(\\vdu\\o,a + \\Vu\\l,Ω + \\u\\lΓ)

holds for every ueC^iΩ) and λ > λ0, where \\u\\ltΓ — (u,u)Γ and

Qxίu-v] = Q[u,v] + λ(u,qv) .

Proof. For u e C°°(Ω) we have

Q[u,u] = Q\ Σl ttijdiU'dj-u + Σaidΐu'M + &uu\dx
JΩ \i,J=l ί = l /

+ 1 f Σ a.jdjq-d^u^dx + f (-J-r(«2) +
• 2 J a ι,j=i J r\ 2
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> ^ Ilp3ttll2.il - C\\pu\\iΩ + 1

where C is a constant and Ao = — Σ i ^ i d^-d,-. Thus, using Lemmas 2

and 3, we can conclude the proposition.

For any ε, 0 < ε < 1, putting qε(x) — q(x) + ε, we define an integro-

differential bilinear form as

Qe[u, v] = B[u, qεv] + ί (γu + βu)vdσ .
J Γ

PROPOSITION 2. Let λ>λ0 and t>0. Then for every f e C°°(Ώ) and

every φ e C™(Γ), there exists the unique uε e C"{Ω) which depends also on

λ and t, satisfying

( 8) Qi,t[ue, v] = (qj, v)Ω + (φ, v)Γ , ve C~(Ώ) .

Moreover it follows that there exists a constant c3 > 0 independent of

ε, λ and t such that

( 9 ) c3(\\pβue\\lΩ + \\p.u.\\lo + (1 + t)\\u.\\lΓ) < WPJWIB + \\φ\\lr ,

where pε = \l~qe and

QltlUyV] = Qs[^,^] + λ(u,q.v) + t(u,v)Γ .

Proof. By the same argument as in Proposition 1, we can imme-

diately obtain

(10) QUu,u] > ύ(\\pftu\\lQ + \\pεu\\l

( 4 I I M I G )

with C2 = min (c2,1). Clearly we have

ll5 f«[tt,i;]| < const.

where

Accordingly we can apply the theorem of Ϊtiesz-Milgram-Lax which

guarantees the existence of the unique solution u$ of (8) in H\Ω). It is
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well known that uε is really in C°°(Ώ), since the problem is elliptic. In

fact ue satisfies

((A + X)ue = / in Ω

{(a + ε)dvuε + γuε + (β + t)uε = φ on Γ .

Substituting v = uε in (8) and using (10), we obtain

βίllKHCi < Qltbi U.] = (qεf,uε)Ω + (φ,uε)Γ

< \\Vj\\o,Ω ||2W||Ofl,

which proves (9).

Finally we shall define the Hubert space Hk(Ω p) for integer k > 0.

By HS(Ω), s real, we denote the Sobolev space with norm IHkβ Then

Hk(Ω p) is a Hubert space given by the completion of C°°(Ω) with respect

to the norm || ,p||fc defined by

(12) \\u\V\\l = \\Vdku\ln + K-i/2,£

2. Proof of Theorem 1.

Setting Uo = Ω — (J*=i Uj> w e obtain the partition of unity {Uj9 ζj},

j = 0,1, , N, of Ώ. In the following we denote by [7, ζ, κ9 Σ9 τ, / and K

one of UjiζjyfCjyΣjyTjiJj and Kά (j = 1, - ,N), respectively, and assume

that by the transformation K the form Qlt[u-v] is altered to, λ fixed,

= f ( Σ t>iAu-dj(QeV) + Σ btdiU-q.v + buqεv)dy

ί δu-vKdy' + ί βuvKdy' + t ί uvKdy'+

with 6^ = 6^. It then follows from (10) that there exists a constant

c" > 0 independent of ε, λ and t such that

(13) 4/(||2>.9tt|β,j + WPMII + (1 + ί)H l̂lo2,r) < Λf[w,M] , ue C0°°(C7) .

For any multi-integers p = (^, ,/oj_i) such that |/o| = ^

= r > 1, we set

Tu =

with dj = 3/3^. In the following propositions all constants are inde-
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pendent of ε and t > 0.

PROPOSITION 3. There exist positive constants CIfCu and Cm depend-
ing only on the forms I, II and III, respectively, such that

PllTu, Tu] - Pl[u,K-ιT*KTu] < Cτ(\\u\\rtS \\d(q.Tu)\\0,x

+ Cu \\u\\\τ + Cm \\u\\r_hτ || ΓM||0,T , u e

where K(y\yt) == K(y').

Proof, ( I ) Setting R = 6̂ 9* and S = 9̂ , and writting simply
(, )Σ = (,) and [A,β] = Aβ — BA> we can compute as follows:

(RTu,SqεTu) = (72̂ , T*SqεTu) + ([β, T]u9SqsTu)

= {Ru,T*SqεK-ιKTu) + ([R,T]u,SqeTu)

= (Ru,SqεK-ιT*KTu)

+ (Ru,[T*,S]qεTu)

([R,T]u,SqeTu)

Thus

I[Tu,Tu] - l[u,K~ιT*KTu\ < C{\\u\\r>Σ \\d{qtTu)%,Σ + \\u\\l,Σ)

(14) c ι

+ ΣΣ

where we put v = [T*9qtK~ι]KTu. Now

(Λw, Sv) + (Rv, Su) = (Ru, [T*9 qtK-ι]KTSu) + (Ru, [S, [Γ*, qεK~ι\KT\u)

+ ( [ ^ ^ ^ ^ I Z T β ^ S ^ ) + (lR9[T*fqβK'1]KT]u9Su)

= (Ru, {[T*9 qεK-']KT + T*K[qeK~\ T]}Su) + O(\\u\\\Σ) ,

which implies

\(Ru,Sv) + (Rv,Su)\<C\\u\\ltΣ .

This together with (14) and the fact 6ί>7 = bH implies

I[Tu,Tu] - I[u,K-'T*KTu] < CMuWr.zWdiqTu)^ + \\u\\lΣ) .

(II) Next

ll[Tu,Tu] = (Tδu,KTu\ + ([δ,T]u,KTu\

= (δu, KK~ιT*KTu\ + ([δ, T]u, KTu\ .
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Therefore we have

(15) ll[Tu, Tu] - ll[u, K~ιT*KTu] = {[δ, T]u, KTu\ < Cu \\u\\l<t

(III) By the same way as (II) we have

llϊ[Ttι,Tu] - IΠ[u,K-ιT*KTu] < Cm !Nki, r !l^ί||0,t

(IV) Finally

ΪV[Tu, Tu] - lY[u, K-ιT*KTv\ = 0 .

Thus (I), (II), (III) and (IV) conclude the proposition.
Now, by using (8), we shall estimate the term P't[u, K~ιT*KTu] with

u = ue which was introduced in Proposition 2. That is,

PROPOSITION 4. We have, with a suitable constant C > 0,

Proof. For the sake of simplicity, we write u, = u. Then

= (Jq,f,K'1T*KTu)Σ + (φ,KK-ιT*KTu\

= (ζK-KJqJ, d"KTu)Σ + (φ, T*KTu\

(φ, T*KTu\ (3" = d"'d)

Σ + (φ,τ*κτu)t,

from which we easily obtain the proposition.

PROPOSITION 5. There exists a constant Co > 0 such that

\\pβr+1ut\\io + a + ί)iι«x,r

< CMuΛla + Σ llP.3'/llo,0 + ll/l!r-2+1/2,Ω \\u,\\r+m.o + \\Ψ\\1,Γ
s = o

+ Cπ||M,||tr>Γ).

Proof. Using (13) and Proposition 3 with u = u,, we can obtain,
with the aid of Proposition 4.

IIS.* + \\V.Tiι.%,s + (1

< CX(\\UX,O + ΣWP.d'
s = 0

+ Cu(\\U,l\2r,r) ( =
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Noting that this remains valid for any p = (p19 - ,pι_ι) with \p\<r, we

have, with a suitable constant C2,

Σ
\p\<r

(\\pβ"d(ζu,)\\lΣ + IIP.CM.IB., + (l + t)\\Wζu,)\\lJ < C2F .

With the aid of (11), we can assert that dl(ζu,) can be written by a

linear conbination of dfiiiζu,), djdk(ζu,) (J, k = 1, , I — l),9/ζws) (j = 1,

• • ,ΐ),ζu,,ζf and [A,ζ]ue. Hence we have

Σ \\pεd
pd\ζuε)\\lΣ + (1 + ί) Σ rl|3'(ϊW|β. r < CZF .

Repeating this process if r > 1, we finally obtain

||p£d
r+1(ζ*Ollo\* + (1 + ί) Σ J W C O I I L < C,F .

Clearly this remains also valid for ζ = ζ0. Therefore applying this for

ζ — ζj (j = 0, , N) and using Σ7=o ζj = 1 on fl, we obtain

This completes the proof.

PROPOSITION 6. For every integer k > 2, we can find two constant

Ck > 0 emd ίfc > 0 ŝ cfe that

\\pβkUε\\l,Ω + \\uε\\U/2tΩ < Ck(\\pβk-2f Wlo + 11/111-2-1/2,̂  + \\φ\\l-i.r)

is valid for all ε and t > tk.

Proof. Using the preceding proposition in the case k = r + 1 and

t > COCU (=tk), we have

\\p.d*u.\\l0 + KIIΪ-1.Γ
(16) *-a

< C(\\U6\\UΩ + Σ l|P.3'/llϊ.ιι + ll/IU-2-1/2,, \\us\\k.ι/2tΩ + \\φ\\UΓ) .
5=0

From (11) and the coercive inequality for Dirichlet problem it fol-

lows

(17) σ \\ue\\U/2>Ω - ||/||2fc_2-i/2,, < \\uε\\U,Γ .

The interpolation inequality says that for any δ > 0 there exists a

constant Cδ > 0 such that

(18) \\u\\U>Ω <δ\\u\\U/2,Ω + Cδ\\u\\lΩ , ueC"(Ω) .

Thus, the inequalities (16), (17) and (18) together with (9) immedi-
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ately imply the proposition.
In the below, Theorem 1 will be proved. We begin with the proof

in case / e C°°(ί2) and φ e C°°(Γ). So that we can use Propositions 1-6.
Proposition 6 becomes, by using the notation (12),

The theorem of Banach-Sacks guarantees that there exists a sequence
εj > ε2 > converging to zero such that, as n —> oo,

Vn = M i + ' + u* ->u in Hk(Ω;p) .
n

From (8) we have, setting Bλ[u,v] = B[u, v] + λ(u,v),

n

+ {φ,v)Γ + β l + " +£Hf,v)Ω .
n

Noting that vn->u and εnuεn —• 0 in Hk~i(Ω) as w -> oo, we can derive

(19) Qλ>t[u, v] = (g/, v)fl + (φ, v)Γ , v e C°°(S) ,

and hence the u satisfies (4). Moreover

( I I ^ PIU + ••• + l l ^ p y

\l-ur
n

Accordingly, we obtain (5) as n—>oo. It is easily seen that the unique-
ness of solution of (4) follows from (19) and Proposition 1.

Suppose now that / and φ are in Hk'\Ω;p) and Hk~\Γ), respec-
tively. Let fj e C°°(β) and Ψj e C~{Γ) (j = 1,2, •) such that fj -^ / in
Hk'2(φ;p) and ψj->φ in Hk~\Γ) as j->oo. For each j , we can find
Uj eHk(Ω; p) whose existence has just been proved, satisfying (4) and (5)
with f — fj and φ — φs. We can immediately see that us converges to
u in Hk(Ω;p) an —> oo. Thus we finally obtain that u is the unique
solution of (4) and satisfies (5).

§ 3. Proof of Corollary.

Assume that there exists an open neighbourhood Uo of Γo in Rι such
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that γ = 0 in Vo = Γ Π UQ9 and that (Γ - 7 ^ Π [/, is transformed by

to τj c r,. Then we have instead of (15)

(150 I([3, Γ]w, K2^X| < Cn \\u\\^T, .

Hence we can change, in Proposition 5, the term ||^ f i | | r,Γ into ||w.||r,r-Fo

By the well known inequalities:

I N k r - r o < const. \\u\\r+1/2tQ_Uo

<d\\u\\r + hΩ-U0+Cδ\\u\\r,Ω

<C(d\\pedr+ϊu\\OtΩ + C8\\u\\r.o) ,

we obtain Proposition 5 with Cn — 0. In this case we have tk = 0 in

Proposition 6. Thus we can assert Corollary.

§ 4 . Proof of Theorem 2.

We assume that Γo — {x e Γ a(x) = 0} is a C°° manifold of dimen-

sion I — 2 and γ is transversal to Γo. Let Uj9 ιcj9 Σj9 τj9 Jj9 Kj and ζj be

the same in § 1. Here we further assume that for every j such that

Uj Π Γo Φ 0, the set Uύ Π Γo is transformed onto an open portion τ) of

yt = 0, ?/! = 0 and p is altered to ^ = 9X by κj9 and r(Cj(^)) = 0 in a

neighbourhood Vo of Γo.

LEMMA 4. Γ/iere βxisίs α positive C°° function h on Γ such that

—r*Qι) + βh > o o^ r 0 .

Proof. By Lemma 1, we have only to find h such that —γh +

(b + 2β)h>0 on Γo. For every / such that Uj Π ΓOΦ09 let ^ be satis-

fying —dj/^ + (6 + 2β)hj = 1. Then fe = ^ f e j is a desired one, since

γζj = 0 on TV

Using this lemma, we can easily prove

LEMMA 2'. We can find a function q(x) e C°°(β) satisfying

( i ) q > 0 in Ω and q — ha on Γ.

(ii) (ii) of Lemma 2.

(iii) There exists a positive constant cλ such that

~dvq + ~γ*(h) + βh>cx on Γ .
Li Li

If we define as
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Q[u, v] = B[u, qv] + (hγu + hβu)vdσ ,

then Propositions 1 and 2 with t = 0 remain valid. We shall now show

that Proposition 3 also holds if P t[u, K-'T^KTu] and Cπ | |^| |2

r 5 Γ are re-

placed with Pε

t[u9 (hK^T^hKTu] and Cn\\u\\2

r^f where τr denotes the same

notation as in §3. In (I) of the proof of Proposition 3 we have only

to replace K with hK. In this case, the forms II and III become

ϊl[u,v] = I diU hKvdσ

and

Iϊl[u,v] = I βu-hKvdσ .

Therefore we have

, Tu] = (dxTu, hKTu)τ

= (Tdxu9 hKTu\ + ([d19 T]u, hKTu\

= (3^, hKQιKYλT*hKTu)τ + ([d19 T]u, KKTu\

, QιK)-ιT*hKTu\ + (ld19 T]u, hKTu)τ .

Hence

Π[Tu,Tu] - II[u9(hK)-1T*hKTu] < C 5

since dxζ = 0 in Vo. It is obvious that

ΏI[Tu9Tu] - III[u9(hK)-1T*hKTu] < CIU\\u\\r_Uτ\\Tu\\Qtτ .

Thus, Proposition 3 can be concluded in our case.

By the same argument as in §3, we obtain Proposition 5 with

Cn = 0. Finally we can complete the proof of Theorem 2 by the same

argument as in the proof of Theorem 1.
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