ON THE CONDUCTOR OF AN ELLIPTIC CURVE WITH A RATIONAL POINT OF ORDER 2

TOSHIHIRO HADANO

1. Introduction

Let C be an elliptic curve (an abelian variety of dimension one) defined over the field \boldsymbol{Q} of rational numbers. A minimal Weierstrass model for C at all primes p in the sense of Néron [3] is given by a plane cubic equation of the form

$$
\begin{equation*}
y^{2}+a_{1} x y+a_{3} y+x^{3}+a_{2} x^{2}+a_{4} x+a_{6}=0 \tag{1.1}
\end{equation*}
$$

where a_{j} belongs to the ring Z of integers of \boldsymbol{Q}, the zero of C being the point of infinity.

Following Weil, we define the conductor N of C by

$$
N=\prod_{\mathrm{anl} p} p^{\left(\operatorname{ord}_{p} A+1-n_{p}\right)}
$$

where Δ denotes the discriminant of C, and n_{p} is the number of components of the Néron reduction of C over \boldsymbol{Q} without counting multiplicities. It is well-known that the p-exponent of N is

$$
\operatorname{ord}_{p} \Delta+1-n_{p}= \begin{cases}0 & \text { for non-degenerate reduction } \\ 1 & \text { for multiplicative reduction } \\ 2 & \text { for additive reduction and } p \neq 2,3 \\ \geqq 2 & \text { for additive reduction and } p=2,3\end{cases}
$$

Therefore both N and Δ of a minimal model are divisible exactly by those primes at which C has degenerate reduction. (See Ogg [6], [7]).

We consider the problem to find all the elliptic curves over \boldsymbol{Q} of given conductor N. As we may reduce this problem to find the rational solutions of the diophantine equation $y^{2}=x^{3}+k$ with $k \in Z$, there are only finitely many such curves by virtue of Thue's theorem. Ogg [5], [6] has found all the curves by showing that they have a rational point

[^0]of order 2 for $N=2^{m}, 3 \cdot 2^{m} 9 \cdot 2^{m}$, while Vélu [8] found all the curves of $N=11^{m}$ under the Weil's conjecture for $\Gamma_{0}(N)$. On the other hand, Miyawaki [1] has culculated all the curves of prime power conductor with a rational point of finite order >2.

In this paper we treat the curves of $N=p^{m}$ and $2^{m} p^{n}$ (for this case, see [10] as résumé) with a rational point of order 2. For $N=p^{m}$, we can find all admissible p, and, a fortiori, all the curves for each p. (Section 3). For $N=2^{m} p^{n}$, we can find all the curves under an assumption which can be eliminated for 'non-large' p with $p \equiv 3$ or $5(\bmod 8)$. Moreover, we get some results on the elliptic curve which has multiplicative reduction at 2 and p, and these are generalizations of the results of Ogg [6]. (Section 4). In Appendix all the elliptic curves of 3-power conductor are determined.

2. Diophantine lemma

We prepare all the diophantine results we need afterwards.
Lemma. The only non-zero integral solutions of the equations below for a given odd prime p are as follows:

1) If $X^{2}-1=2^{\alpha} p^{\beta}$, then $\left(|X|, 2^{\alpha} p^{\beta}\right)=(2,3),\left(3,2^{3}\right),\left(5,2^{3} 3\right),\left(7,2^{4} 3\right),\left(9,2^{4} 5\right)$, $\left(17,2^{5} 3^{2}\right)$ for $p \equiv 3$ or $5(\bmod 8)$, and $\beta=1, p=2^{\alpha-2} \pm 1(\alpha \geqq 5)$ for $p \equiv 1$ or $7(\bmod 8)$.
2) If $X^{2}+1=2^{\alpha} p^{\beta}$, then $\left(|X|, 2^{\alpha} p^{\beta}\right)=(1,2)$ for $p \equiv 3(\bmod 4)$, and either $\alpha=0, \beta=1$ or $\alpha=1, \beta=1,2,4$ for $p \equiv 1(\bmod 4)$. In particular we have $\beta=4$ if and only if $p=13,|X|=239$.
3) If $2 X^{2}-1=p^{\alpha}, \alpha>0$, then there is no solution for $p \equiv 3$ or $5(\bmod 8)$.
4) If $2 X^{2}+1=p^{\alpha}, \alpha>0$, then $\alpha=1,2$ or $\left(|X|, p^{\alpha}\right)=\left(11,3^{5}\right)$ for $p \equiv 1$ or $3(\bmod 8)$, and there is no solution for $p \equiv 5$ or $7(\bmod 8)$.
5) We assume here that p satisfies the conjecture of Ankeny-ArtinChowla and the analogy (See [2], Chapter 8$)$ for $p \equiv 3$ or $5(\bmod 8)$. If $\left| \pm p^{\alpha}-X^{2}\right|=2^{\beta}$, then $\left(\pm p^{\alpha},|X|\right)=(1,3),(-1,1),(3,2),(-3,1),\left(3^{2}, 1\right),\left(3^{2}, 5\right)$, $\left(3^{3}, 5\right),\left(3^{4}, 7\right)$ or $\alpha=\beta=1$ for $p \equiv 3(\bmod 8)$, and $\left(\pm p^{\alpha},|X|\right)=(1,3),(-1,1)$, $\left(5^{2}, 3\right),\left(5^{3}, 11\right), \alpha=1, \beta=0$ or $\alpha=1, \beta=2$ for $p \equiv 5(\bmod 8)$.
6) If $p X^{2}-Y= \pm 2^{\alpha}$, and $Y= \pm 2^{\beta}$, then either $2|X, 4| Y$, or $(|X|, Y)$ $=(1,4),(1,2),(1,1),(1,-1)$ for $p=3,(1,4),(1,1)$ for $p=5$, and there is no solution for $p \neq 3,5$.
7) If $X^{2}-64=p^{\alpha}$, then $\left(|X|, p^{\alpha}\right)=(9,17)$.
8) If $X^{2}+64=p^{\alpha}$, then $\left(|X|, p^{\alpha}\right)=\left(15,17^{2}\right)$ or $\alpha=1$ for all p.

This lemma except 7) and 8) is a generalization of Diophantine lemma of Ogg [6]. The methods for solving these equations are standard and elementary. We refer to each parts of this lemma as $D_{1}, \cdots, D_{8} . \quad D_{1}$ is easy by [2], Chapter 30. D_{2} may be solved by factorization in $Z[\sqrt{-1}]$ and Ljunggren's result in [2], Chapter 28. D_{3} is easy. D_{4} and D_{5} may be solved by the congruence method and the results of Pell's equation. D_{6} and D_{7} are easy. D_{8} may be solved by factorization in $Z[\sqrt{-1}]$.

3. The case of $N=p^{m}$

Let C be an elliptic curve of conductor $N=p^{m}$ with a rational point of order 2. Then we have $m=1$ or 2 from Section 1 if $p \neq 2,3$ (cf. Appendix) and we have a defining equation for C of the form

$$
\begin{equation*}
y^{2}+x^{3}+a_{2} x^{2}+a_{4} x=0 \tag{3.1}
\end{equation*}
$$

with $a_{j} \in Z$, minimal at all $p \neq 2$, and such that we do not have $2^{2} \mid a_{2}$ and $2^{4} \mid a_{4}$. This curve is isomorphic to

$$
\begin{equation*}
y^{2}+x y+x^{3}+\left(\frac{a_{2}+1}{4}\right) x^{2}+\frac{a_{4}}{16} x=0 \tag{3.2}
\end{equation*}
$$

minimal at all p. If these coefficients are not integers, they can be made integers by a translation.

Now we propose to find all possible p such that the discriminant of (3.2) is

$$
\Delta=2^{-8} a_{4}^{2}\left(a_{2}^{2}-4 a_{4}\right)= \pm p^{2} .
$$

This result will give the determination of all C above up to isomorphisms. At first, dividing the curve (3.2) by the group generated by $(x, y)=(0,0)$, we have an isogenous curve of degree 2 given by

$$
\begin{equation*}
y^{2}+x y+x^{3}+\left(\frac{1-2 a_{2}}{4}\right) x^{2}+\left(\frac{a_{2}^{2}-4 a_{4}}{16}\right) x=0, \tag{3.3}
\end{equation*}
$$

which also has a rational point $(x, y)=(0,0)$ of order 2. Its discriminant is $2^{-4} a_{4}\left(a_{2}^{2}-4 a_{4}\right)^{2}= \pm p^{u} 2^{12 k} \quad(k \in Z, k \geqq 0)$, since (3.3) is not necessarily minimal at $p=2$ and there is a relation, in general, $12 \mid\left(\operatorname{ord}_{p} \Delta^{\prime}-\operatorname{ord}_{p} \Delta\right)$ between the discriminant Δ^{\prime} of a non-minimal model and the discriminant Δ of its minimal model. Hence we have $p^{22}= \pm 2^{12 k-12} a_{4}^{3} p^{u}$, and so $\left|a_{4}\right|=1$, $16, p^{\alpha}$ or $16 p^{\alpha}$ and $k=0$ or 1 . On the other hand, either a_{2} is odd or
$2 \| a_{2}$ as we see below, and we see that only if $a_{2} \equiv 3(\bmod 4)$ or $a_{2} \equiv 2$ $(\bmod 8)$ according as $2 \nmid a_{2}$ or $2 \| a_{2}$ respectively, we may rewrite the equation (3.3) to the minimal equation of integral coefficients by a suitable translation.

If $a_{4}= \pm 1$, then $a_{2}=2 b_{2}$ is even, so $\left|b_{2}^{2} \pm 1\right|=2^{6} p^{2}$, and by D_{1} and D_{2} we get $\left(p, a_{2}, a_{4}\right)=(17,66,1)$. If $a_{4}= \pm 16$, then $\left|a_{2}^{2} \pm 64\right|=p^{2}$; by D_{7} and D_{8} we get $\left(p, a_{2}, a_{4}\right)=(17,-9,16),(17,15,-16)$, or $\left(X^{2}+64, X,-16\right)$. If $a_{4}= \pm p^{\alpha}$, then $a_{2}=2 b_{2}$ is even, so $\left|b_{2}^{2} \pm p^{\alpha}\right|=2^{6} p^{2-2 \alpha}$. Suppose first $\lambda=2 \alpha$, then $\left|b_{2}^{2} \pm 64\right|=p^{\alpha}$; by D_{7} and D_{8} we get $\left(p, a_{2}, a_{4}\right)=(17,18,17)$, $\left(17,-30,17^{2}\right)$ or $\left(X^{2}+64,-2 X, X^{2}+64\right)$. Henceforth put $b_{2}=p^{t} c_{2}\left(p \nmid c_{2}\right)$ so that $\left|p^{2 t} c_{2}^{2} \pm p^{\alpha}\right|=2^{6} p^{\lambda-2 \alpha}$. If $\alpha \geqq 4$, then $t=1$ since otherwise we can find a better model, so $c_{2}^{2} \pm p^{\alpha-2}= \pm 2^{6} p^{2-2 \alpha-2}$ and by D_{7} and D_{8} we get $\left(p, a_{2}, a_{4}\right)=\left(17,-510,17^{4}\right)$. If $\alpha=3$, then $\left|c_{2}^{2} \pm p^{3-2 t}\right|=2^{6} p^{2-2 t-6}$ or $\left|p^{2 t-3} c_{2}^{2} \pm 1\right|=2^{6} p^{2-9}$, and by D_{7} and D_{8} we get $\left(p, a_{2}, a_{4}\right)=\left(17,306,17^{3}\right)$, $\left(X^{2}+64,2 X\left(X^{2}+64\right),\left(X^{2}+64\right)^{3}\right)$ or $\left(7,-294,-7^{3}\right)$. If $\alpha=2$, then $\left|c_{2}^{2} \pm p^{2-2 t}\right|=2^{6} p^{\lambda-2 t-4}$ or $\left|p^{2 t-2} c_{2}^{2} \pm 1\right|=2^{6} p^{2-6}$, and by D_{1}, D_{2}, D_{7} and D_{8} we get $\left(p, a_{2}, a_{4}\right)=\left(17,66 \cdot 17,17^{2}\right)$. If $\alpha=1$, then $\left|p^{2 t-1} c_{2}^{2} \pm 1\right|=2^{6} p^{2-3}$ and we get $\left(p, a_{2}, a_{4}\right)=(7,42,-7)$. Lastly if $a_{4}= \pm 16 p^{\alpha}$, then $\left|a_{2}^{2} \pm 2^{6} p^{\alpha}\right|=$ $p^{2-2 \alpha}$. Therefore similarly to above, we get $\left(p, a_{2}, a_{4}\right)=(17,-33,16 \cdot 17)$, $\left(17,-17 \cdot 9,16 \cdot 17^{2}\right),\left(17,17 \cdot 15,-16 \cdot 17^{2}\right),\left(17,17 \cdot 33,16 \cdot 17^{3}\right),\left(7,147,16 \cdot 7^{3}\right)$, $\left(X^{2}+64, X\left(X^{2}+64\right),-16\left(X^{2}+64\right)^{2}\right)$ or $(7,-21,16 \cdot 7)$. This completes all cases.

By identifying the isomorphic curves each other we have
Theorem I. There are elliptic curves of conductor $N=p^{m}$, (where $p \neq 2$ and $m=1$ or 2), with a rational point of order 2 for $p=7,17$ and primes p such that $p-64$ is square.

The minimal models with integral coefficients for $p=7,17,73$ are following:

Table 1.

N	minimal equation	Δ	2-division points $(x, y) \neq \infty$
7^{2}	$y^{2}+x y+x^{3}-5 x^{2}+7 x=0$	-7^{3}	$(0,0)$
	$y^{2}+x y+x^{3}-5 x^{2}-28 x+3 \cdot 7^{2}=0$	7^{3}	$\left(\frac{21}{4},-\frac{21}{8}\right)$
	$y^{2}+x y+x^{3}+37 x^{2}+7^{3} x=0$	-7^{9}	$(0,0)$
	$y^{2}+x y+x^{3}+37 x^{2}-4 \cdot 7^{3} x-3 \cdot 7^{5}=0$	7^{9}	$\left(-\frac{147}{4}, \frac{147}{8}\right)$

N	minimal equation	Δ	2-division points $(x, y) \neq \infty$
17	$y^{2}+x y+x^{3}-2 x^{2}+x=0$	17	$(0,0),(1,0),(1,-1)$
	$y^{2}+x y+x^{3}+16 x^{2}-8 x+1=0$	17	$\left(\frac{1}{4},-\frac{1}{8}\right)$
	$y^{2}+x y+x^{3}+4 x^{2}-x=0$	17^{2}	$(0,0),(-4,2),\left(\frac{1}{4},-\frac{1}{8}\right)$
	$y^{2}+x y+x^{3}-20 x^{2}+136 x-17^{2}=0$	-17^{4}	$\left(\frac{17}{4},-\frac{17}{8}\right),(0, \pm 17)$
17^{2}	$y^{2}+x y+x^{3}-38 x^{2}+17^{2} x=0$	17^{7}	$\begin{aligned} & (0,0),(-17,9 \cdot 17), \\ & (-17,-8 \cdot 17) \end{aligned}$
	$y^{2}+x y+x^{3}+268 x^{2}-8 \cdot 17^{2} x+17^{3}=0$	17^{7}	$\left(\frac{17}{4},-\frac{17}{8}\right)$
	$y^{2}+x y+x^{3}-140 x^{2}+17^{3} x=0$	17^{8}	$(0,0),(68,-34),\left(\frac{17^{2}}{4},-\frac{17^{2}}{8}\right)$
	$y^{2}+x y+x^{3}-344 x^{2}+8 \cdot 17^{3} x-17^{5}=0$	-17^{10}	$\left(\frac{17^{2}}{4},-\frac{17^{2}}{8}\right)$
73	$y^{2}+x y+x^{3}+x^{2}-x=0$	73	$(0,0)$
	$y^{2}+x y+x^{3}+x^{2}+4 x+3=0$	-73^{2}	$\left(-\frac{3}{4}, \frac{3}{8}\right)$
73^{2}	$y^{2}+x y+x^{3}+55 x^{2}-73^{2} x=0$	73^{7}	$(0,0)$
	$y^{2}+x y+x^{3}+55 x^{2}+4 \cdot 73^{2} x+3 \cdot 73^{3}=0$	-73^{8}	$\left(-\frac{219}{4}, \frac{219}{8}\right)$

Remark. We see that the members in each N above are isogenous to each other. (See Vélu [9]). For $p=2$, see Ogg [5]. It is well known that $N \neq 7$.

4. The case of $N=2^{m} p^{n}$

In this section we deal with the case $N=2^{m} p^{n}$ for odd prime p and generalize the results of Ogg using his ideas ([6], § 2).

Let $K=\boldsymbol{Q}\left(C_{2}\right)$ be a Galois field generated by the group C_{2} of 2-division points on the elliptic curve C defind over Q. For each prime p, e_{p} denotes the ramification degree of K / Q at p. Then we know the following results:

Lemma (Ogg [6]). (1) If C has non-degenerate reduction at each $p \neq 2$, then $e_{p}=1$.
(2) If C has multiplicative reduction at all p, then $e_{p}=1$ or 2.
(3) Suppose C has no non-zero point of order 2 in rational coordinates, then K / k is cyclic of degree 3 over a field k of degree 1 or 2 over \boldsymbol{Q}. Suppose furthermore $e_{p}=1$ or 2 for all p. Then the class number of
k is divisible by 3.
Now let p be an odd prime such that none of the class numbers of four fields $\boldsymbol{Q}(\sqrt{ \pm p}), \boldsymbol{Q}(\sqrt{ \pm 2 p})$ is divisible by 3 , and fix this p. Suppose C has non-degenerate reduction (i.e. good reduction) at all primes $q \neq 2$, p. Then $e_{q}=1$ by (1) in Lemma, and if the first conditions of (3) in Lemma is satisfied, then k in (3) is $\boldsymbol{Q}, \boldsymbol{Q}(\sqrt{-1}), \boldsymbol{Q}(\sqrt{ \pm 2}), \boldsymbol{Q}(\sqrt{ \pm p})$ or $\boldsymbol{Q}(\sqrt{ \pm 2 p})$. Hence $3 \mid e_{2}$ or $3 \mid e_{p}$. Therefore $3 \mid e_{2}$ by virtue of (2) in Lemma if $N=2^{m} p$, that is, C has a rational point of order 2 if $e_{2}=1$ or 2 and $N=2^{m} p$. In particular by (2) in Lemma C has a rational point of order 2 if $N=2 p$. So we can generalize Ogg's result:

THEOREM II. If none of the class numbers of four quadratic fields $\boldsymbol{Q}(\sqrt{ \pm p}), \boldsymbol{Q}(\sqrt{ \pm 2 p})$ for a prime $p \equiv 3$ or $5(\bmod 8)$ is divisible by 3 , then there are no elliptic curves of conductor $N=2 p$.

Proof. If there exists such a curve, we can choose an equation

$$
y^{2}+x^{3}+a_{2} x^{2}+a_{4} x=0
$$

with $a_{j} \in Z$, minimal at all $p \neq 2$. We also assume that we do not have $2^{2} \mid a_{2}$ and $2^{4} \mid a_{4}$. Since we have multiplicative reduction at 2 and p, $\operatorname{ord}_{2} j<0$ and $p \nmid a_{2}$ (cf. [3]), where $j=2^{12}\left(a_{2}^{2}-3 a_{4}\right)^{3} \Delta^{-1}$ is the invariant of the curve with the discriminant $\Delta=2^{4} a_{4}^{2}\left(a_{2}^{2}-4 a_{4}\right)= \pm 2^{\mu} p^{\nu}$. Hence we have $\mu=\operatorname{ord}_{2} \Delta>12$. If a_{2} is odd, then $a_{2}^{2}-4 a_{4}= \pm p^{\alpha}, \operatorname{ord}_{2}\left(4 a_{4}\right)>6$. If $p \mid a_{4}$, then $a_{2}^{2} \pm 1=4 a_{4}=2^{\alpha} p^{\beta}$, which is impossible by D_{1} and D_{2} since $\alpha>6$. If $p \nmid a_{4}$, then $\left| \pm p^{\alpha}-a_{2}^{2}\right|=\left|4 a_{4}\right|=2^{\beta}, \beta>6$, which is also impossible by D_{5} (without the assumption there). Then we see that this theorem can be proven by the same method as used by Ogg to show $N \neq 10,12$ in [6], §4. (Replace Diophantine lemma there with our D_{1} and D_{5} ! 'Of type C1' in his proof should be 'of type $C 2$ '.)

For example, we have $p=37,43,67,197,227$ etc. except $p=3,5,11$. However, it is well-known that this is not true for $p \equiv 1$ or $7(\bmod 8)$, but on the other hand we have

TheOREM III. If none of the class numbers of four quadratic fields $\boldsymbol{Q}(\sqrt{ \pm p}), \boldsymbol{Q}(\sqrt{ \pm 2 p})$ for a prime $p \equiv 1$ or $7(\bmod 8)$ is divisible by 3 , then the elliptic curves of conductor $N=2^{m} p,(m>0)$, have a rational point of order 2.

Proof. As a defining equation for a curve C of $N=2^{m} p$, we can take

$$
y^{2}+x^{3}+a_{2} x^{2}+a_{4} x+a_{6}=0
$$

with $a_{j} \in Z$, minimal at all $p \neq 2$. If $3 \nmid a_{2}$, then we get an equation

$$
\begin{equation*}
y^{2}+x^{3}+a_{4} x+a_{6}=0 \tag{4.1}
\end{equation*}
$$

with $a_{j} \in Z$, minimal at all $p \neq 2,3$ and such that we do not have $2^{4} \mid a_{4}$ and $2^{6} \mid a_{6}$. The discriminant Δ of this curve is

$$
\Delta=-2^{4}\left(4 a_{4}^{3}+27 a_{6}^{2}\right)= \pm 2^{\mu} 3^{12} p^{\nu}, \quad(\mu, \nu>0)
$$

Suppose that C has no rational point of order 2 , then an irrational point (x, y) of order 2 is $(r, 0)$, where r is a root of $f(X)=X^{3}+a_{4} X+a_{6}$ and $r \notin \boldsymbol{Q}$. Therefore the ramification degree e_{2} at the prime 2 of $\boldsymbol{Q}(r) / \boldsymbol{Q}$ is 3 under the assumption as we have seen. Considering the discriminant of this cubic field, we see that a_{6} is even. If a_{4} is odd, then $x=0$ refines to a root r of $f(X)$ in Q_{2} by Newton's method. This is a contradiction. Put $a_{4}=-2 u, a_{6}=2 v$. Then $8 u^{3}-27 v^{2}= \pm 2^{\mu-6} 3^{12} p^{\nu}$, so v is even, since otherwise $8 u^{3}-27 v^{2}= \pm 3^{12} p^{\nu}$, which is impossible modulo 8 for $p \equiv 1$ or $7(\bmod 8)$. Put $v=2 v_{1}$. Then we have $f(X)=X^{3}-2 u X$ $+2^{2} v_{1}$, hence u is even by $e_{2}=3$. Put $u=2 u_{1}$, then $16 u_{1}^{3}-27 v_{1}^{2}=$ $\pm 2^{\mu-8} 3^{12} p^{\nu}$, so v_{1} is even, since otherwise $16 u_{1}^{3}-27 v_{1}^{2}= \pm 3^{12} p^{\nu}$, which is impossible as above. Therefore we have $2^{2} \mid a_{4}$ and $2^{3} \mid a_{6}$. Thus to solve $f(X)=0$ is the same thing as to solve

$$
2^{-3} f(2 X)=X^{3}+2^{-2} a_{4} X+2^{-3} a_{6}
$$

Hence repeating the above arguments, we have $2^{4} \mid a_{4}$ and $2^{6} \mid a_{6}$, and this is a contradiction. If $3 \mid a_{2}$, then we get (4.1) with $a_{j} \in \boldsymbol{Z}$, minimal at all $p \neq 2$, such that the discriminant

$$
\Delta=-2^{4}\left(4 a_{4}^{3}+27 a_{6}^{2}\right)= \pm 2^{\mu} p^{\nu} \quad(\mu, \nu>0)
$$

and such that we do not have $2^{4} \mid a_{4}$ and $2^{6} \mid a_{6}$. In the same manner as above, we can complete the proof of this case, too.

For example we have $p=7,17,41,47,73,97$ etc. as such p.
In another direction:
Theorem IV. All the elliptic curves of the conductor $N=2^{m} p^{n}$, where $p \equiv 3$ or $5(\bmod 8)$ and $p \neq 3$, that have a rational point of order

2 are effectively determined under the conjecture of Ankeny-Artin-Chowla and the analogy. In particular if $p-2$ or $p-4$ is a square number, then the assumption on the conjecture can be eliminated.

Proof. We can take a defining equation for C of the form

$$
\begin{equation*}
y^{2}+x^{3}+a_{2} x^{2}+a_{4} x=0 \tag{4.2}
\end{equation*}
$$

with $a_{j} \in Z$, minimal at all $p \neq 2$, and such that we do not have $2^{2} \mid a_{2}$ and $2^{4} \mid a_{4}$. The discriminant of this model is

$$
\begin{equation*}
\Delta=2^{4} a_{4}^{2}\left(a_{2}^{2}-4 a_{4}\right)= \pm 2^{\mu} p^{\nu} \tag{4.3}
\end{equation*}
$$

It is sufficient to find all the pairs (a_{2}, a_{4}) satisfying (4.3) for a given p. Noting that $p \nmid a_{2}$ (resp. $p \mid a_{2}$) if $N=2^{m} p$ (resp. $N=2^{m} p^{2}$), we can get all the pairs $\left(a_{2}, a_{4}\right)$, up to isomorphisms, by virtue of Diophantine lemma D_{1}, \cdots, D_{6} in view of the fact that $2^{2} \not 犭 a_{2}$ and $2^{4} \nmid a_{4}$. (For details, see Ogg [6], § 3.)

Remark. We know that $n=1$ or 2 only if $p \geqq 5$. For $p=3$, Ogg [6] has found all the curves of conductor $N=3 \cdot 2^{m}$ and $9 \cdot 2^{m}$ by showing that they have a rational point of order 2 (cf. [4]), and Coghlan has found in his thesis all the curves of conductor $N=2^{m} 3^{n}$. For example, if $N=2^{m} 5$ in our case, then $2 \leqq m \leqq 7$ and there are 56 curves with a rational point of order 2 . We can prove, in general, that the integer m is not larger than 8 . Moreover, we see that the equation (4.2) is minimal at all p (including $p=2$), in fact, otherwise we can consider the same situation as in Section 3 for $N=2^{m} p^{n}$ to show that we cannot find the pairs $\left(a_{2}, a_{4}\right)$ of the equation (3.2) since the equation $\left|X^{2} \pm p^{\alpha}\right|$ $=2^{\beta}, \beta>6$, has no integer solutions for $p \equiv 3$ or $5(\bmod 8)$ by D_{5}. For $p \equiv 1$ or $7(\bmod 8)$, it seems to be difficult to solve the equations of D_{3}, D_{5} (especially D_{5}) in general, but the theorem remains valid for all $p>3$ so long as those equations are solved.

5. Supplementary discussions

We can find all the curves of some other conductors N with a rational point of order 2 so long as the corresponding diophantine equations can be solved as in the previous sections. In fact, for example, we can find all the curves of conductor $N=p^{m} q^{n}$, where $m, n>0, p$ and q are primes such that $p \equiv 3, q \equiv 5(\bmod 8)$, with a rational point
of order 2. By solving the equations

$$
\begin{gathered}
X^{2} \pm 64= \pm p^{\alpha} q^{\beta}, \quad X^{2} \pm 1=2^{6} p^{\alpha} q^{\beta}, \quad\left|p^{\alpha} X^{2} \pm 1\right|=2^{6} q^{\beta} \\
\left|p^{\alpha} \pm 2^{6} q^{\beta}\right|=X^{2}, \quad\left|p^{\alpha} X^{2} \pm 64\right|=q^{\beta}
\end{gathered}
$$

induced from the defined equation (3.2) in Section 3 with $\Delta= \pm p^{\mu} q^{\nu}$, we get 136 curves of $(p, q)=(3,5),(3,13),(11,5),(19,5),(3,37),(3,61)$, $(59,5),(11,53)$ and $m, n=1$ or 2 . Moreover, a fortiori, we can find all the curves of a given conductor N with a rational point of order $r>2$ so long as the corresponding diophantine equations can be solved. In fact, for example, if $N=2^{m} p^{n}$, and $r=4$ (cyclic), then such curves can be defined by

$$
y^{2}+x^{3} \pm\left(s^{2}+2 t\right) x^{2}+t^{2} x=0
$$

with $s, t \in Z, s>0$, minimal at all $p \neq 2$, and these curves are isogenous to

$$
y^{2}+x\left(x \mp s^{2}\right)\left(x \mp s^{2} \mp 4 t\right)=0
$$

which have three rational points of order 2. Then we have either $p=$ $2^{k} \pm 1(k \geqq 1)$ or $N=2^{5} p^{2}, 2^{6} p^{2}$ for all p. In particular, we have only $N=17^{n}$ for $m=0$ and the curves are included in Table 1 in section 3. As another example, suppose $N=2^{m} p^{n}$ and $r=6$ (non-cyclic, that is, curves which have both a rational point of order 2 and of order 3); then we have $N=14,20,34$ and 36 as Table 2 below. Note that there exist two curves; $y^{2}+x y+x^{3}-45 x^{2}+2^{9} x=0, y^{2}+x y+x^{3}-45 x^{2}-$ $2^{11} x+2^{9} 181=0$ (resp. $y^{2}+x^{3}+11 x^{2}-x=0, y^{2}+x^{3}-22 x^{2}+125 x=0$; $\left.y^{2}+x^{3}-9 x^{2}+27 x=0, y^{2}+x^{3}+18 x^{2}-27 x=0\right)$ in addition to these for $N=14$ (resp. $20 ; 36$), and the 6 or 4 curves for $N=14,20,36$ are isogenous to each other of degree 2 or 3 .

Table 2.

N	minimal model		Δ	j	2-isogenous to:
14	1	$y^{2}+x y+y+x^{3}=0$	$-2^{2} 7$	$-5^{6} 2^{-2} 7^{-1}$	$2, *$
14	2	$y^{2}-5 x y+y+x^{3}=0$	$2 \cdot 7^{2}$	$5^{3} 101^{3} 2^{-1} 7^{-2}$	$1, * *$
14	3	$y^{2}-5 x y+7 y+x^{3}=0$	$-2^{6} 7^{3}$	$5^{3} 43^{3} 2^{-6} 7^{-3}$	$4, *$
14	4	$y^{2}-11 x y+49 y+x^{3}=0$	$2^{3} 7^{6}$	$5^{3} 11^{3} 31^{3} 2^{-3} 7^{-6}$	$3, * *$
20	5	$y^{2}+x^{3}-x^{2}-x=0$	$2^{4} 5$	$2^{14} 5^{-1}$	6
20	6	$y^{2}+x^{3}+2 x^{2}+5 x=0$	$-2^{8} 5^{2}$	$2^{4} 11^{3} 5^{-2}$	5
34	7	$y^{2}+x y+x^{3}+6 x^{2}+8 x=0$	$2^{6} 17$	$5^{3} 29^{3} 2^{-6} 17^{-1}$	8

N	minimal model		Δ	j	2-isogenous to:
34	8	$y^{2}+x y+x^{3}-43 x-105=0$	$2^{3} 17^{2}$	$5^{3} 7^{3} 59^{3} 2^{-3} 17^{-2}$	7
36	9	$y^{2}+x^{3}+3 x^{2}+3 x=0$	$-2^{4} 3^{3}$	0	10
36	10	$y^{2}+x^{3}-6 x^{2}-3 x=0$	$2^{8} 3^{3}$	$2^{4} 3^{3} 5^{3}$	9

* (resp. **) denotes the isogeny of degree 3 between the curves with the same symbol.

Appendix

We can find all the elliptic curves of 3-power conductor defined over Q, up to isomorphism, as listed in Table below. Coghlan found all the curves of $N=2^{m} 3^{n}$ in his thesis, in which the curves of $N=3^{n}$ are dealt with in a manner different from below.

The minimal model (1.1) in Section 1 with $\Delta= \pm 3^{\mu}$ is reduced to

$$
\begin{equation*}
y^{2}+x^{3}+a_{4} x+a_{6}=0 \tag{A-1}
\end{equation*}
$$

with $a_{j} \in Z$, minimal at all $p \neq 2,3$, and with the discriminant

$$
-2^{4}\left(4 a_{4}^{3}+27 a_{6}^{2}\right)= \pm 2^{12} 3^{\nu}
$$

This may be reduced to the diophantine equation

$$
\begin{equation*}
y^{2}=x^{3} \pm 3^{y-3} \quad \text { with } \quad a_{4}=-2^{2} 3 x, a_{6}=2^{4} y \tag{A-2}
\end{equation*}
$$

where $\nu \geqq 3$ and $x, y \in Z$. In fact, it is well-known that there are no elliptic curves of the conductor $N=3^{n}$ with $0 \leqq n \leqq 2$. In order to show that $x, y \in Z$, we have to show that the equations $y^{2}=x^{3} \pm 2^{6} 3^{\nu-3}$ have no odd integral solutions. Since the ranks of the Mordell-Weil groups of the elliptic curves $y^{2}=x^{3} \pm 1, y^{2}=x^{3}-3$ and $y^{2}=x^{3}-9$ are all zero, it is sufficient to show that $y^{2}=x^{3}+k$ for $k=2^{6} 3^{2}, 2^{6} 3,-2^{6} 3^{4}$, and $-2^{6} 3^{5}$ has only integral solutions. This is easily done in a familiar manner.

Lemma. The elliptic curve with the conductor $N=3^{m}$ is of the form

$$
y^{2}+y+x^{3}+a_{4} x+a_{6}=0
$$

with $a_{j} \in Z$, minimal at all p.
Proof. By a transformation the equation (1.1) is reduced to

$$
y^{2}+x^{3}+\left(4 a_{2}-a_{1}^{2}\right) x^{2}+8\left(2 a_{4}-a_{1} a_{3}\right) x+16\left(4 a_{6}-a_{3}^{2}\right)=0
$$

or

$$
\begin{aligned}
y^{2}+x^{3} & +3^{4}\left\{24\left(2 a_{4}-a_{1} a_{3}\right)-\left(4 a_{2}-a_{1}^{2}\right)^{2}\right\} x \\
& +3^{3}\left\{2\left(4 a_{2}-a_{1}^{2}\right)^{3}+16 \cdot 3^{3}\left(4 \dot{a}_{6}-a_{3}^{2}\right)-8 \cdot 3^{2}\left(4 a_{2}-a_{1}^{2}\right)\left(2 a_{4}-a_{1} a_{3}\right)\right\}=0
\end{aligned}
$$

with the discriminant $\pm 2^{12} 3^{\mu}$ or $\pm 2^{12} 3^{\mu+12}$ respectively. Then, since this should coincide with (A-1), a_{1} is even by (A-2). If a_{3} is even, then (A-2) is minimal at 2 , and so the conductor of the model is $2^{m} 3^{n}(m>0)$. Hence we may put $a_{3}=1$ by a transformation $x \rightarrow x+r(r \in Z)$. Finally $3 \mid a_{2}$ in (1.1) since C has an additive reduction at 3 . Hence we may put $a_{2}=0$.

Now we can determine all the curves of $N=3^{n}$. By the above Lemma, the discriminant is

$$
\Delta=-2^{6} a_{4}^{3}-27\left(1-4 a_{6}\right)^{2}= \pm 3^{\mu},
$$

and so $\left(1-4 a_{6}\right)^{2}=\left(4 c_{4}\right)^{3}+3^{\mu-3}$ with $\alpha_{4}=-3 c_{4}$. We see that ν is odd, looking modulo 8. On the other hand, all the integral solutions of the equation $y^{2}=x^{3}+3^{n}$ with $x \equiv 0(\bmod 4), 2 \mid n$ and $n \leqq 10$ are given by :

n	0	2	4	6	8	10
solutions $(x,\|y\|)$	$(0,1)$	$(0,3)$ $(40,253)$	$\left(0,3^{2}\right)$	$\left(0,3^{3}\right)$	$\left(0,3^{4}\right)$ $\left(40 \cdot 3^{2}, 253 \cdot 3^{3}\right)$	$\left(0,3^{5}\right)$

Therefore we get the Table below by taking into consideration that we have a better model whenever $\mu \geqq 15$. The 8 curves listed are all nonisomorphic and the 4 curves of $N=27$ are isogenous to each other of degree 3.

Table: Curves of conductor $N=3^{2}$ and of the form $y^{2}+y+x^{3}+$ $a_{4} x+a_{6}=0$

Curve	a_{4}	a_{6}	Δ	N	3-type	j	$C_{\boldsymbol{Q}, 3} \neq 0 ?$	3-isogenous to:	isomorphic $/ \boldsymbol{Q}(\sqrt{ }-3)$ to:
1	0	0	-3^{3}	3^{3}	$C 1$	0	yes	2,3	3
2	-30	-63	-3^{5}	3^{3}	$C 3$	$-2^{15} \cdot 3 \cdot 5^{3}$	yes	1	4
3	0	7	-3^{9}	3^{3}	$C 6$	0	yes	1,4	4
4	-270	1708	-3^{11}	3^{3}	$C 8$	$-2^{15} \cdot 3 \cdot 5^{3}$		3	1
5	0	1	-3^{5}	3^{5}	$C 1$	0		7	2
6	0	-2	-3^{7}	3^{5}	$C 3$	0	yes	8	7
7	0	-20	-3^{11}	3^{5}	$C 6$	0	yes	5	8
8	0	61	-3^{13}	3^{5}	$C 8$	0		6	6

References

[1] I. Miyawaki, Elliptic curves of prime power conductor with Q-rational points of finite order, Osaka J. Math., 10 (1973), 309-323.
[2] L. J. Mordell, Diophantine equations, Academic Press London and New York, (1969).
[3] A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math. I.H.E.S. no. 21 (1965), 5-125.
[4] O. Neumann, Die elliptischen Kurven mit den Führern 3.2m und 9.2m, Math. Nachr., 48 (1971), 387-389.
[5] A. P. Ogg, Abelian curves of 2-power conductor, Proc. Camb. Phil. Soc., 62 (1966), 143-148.
[6] -, Abelian curves of small conductor, J. reine angew. Math., 226 (1967), 205215.
[7] , Elliptic curves and wild ramification, Amer. J. Math., 89 (1967), 1-21.
[8] J. Vélu, Courbes elliptiques sur Q ayant bonne réduction en dehors de $\{11\}, \mathrm{C} . \mathrm{R}$. Acad. Sci. Paris, 273 (1971), 73-75.
[9] -, Isogénies entre courbes elliptiques, C.R. Acad. Sci. Paris, 273 (1971), 238241.
[10] T. Hadano, Remarks on the Conductor of an Elliptic Curve, Proc. Jap. Acad., 48 (1972), 166-167.

Nagoya University

[^0]: Received September 27, 1973.

