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ON A CERTAIN POISSON FORMULA1

JUN-ICHI IGUSA

Introduction. Let G denote a locally compact commutative group
with a lattice Γ, G* its dual, and <#, #*> — g*(g) for every (g, g*) in
G X G* let Γ* denote the annihilator of Γ in G* and dg the Haar
measure on G such that G/Γ is of measure 1. Finally, let F denote
an ^-function on G and F* its Fourier transform defined by

= f F(gχg,g*>dg.
J G

Then, under suitable conditions on F, we have

= Σ

in which both sides are absolutely convergent. This is a classical Poisson
formula.

Let X denote a locally compact commutative group, dx a Haar
measure on X, and / a continuous mapping of X to the above group
G for every Φ in the Schwartz-Bruhat space S(X) of X, define a func-
tion F* = F* on G* as

= f
Then, under suitable conditions on /, the Haar measure dx decomposes
into a family of tempered measures dμg9 where Supp (dμg) is contained
in f'Kg) for every g in G, such that the above Poisson formula holds
for F = Fφ defined by

Fφ(g) = f Φ(x)dμg(x) .
j x

This variant is due to Weil [9] it is an "abstract form" of the Siegel
formula.
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1 This work was partially supported by the National Science Foundation.
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Let k denote a global field, i.e., a number field or a function field
of one variable with a finite constant field; let the subscripts A and k
denote the adelization relative to k and the taking of fc-rational points,
respectively; let ψ denote a non-trivial character of kA/k and identify
kA with its dual by 0\i*) —• ψ(u*). We shall fix a universal domain K
containing k and identify K with an affine line over the prime field.
We shall change our notation slightly: let X denote an affine space and
/ a morphism of X to K defined over k; let \dx\A denote the Haar
measure on XA such that XA/Xk is of measure 1. Then we can take
kA as G = G*,& as Γ = Γ#9XA as X9\dx\A as dx, and /^ as /. During
the past several years, we became interested in proving a Poisson formula
(of WeiPs type) in the above setup. In this paper, we shall consider
the special case where / is homogeneous of degree at least 2 and
"strongly non-degenerate" in the sense that it is submersive everywhere
except at the origin 0 of X. We shall show, in that case, that the
Poisson formula holds if char (k) does not divide deg (/) and

dim (X) > 2 deg (/) .

In this formula, everything is explicitly defined for a complete statement,
we refer to § 5, Th. 5. It appears that the simplicity of the above con-
dition is quite remarkable. We have included an additional section on
some numerical coefficients of certain asymptotic expansions.

1. A review of some results. We shall keep the notation in the
introduction. Let v denote a valuation on the global field k and kΌ the
corresponding local field; let ψv denote the product of the canonical injec-
tion kυ —» kA and the non-trivial character ψ of kAjk. We recall that X
is an affine space defined over k; we introduce coordinates in X with
respect to a fe-base of Xk. Let (xlf , xn), (y19 , yn) denote coordinates
of x, y in X then [x9 y] = xιy1 + + xnyn defines a non-degenerate
symmetric bilinear form on X x X. Let Xv denote the vector space
over kυ of ^-rational points of X; let \dx\υ denote the autodual (or
"self-dual") measure on Xv relative to the bicharacter (x, y) —• ψv([x, y])
of Xv x Xv. Then the restricted product measure of all \dx\v becomes
the autodual measure on XA relative to the bicharacter {x, y) —> ψ([x, yj)
of XA x XA; this measure coincides with the Haar measure \dx\A on XA

such that XAjXk is of measure 1.
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If we take 1 as a fc-base of k, what we have said can be applied
to the universal domain K instead of X: we shall denote by \dί\v the
autodual measure on kv relative to the bicharacter (ί, i*) -> ψυ(iί*) of kv

X kv and by \di\Λ the restricted product measure of all \di\Ό9 etc. We
shall denote by | \v the absolute value on kv defined by \d(ioi)\v = lίoUdti),,
for every % Φ 0 in kΌ.

We recall that / : X -+ K is a morphism defined over k it gives rise
to a continuous mapping, in fact a λvanalytic mapping, /„: Xυ —> Jfcβ for
every v. If there is no ambiguity, we shall denote /„ also by /. Let
Xr denote the set of points of X where / is submersive, i.e., where the
cotangent vector df does not vanish; then Xf is a Zariski open subset
of X defined over fc. We observe that / is strongly non-degenerate if
and only if X — X' c {0} for a moment, we shall only assume that
X-X'c f'KO). We put U(i) = f~\i) Π X' for every i in K; we have
U(i) = f~Kϋ if i Φ 0. For every i in kυ, let U(i)v denote the set of /ir-
rational points of U(i); then U(i)υ becomes a /^-analytic manifold, and
the union of all U(i)v coincides with the similarly defined open subset
X'υ of Xv. Moreover, there exists a Borel measure \θi\v on each U(ϊ)υ

such that

f φ(z)\dx\v=[ ([
JXv JTcv \J U(i)υ

for every continuous function φ on Xυ with compact support contained
in X'v\ the measure \θι\v admits an explicit analytic expression; cf. [9],
pp. 12-13.

We define a function Fφ on k* = kv — {0} for every Φ in the Schwartz-
Bruhat space Sf(Xυ) of Xυ as

F#(i) = f Φ(x)\θi(x)\υ .

We also define a function F | on kυ as

FJ(i*) = f Φ(x)Ψv(Mx)i*)\dx\v .

Finally, for every quasicharacter ω of k% which is bounded around 0,
we put

Z(ω,Φ)= ί ω(fv(x))Φ(x)\dx\v .
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In AE we developed a coherent theory of the above three types of func-
tions; in the following, we shall recall some of our results:

Suppose first that kv is an 2?-field, i.e., v is archimedean; then, for
every quasicharacter ω of k* and t in k%, we have

in which s is in C and p in Z; we have p = 0,1 if fcυ = 2?. Conversely,
for every s in C and p in Z, the above prescription defines a quasi-
character of kζ. The complex power (or the "local zeta function") Z(ω, Φ)
has a meromorphic continuation to the whole complex Lie group of
quasicharacters of k* with poles only on the negative real axis of the
s-plane. If — λ is a pole of Z(ω,Φ) and

Σ bλ,ί(v)(s + ty*

the principal part of its Laurent expansion around —λ, we have the
following asymptotic expansion:

mχ

-? ί = l

as |ί | v-> oo. The constant γ on the left hand side is an element of fcj
defined by ψυ(ί) = e(γt), e(2 Re (yί)) for every t in kυ = R,C, respectively.
The coefficients af^(u) on the right hand side are determined by bλΛ(p)
as follows: put mv — 2,2π , d — }, 1 for &υ = /?, C, respectively, and

bp(s) = ϋ*K2dπ)d{1-™Wd8 + i\p\)/Γ(d(l -s)

then

We refer to AE-II, Th. 2 for the proof (in the case where γ — 1).
Suppose next that K = kv is a p-field, i.e., v is non-archimedean

let i? denote the maximal compact subring of K, P its maximal ideal,
and R/P =z Fq; let π denote an element of P — P2 and write an arbitrary
element t of Kx as πeu with e in Z and M in X? = R — P then, for
every quasicharacter ω oί Kx, we have
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ω(ί) = zeχ(u) ,

in which z is in Cx and χ is a character of J5Γ?. Conversely, for every
z in Cx and χ in the dual of Kf, the above prescription defines a quasi-
character of Kx; and the complex power Z(ω,Φ) becomes a rational
function of z provided that char (k) — 0. If we write

Z(ω,Φ) = ΣΣ δ..i(χ)d - «"1^)"i mod
a i = l

we have \a\ > 1 and

Ftiπ'u) = f(1 - (Γ1)"1 Σ Σ (l ~ ^ 7 β 7 *z ~~

Σ ( ί : (* ~ d 7 e t j ~ 1)«-Λ&.ft(i)lα<ί+

i=l \j=0\ % — 1 J J J

Σ

for all small β, in which d is the largest integer such that ψυ = 1 on
P~d and eχ is the smallest positive integer such that χ = 1 on 1 + Pe*
#χ for χ ^ 1 is a complex number of absolute value q~ie^ and #! = — q~K
Again we refer to AE-II, Th. 2 for the proof (of an equivalent statement).

About the function Fφ, we have only to know the following: if kυ

is an l?-field, Fφ is an infinitely differentiate function on k* such that
Fφ(ί) tends to 0 as |i|υ—>oo more rapidly than any negative power of
\i\υ; if kv is a p-field, Fφ is a locally constant function on fc£ with bounded
support in kυ. Moreover, the limit 7^(0) of Fφ(i) as \i\υ -> 0 exists for
every Φ in £?(XV) if and only if F$ is an L!-function on kυ (for every
Φ); cf. AE-II, Th. 2.

Finally, we recall that the information about Z(ω, Φ) comes from the
existence of a "Hironaka resolution" of the singularities of / . If X* is
the projective space obtained from X by "adding" a hyperplane at infi-
nity, say E, and J the sheaf of ideals associated with the divisor of
zeros of the extension p of / to a function on X\ the Hironaka resolu-
tion of (E, J) is the one defined by his "Main Theorem II (N)" in [3],
p. 176. In the case where / is strongly non-degenerate, without any
assumption on the characteristic of k, the Hironaka resolution exists
and is unique as a morphism, it is simply the monoidal transformation
of X* with the origin 0 of X as its center; and it is "tame" if char (k)
does not divide deg (/). In particular, the above "provision" can be
replaced by this condition. In the following sections, we shall tacitly
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assume that / is strongly non-degenerate we put dim (X) = n and

deg (/) = m ^ 2.

2. Asymptotic formulas. We shall first consider the case where kv

is an 2?-field and (leaving the ambiguity of a numerical constant) deter-

mine the "first term" of the asymptotic expansion of F$(i*) as \i*\v -» oo

we recall that Φ is an arbitrary Schwartz function on Xv.

THEOREM 1. We have

as | i* |β -• oo, in which cv = c0 + cx sgn (i*) if kv — R; c0, cl9 and cv for

kv = C are independent of Φ and i*.

Proof. Consider the complex power Z(ωy Φ) then it becomes a finite

sum of the following four types of integrals:

f ω(t")1t|rVi(ί)Id«k , f ω d Λ T ^ 1 2 / χ I ? " τ φ M \ d y \ υ f
Jkυ Jk%

[ ω(t)φ3(t)\dt\v , f

in which all ^'s are Schwartz functions; of these φίfφ2,φ3 have compact

supports Supp (φA) does not contain 0 and ^(0) = const. Φ(0), φ2(Q, t) =

Φ(O)θ(t) with the "const." and the θ both independent of Φ. Therefore,

if ω(t) = \t\s

υ(\t\~H)p for every t in k*y then the poles of the meromorphic

continuation of Z(ω9 Φ) are among the following sequences in the s-plane:

—n/m — (l/2cZm)-times 0,1,2, ,

- 1 - (l/2d)-times 0,1,2, . . ,

in which d = \ or 1 according as kv = R or C. Moreover, the order of

a pole —A is at most 2. For our purpose, we have only to examine the

principal parts at those poles which are not smaller than —n/m.

In the case where kv — R, the principal parts in question are as

follows:

(1) p

(2) A'λ>p(s + X)~\ where λ is a positive integer at most equal to n/m

and A'λtP Φ 0 only if λ -φ. p mod 2

(3) ApΦ(0)(s + n/m)-2 if n/m is an integer, where A" Φ 0 implies

n/m 0 p mod 2.
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Moreover Ap in (1) and A" in (3) are independent of Φ. Each one of

these principal parts contributes to the asymptotic expansion of F$(γ"ιt)

as \t\v '--> oo, in which ψΌ(t) = e(γt). The contribution can be determined

by the formula in the previous section: from (1) we get

φ ( Σ Apbp(n/m) (sgn ί)*

from (2) we get no contribution because A'hp ψ 0 implies JΓ(£(1 — λ +

= oo, hence

* + p)) = 0;

and, for a similar reason, from (3) we only get

(sgn t ) ^

This implies our theorem for kv = 2?.

In the case where kv = C, the principal parts in question are as

follows:

(1) ApΦ(0)(s + njmY1, where Ap Φ 0 implies p = 0

(2) A^(s + ^) - 1, where ^ = 1 + ^ |p | + i for some non-negative inte-

ger i such that λ is at most equal to n/m;

(3) A"Φ(0)(s + n/m)"2 if n/m is an integer, and A" =£ 0 implies

p = 0.

Moreover Ap in (1) and Ap in (3) are independent of Φ. Each one of

these principal parts contributes to the asymptotic expansion of Ff(γ~H)

as \t\υ—>oo, in which ψ^ίt) = e(2~Re(γt)): from (1) we get

(XI2π)AQbQ(n/m)Φ(0)\t\;n/m

from (2) we get no contribution (as in the previous case) and from (3)

we only get

This implies our theorem for kv = C. q.e.d.

Remark. The constants c0, cx for kυ = R and cw for kυ = C have the

following properties: co> ̂ « are real and ^ is p^re imaginary and c2 = 0

if m is odd. These properties can be proved in two ways. One way

is to make the above proof more precise: we observe that the "const."
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in ^(0) = const. Φ(0) and 6(t) in φ2(0, t) == Φ(0)θ(t) are real. This implies

that Ap and A" are real. Moreover, in the case where kυ = 1?, we get

mp Ξ 0 mod 2 from Ap ψ 0 and also from A" =£ 0. The properties of

cQfc19 and cυ follow immediately from these. Another way is simply to

manipulate the asymptotic formula in the theorem: we observe that the

complex conjugation applied to Ff(ί*) has the effect of replacing (Φ, £*)

by (Φ,—i*). If kv — C, the asymptotic formula as [£*!„—> oo of the

complex conjugate of Ff(i*) can be obtained in two different ways and

we get cv = <v If &„ = /?, we similarly get cQ + ct = c0 — cx this implies

that c0 is real and cx pure imaginary. In the integral defining F$(i*)9

we replace x by — a?; then F$(i*) and Φ(0) remain unchanged. If m

is odd, however, this has the effect of changing the sign of i*. There-

fore, by passing to the asymptotic formula, we get cx = 0.

We shall consider the case where K = kυ is a p-field and determine

Fi(i*) for all large | i* | υ ; we recall that Φ is an arbitrary locally constant

function with compact support on Xv.

THEOREM 2. We have

F*(π«u) = ί Σ ( Σ cβ9τχiu))oAφ(0)

for all small e in Z and for every u in Kf, in which caa are certain

constants independent of Φ and i* = πeu.

Proof. We proceed as in the proof of Th. 1: in the non-archimedean

case, we only have the first three types of integrals where φ's are locally

constant functions with compact support; and ^(0) = const. Φ(0), φ2(0,t)

— Φ(O)0(ί). Therefore, if ω(πeu) = zeχ(u) for every e in Z and u in Kf,

we get

Z{ω,Φ) = Σ Aa

+ A"δmnΦ(0)(l - q-'z)'2 mod C[z, z-1] ,

in which A*Λ,A!', A " are constants and dmw is the Kronecker delta; AatX9 An

are independent of Φ Aα>χ = 0 unless χm = 1 and A' = A " = 0 unless

χ = 1. By applying the formula we recalled in the previous section, we

get
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F*(πeu) = \ Σ (d - T1)-1 Σ Aβttgx-ιO

for all small e. This can be rewritten as stated in the theorem, q.e.d.

Th. 1 and Th. 2 have the following implication:

COROLLARY. We have

|F*(i*)| ^ const, max (1, |i*|,,)-n/TO

for every i* in kv, in which the "const." depends on Φ but not on i*.

We might mention that such an estimate was difficult to obtain in

the archimedean case. In fact, even for a special / , known estimates

are considerably less precise than ours.

3. Asymptotic formulas ("good case")- We have introduced coordinates

in X with respect to a M>ase of Xk. In terms of the coordinates

(x19 ••-,#„) of x,f(%) becomes a homogeneous polynomial of degree m

with coefficients in k. Since / is strongly non-degenerate, there exist

a positive integer p and n2 polynomials AtJix) in k[xl9 , xn] satisfying

a* = Σ Aίjix)fjix)

for 1 ^ i ^ n, in which fj(x) = df/dXj. For a non-archimedean valuation

Ί; on fc, we have started using the notation K = kv,R,P, etc. we shall

use the notation R{n\ instead of Rn, to denote ί x x f i we similarly

define P{n) etc. Also we shall denote by X° the R{n) considered as a

(compact open) subset of XΌ. We choose v so that the coefficients of

f(x) and Aijix) for all i,y are in R and eZ = 0, i.e., ψ, = 1 on β but

not on P~\ We have excluded only a finite number of valuations on k

and achieved the following: (1) fix) is in R[xί9 ••-,#„]; (2) if /(#) is the

element of Fq[x19 •••,»„] obtained from /(ίc) by reducing its coefficients

modulo P and alf , an elements of any extension field of Fq not all 0,

at least one /<(#) = df(x)/dXi does not vanish at a — (αx, , α j ; (3) Z j

is of measure 1.

We shall assume that v is such a "good valuation" on k; and, for

the sake of completeness, we shall prove the following two elementary

lemmas:
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LEMMA 1. Let t denote an element of R of order r and Ne(t) the
number of a modPe, where a is in R{n\ satisfying f(a) = tmoάPe; then,
if e > r, we have

q'in~ι)eNe(t) = ( Σ q-(n-mAq-in-ι\NM - D
\0gmi<r /

in which δ'rQ = 1 or 0 according as r = 0 or r ^ 0 mod m; if r = oo, i.e.,
if t = 0, we have

q~in-1)eNe(0) = gfβ+»c-e/m3

in which [ ] is the Gauss symbol.

Proof. Suppose first that t Φ 0. If /(α) = t mod Pe,a = 0 mod PS
and e > r, then we get mΐ fg r hence

Ne(t) =

where the "card" is the number of amodPe~mί satisfying

f(a) = ττ-mίέ mod Pe~mί , α ̂  0 mod P .

By the usual lifting process of a solution modP to solutions modulo
higher powers of P, we get

card =

according as mi < r or mΐ = r the rest is clear.
Suppose next that t = 0. If α = 0 mod P* and mi ̂ > e, we obviously

have /(α) = 0 mod Pe hence

Ne(0) = l+ Σ (X-q-^q*"-" + Σ α ( m " υ ^ card ,

where the "card" is the number of αmodP e~w i satisfying f{a) = 0
modPe~m% α ̂  OmodP. Hence, by the usual lifting process, we get

"card" = {NM - i)g<»-iχ«-»i-i> ;

the rest is straightforward, q.e.d.
LEMMA 2. Let Φ denote the characteristic function of X° then for

every i* in Kx of order — e <; 0, we have
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according as e Ξ£ 1 or e = 1 mod m.

Proof. By Lemma 1 and by the orthogonality of characters (of a

finite commutative group), we get

= f
J

f
\e-l

where the summation ][7 is relative to t mod P e satisfying ord (ί) = β — 1.

The rest is straightforward, q.e.d.

In the notation of Lemma 2, we have

(*) \F$(i*)\ ^ \i%n/™

for every ί* in if — P provided that e = — ord(ΐ*) ^ lmodm; we shall

examine the case where e = 1 mod m: we change our notation slightly

and denote by t an element of Fq9 by ψ any non-trivial character of Fq,

and by N(ί) the number of solutions of f(x) — t = 0 in FJ. Then by

Lemma 2 we can rewrite (*) as

(**) Ί-n/v

in which the summation is taken over F α ; it is equal to the sum of

Ψ(f(o>)) for a running over FJ. In the special case where m = 2, it is

well known (and easy to show) that (**) holds with the equality sign.

On the other hand, if n ^ 3, then fix) — taj1 is absolutely irreducible

for every t in Fq and /(#) — tx% = 0 defines a non-singular projective

hypersurface over Fq. Therefore we can apply the "Riemann-Weil

hypothesis" proved recently (after the works of Grothendieck and others)

by Deligne [1]; see also Dwork [2]:

In the above notation, "there exist complex numbers a19 a2, of

absolute value qw*-1 such that
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2V(0) = g"-1 + (-l)»(g - 1) Σ «t 5
i

also there exist complex numbers αri(ί),αr2(ί), of absolute value
depending on ί ^ O such that

the number of a/s and the number of α/£)'s depend only on m and n."
If we use this result, we get

Q~n Σ Ψ(f)N(f) == (~l)nq~n(q Σ^~2
t \ i t--

hence

^ C'q~

for some constant c depending only on m and n. Since we have \{n — 1)
— n/m :> 1/6 for n > m ^ 3, the inequality:

implies c6 > #; the number of such v'& is finite. We have thus obtained
the following theorem:

THEOREM 3. Suppose that n> m, i.e., dim (Z) > deg (/) then there
exists a finite set S of valuations on k containing the set S^ of archi-
medean valuations such that if v is not in S and Φ is the characteristic
function of X°y we have

for every i* in kv.

We recall that we have the standing hypothesis that / is strongly
non-degenerate and m >̂ 2.

4. A tempered measure on XA. We shall start from a local consid-
eration; the following lemma follows from what we have reviewed in
§1, from the corollary in §2 (of Th. 1 and Th. 2), and from AE-II,
Th. 3:

LEMMA 3. Suppose that n>m; then the image measure of \θo\v

under the inclusion U(0)v —> Xv is tempered and
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i) = ί Φv
J X-Ό

defines a continuous U-f unction FΦυ on kv for every Φv in Sf(XΌ). More-
over its Fourier transform F$υ is also a continuous ^-function on kv;
and we have

FΦυ{i)= f

for every i in kυ.

For every i in kΌ, we have recalled the definition of U(i)Ό in § 1.
Suppose that v is a good valuation. If i is ^-integral and different from
0, we define U(i)S &s the (compact open) subset of U(ί)υ consisting of
'y-integral points if i = 0, we define £7(0) ° as the subset of U(O)Ό con-
sisting of ^-primitive points, i.e., ^-integral points with v-units among
their coordinates. Then, in the notation of the previous section, we
have

I
|<?β|β = q-^-"(N(0) - 1)

provided that i, the residue class of i mod P, is different from 0. We
can apply Deligne's result to the right hand sides; and we get

U Z
< £, Q-a/2)(n-i)

according to the cases, in which c is a constant independent of v the
upper bound c cr(1/2)π+1 can obviously be used in both cases.

We shall change our notation slightly and denote by i an element
of k; then the above estimates hold for almost all v. Consider the fol-
lowing infinite product:

Π'ί
V J ϋ

extended over the set of good valuations or over its subset defined by
\i\v = 1 according as i = 0 or i Φ 0. Then, if \n — 1 > 1, i.e., if n > 4,
it is convergent (in the usual sense if we exclude a finite number of
factors which may be 0). Therefore the restricted product measure
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\θi\A of all \θι\Ό is defined on the adelization U(i)A of U(i) provided that
n > 4 this provision can be replaced by n > 3 for i Φ 0. Moreover the
image measure of \θi\A under U(i)A -» Z^ is tempered for every i Φ 0; by
Lemma 3 it is also tempered for i = 0 if n> m. Therefore, if n >
max (m, 4), then

= f
is defined for every Φ in Sf(XA) and ί in ft.

THEOREM 4. Suppose that w>max(m + 1,4) and let C denote a
compact subset of ^{XA) then the series

for Φ varying in C has a "dominant series."

Proof. There exists a finite set S of valuations on k containing
SL and an element φυ ^ 0 of ^(Xυ) for each v, which is equal to the
characteristic function of X° for every v not in S, such that

\Φ(x)\ ^ φ(x) =

for every Φ in C and x in Z^. For the proof, we refer to [8], Lemma
5; see also [5], Lemma 7. We may assume that every v not in S is a
good valuation. We have only to show that the series of Fφ(i) for i
running over kx is convergent.

First of all, we have

V

for every ί. We observe that if v is not in SM, the image of Supp (φυ)
under /„ is compact. Therefore the set of all i for which Fφυ(i) Φ 0 is
bounded in kv. In particular, if v is not in S9 then Fφυ(i) Φ 0 implies
\i\v <̂  1. Since Fφv(i) — 0 implies Fφ(i) — 0, we may restrict ί in kx by
the condition that \i\υ ̂  1 for every v not in S and |ί|β ^ const, for every
v in S — S^. Then, in the case where k is a function field, we just
get a finite set; hence there is no problem. Therefore we may assume
that k is a number field. In that case, ί is contained in a fractional
ideal of k; and its image in



POISSON FORMULA 225

is a lattice in this vector space.

If v is not in S and 0 < \i\υ <̂  1, by Lemma 1 we have

Fφυ(ϋ = g-(w"1)eiVe(i)

for any e > ordv (i). Therefore Fφυ(i) is equal to g~(w"1W1(i) if ordv (ί)

= 0 it has

I ί | v = i

as an upper bound if ordυ (i) > 0 provided that n> m. We evaluate
these further by Deligne's result and we get

Fφv(i) ^ (1 — 2(Γ 2)~ 1(1 + cq~il/2)n+1)

for some constant c independent of v and i provided that n > m + 1.
Therefore, if n > max(m + 1,4), we get

Us Fφυiϊ) ~ Cl

for some constant cx independent of i.
On the other hand, if n > m, then Fφυ is a continuous function on

kυ for every v it has a compact support for v not in SL and Fφβv)
tends to 0 as \iv\v—>oo more rapidly than any negative power of \iv\v

for v in >SL. This follows from Lemma 3 and from what we have re-
viewed in § 1. Therefore we get

gFφυ(ϋ^c2

for some constant c2 independent of i. If we denote the summation
over the above-mentioned lattice in k^ by 27> by putting these together,
we get

Σ / ^ ^ ^ Σ 7 Π max(l,Kg-2;

and the right hand side is convergent, say, by [5], Lemma 12. q.e.d.

We recall that each Fφ(i) is a tempered measure on XA. Therefore
Th. 4 shows that the series of Fφ(i) for ί running over k also defines
a tempered measure on XA. We shall add the following remark:
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Remark, Suppose that k is a number field and denote by k° its
principal order, by Q an integral ideal of k, and by \Q\ its absolute
norm assume that fix) is in k°[x19 , xn] and, for every i Φ 0 in k°,
let NQ(ΐ) denote the number of α mod Q, where a is in (k°){n\ satisfying
/(α) = imodQ. Then the limit (if it exists) of \Q\-(n-ι)NQ(i) as Q be-
comes divisible by any given integral ideal of k is called the "singular
series" associated with fix) and i; cf. [71. This is related to Fφ(i) as
follows:

We decompose XA into Xo x X^, where Xo is the restricted product
of Xυ for all v not in S*, and X^ the product of Xv for v in S^; simi-
larly, we decompose U(i)Λ into U(i)0 x Z7(ίL and \θt\Λ into |0«|o® |0iU.
Let Φo denote the characteristic function of the product of ZJ for all v
not in Soo,̂ ^ an arbitrary Schwartz function on X^, and Φ — ΦQ®Φ^.
Then we have

Fφ(ι) = fliml Q!- (w-υiVρ(i)). f

provided that n ^ 4.

5. Poisson formula. We shall turn our attention to another type of
functions; we shall first prove the following general lemma:

LEMMA 4. Let r denote a non-negative integer, ε a positive real
number, and σv for each valuation v on k a real number; suppose
that συ > r for all v and συ ^ r + 1 + ε for almost all v. Then the
series

in which i — (i19 , ir) runs over kr, is convergent.

Proof. In the case where & is a number field, this lemma was
proved in [5] as Prop. 1. Suppose, therefore, that k is a function field
of genus g; let Fqo denote the algebraic closure in k of the prime field.
Since k contains a prime divisor of arbitrarily large degree, we can
choose one, say p^, satisfying deg (pj ;> 2g let | U denote the usual
absolute value at pTO. For any non-negative integer e, let L(epJ denote
the vector space over Fqo of elements of k with poles only at p^ and
with orders at most e; then L(pJ contains an element t not in Fqo.
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Let k° denote the integral closure of FqJ[t] in k and λ,a real numbers
satisfying λ ^ 1, a > 1 then we have

for some constant c independent of λ. This is a counterpart of [5],
Lemma 12; and it can be proved as follows:

We observe that k° is the union of Liep^J for e = 0,1,2, •••.
Moreover, if q denotes the power of qQ with d e g ( p j as its exponent,
we have lί^ = q. Therefore the left hand side is equal to

Qo*~a + Σ card (L(epJ - L((e - l)pj) max (λ, qeYa ,
e = l

in which L(0) = Fqo. And by the Riemann-Roch theorem we get

card (L(epJ) = (go)w<f

for e = l,2, •••. If we split the above summation into two parts by
qe ^ λ and qe > λ, we can convince ourselves that both parts are of
order λ1-".

Once we have that, the rest can be proved in the same way as
"Prop. 1." In fact, since the group of units of k° is (Fqo)

x, the proof
is simpler, q.e.d.

Let Φ denote an arbitrary element of S?(XΛ) and C a compact sub-
set of kA then, if n > m, there exists a finite set S of valuations on
k with the following properties: Th. 3 holds for S and every v not in
S is a good valuation Φ decomposes into the product of the characteristic
function of Z° for all v not in S and a Schwartz-Bruhat function Φs

of the product Xs of Xv for v in S; for every v not in S, the image
of C under the canonical projection kA —> &υ is contained in the unit
disc R.

Let I da? |s denote the product measure of \dx\υ for all v in S; then,
by using the corollary in § 1 (of Th. 1 and Th. 2) and Th. 3, we get

ϋ\^ Π max(l,|i|β)-n

S

-n / m

•lί, (X) [~[ \
ves

^ c Π max(l,|ip"n
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for every ί* = (i*)υ in C and i in fe, in which the constant c is inde-
pendent of i* and i. Actually we can show that such a constant exists
even if we let Φ vary in a compact subset of S?(XA). At any rate, by
taking r = 1 and σv = n/m in Lemma 4, we see that the following series:

θ(i*) — Σ Fφd* + Ό
iek

for i* varying in C has a dominant series if n > 2m. Since kA/k is
compact, we may assume that kA = k + C. In this way, we see that
the above series defines a continuous function on kA/k and that F$ is a
continuous U-tunction on kA. Let

denote the Fourier expansion of θ(i*); then we get

α(ί)= f Ff(i*)ψ(-ii*)|di*U.

By applying Lemma 3, we see that the right hand side coincides with
Fφ(i) for every i; hence

for every i* in fe^ provided that the left hand side is absolutely con-
vergent. Since n > 2m implies w > max (m + 1,4), the absolute con-
vergence is guaranteed by Th. 4. And, by putting i* = 0, we get the
following theorem:

THEOREM 5. Suppose that n>2m, i.e., dim (Z) > 2 deg (/) then
for every Φ in £f(XΛ) we have

Σ f Φ(χ)Mχ)\A = Σ f Φ(χ)Ψ(f(χ)i*)\dχ\A,
iekJU{ί)A i*ekJXA

in which both sides are absolutely convergent.

We observe that the integrand Φi*(x) = Φ(x)ψ(f(x)i*) on the right
hand side is in £?(XA) and that the above tempered measure on XA takes
the same value at Φ(x) and Φt*(x). The correspondence Φ —> Φt* uniquely
extends to a unitary operator on U(XA). This invariance property is
preserved even if we introduce a tempered measure E(Φ) as
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E(Φ) = Σ f Φ(x)f(f(x)i*)\dx\A + Φ(0) .
i*ek J xA

In the special case where m =• 2, if we put f(x, y) = /(# + T/) — f(x) —
/(?/), the new measure E(Φ) is also invariant under the following twisted
Fourier transformation:

Φ(x)=[ Φ(y)ψ(f(x,y))\dy\A;
J XA

cf. [9], p. 64. In this way, we see that E(Φ) is invariant under a group
of unitary operators which is isomorphic to SL2(k). It is an interesting
problem to examine whether this classical result has a generalization of
some kind to the case where m >̂ 3.

6. The constants ίv(ψvof). We shall add some remarks on the
numerical constants which appeared in the asymptotic formulas for
F$(ί*) as \i*\υ-+ oo: consider ψv(f(x)) as a tempered distribution T(x) =
Tv(x) on Xv as

T[Φ] = f
J X

for every Φ in ^(Xυ); let T* denote its Fourier transform defined by
T*[Φ] = Γ[Φ*], where

= ί Φ(y)ψv(ix,y])\dy\v .
JXv

Then Γ* is an analytic function on Xυ for kv — R, C. We have learned
this fact from L. Ehrenpreis; it can be proved as follows:

Suppose first that kv — R; for our purpose, we may assume that
ψv(t) = e(t) for every t in R. If P(f) is a polynomial in n letters
fi> > fw with complex coefficients, we shall denote by P(d/dx) the dif-
ferential operator obtained from P(ξ) by replacing each ξ€ by d/dα ;̂ as
before, we put fi(x) = df/dxt for 1 ^ i ^ n. We observe that the distri-
bution T* on Z υ = Rn satisfies

fi(β/dx)T* + (2π(-l)1/2)m-1xif = 0

for 1 <^ i <L n, in which m = deg (/) *> 2. Therefore the analyticity of
T* follows from the following theorem:

"Let Pι(ξ)9P2(ξ), - denote a finite number of homogeneous poly-
nomials of the same positive degree in ξ 19 , ξn with real coefficients



230 JUN-ICHI IGUSA

such that they do not vanish simultaneously at any point of Rn — {0}
let Dlf D29 denote linear partial differential operators of the form

Di = Piid/dx) + lower terms,

in which the coefficients of the lower terms are analytic on some open
subset U of Rn. Then any distribution S on U satisfying DiS = 0 for
every i is analytic on U." (This theorem itself follows from the stan-
dard theorem in, e.g., [4], p. 178 by observing that

is "elliptic" and DS = 0.)

Suppose next that kυ = C; let (zU" ,zn), instead of (x19 ••-,#»),

denote coordinates on Xv put xt — Re (zt)f yt = Im (zt), and F(x, y) —

2 Re (/„(«)) then F(x, y) has the same property as the fv(x) for kΌ = R:

it is a homogeneous polynomial of degree m in x19 , xn, y19 , yn with

real coefficients such that its 2n partial derivatives do not vanish

simultaneously at any point of R2n — {0}. Therefore T* is analytic on

(the underlying real vector space of) Xv •= Cn.

THEOREM 6. In the notation of Th. 1, we have T*(0) = cQ + cx or

cv according as kv = R or C.

Proof. We have

cvφ(θ) = l im| t | ;Fί( t w )
ί-*oo

for every Φ in £f(Xv). We choose an element of S?(XV) with compact
support call it φ and take its Fourier transform φ* as Φ then we get

= lim ί φ(x)T*(t~ιx)\dx\v

= T*(O)f φ(x)\dx\υ .

We have used the fact that T*{t~ιx) tends uniformly to T*(0) on the
compact subset Supp (φ) of XΌ. Since φ is an arbitrary element of
S?(XΌ) with compact support, we get cv = T*(0). q.e.d.

We shall consider the case where K = &„ is a p-field and prove the
following counterpart of Th. 6:
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THEOREM 7. The constant T*(0) is meaningful and, in the notation
of Th, 2, we have

Γ*(0) =

Proof. As a tempered distribution on Xv, T* is a finitely additive
function on the family of all compact open subsets of Xυ. Let e denote
a non-negative integer and φe the characteristic function of (Peyn) then
the integral of φe over Xv is q-^^d+^n and, if Φ — φ0, we have

= l im Q +e nFφ\7z~ +e m ) .

According to Th. 2, the expression on the right hand side (under the
limit sign) is equal to

Σ
am-qTi

for all large β. We observe that this finite sum does not depend on the
choice of the coordinates by which the sequence φ09 φ19 is defined.
Therefore we may call the above limit the "derivative" of T* at 0 and
denote it by Γ*(0). q.e.d.

We shall change our notation and denote Γ*(0) by %Mrv°f) for
every v. Suppose that v is a good valuation and aΌ Φ 0 an element of
K — kv of order eQ then we get

according as e0 ^ — 1 or β0 = — 1 mod m. This can be derived from
Lemma 2. In particular, by taking aυ = 1, we get iv(ψvof) = 1. There-
fore we can define i(ψof) as

the product on the right hand side is really a finite product. In the
case where m = 2, iv(ψvof) is equal to WeiΓs γΌ(ψΌof) except for the
square root of the absolute value in kv of the discriminant of / ; cf.
[8], p. 161. We recall that the product of γυ(ψυof) is 1; cf. op. cit.,
p. 179. By an elementary product formula, the product of the absolute
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value in kv of the discriminant of / is 1; hence we get i(ψo/) = 1.
We shall give an example indicating that a theorem concerning iOψ o/)
(even if it exists) can not have such a simple form for m ^ 3.

EXAMPLE. We take k = β, ψM) = e{—t) for every t in Q^ — R,
ψp(t) = e«t}) for every t in Qp, where <£> denotes the "fractional part"
of t. Then, for any αM in Rx, we get

C(^oo(^oo^m)) = (2/m)Γ(l/m)(2π\aO3\)-ι/m — times

^(—sgn(αj/4m) or cos (ττ/2m)

according as m is even or odd. Let χ denote a character of the group
of units of Zp and put

gχ = p-*χ( £
\u mod PeZ

in which u & 0 mod p and eχ is (as in § 1) the smallest positive integer
such that χ = 1 on 1 + pe*Zp. Then, for any αp = pe°u0 in Q£ of order
e0 satisfying 0 ^ e0 < m, we get

Σ f Σ

If we take m = 2, as a special case of what we have recalled, we get
i(ψ(ax2)) = 1 for every a in Qx. In particular, we have

However, if we take m — 4 and α = 1, we get

in which ζ = e(l/16); this is not even a real number. Finally, if we
take m = 3 and a = 9, we get i3(ψ3(9^3)) = 0, hence i(ψ(9#3)) = 0. (We
can show that the situation does not improve even if we extend Q by
adjoining m-th roots of unity.)
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