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OPTIMAL CONTROL OF ULTIMATELY BOUNDED

STOCHASTIC PROCESSES

YOSHIO MIYAHARA

: 1. Introduction

We shall consider the optimal control for a system governed by a
stochastic differential equation

(1.1) dX(t) - f(t, X(f), u{t, X(t)))dt + G{t, Z(ί), u(t, X(t)))dW(t) ,

where ιι(t} x) is an admissible control and Wit) is a standard Wiener
process. By an optimal control we mean a control which minimizes the
cost and in addition makes the corresponding Markov process stable.
For a concept of stability we require either the ultimate boundedness or
the existence of a finite invariant measure of the Markov process.
Accordingly our approach to the optimality problem is divided into two
ways.

The first is as follows: Let Lit, x, u) be a cost function and λ be a
positive constant. The cost is given by

Jfju] = £ e-«>-mttMs,X(s)Ms,X(ί)))d8 ,

where MtiX denotes the expectation under the condition Xit) — x. An
admissible control is a control such that the corresponding process is

p-th ultimately bounded, that is, lims_^ Mt^x\Xu(s)\p <£ K < <χ> for any
it, x) e [0, oo) x Rn, An admissible control which attains the least cost is
called an optimal control.

The second approach is limited to temporary homogeneous cases,
where an admissible control is required that the corresponding process
has an invariant probability measure μ. An optimal control in this case
is the admissible control which minimizes the cost given by
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= f L(x,u(x))dμ(x) .

One may ask the relation between the above two concepts of opti-
mality. However we have only been able to give a partial answer to
this problem. (In § 3.)

In § 2 we shall prove two theorems which give us sufficient conditions
for the existence of optimal controls in the two senses respectively. The
first one (Theorem 2.1*) shows that if the Bellman equation ((2.5) and
(2.6)) has a nice solution, then the solution determines the optimal con-
trol in the first sense. The second theorem (Theorem 2.1**) asserts that
in the temporary homogeneous cases if an equation ((2.9) and (2.10)) has
a nice solution, then the solution determines the optimal control in the
second sense.

Applying these theorems, we shall consider an example in § 3, which
has been treated by W. M. Wonham [4]. We consider a temporary homo-
geneous linear system given by

(1.2) dX{t) = (AX(t) - Bu(X(t)))dt + CdW1(t) + G(X(t))dW2(t) ,

where G(x) = 2]< x&i a n ( i A,B,C and Gι are n x n, n x m, n x dx and
n X d2-dimensional constant matrices respectively, and where Wλ(t) and
W2(t) are mutually independent standard Wiener processes. We assume
that (A,B) is controllable and that the cost function L(x,u) is of the form

L(x, u) — x'Mx + ufNu , xf transpose of x ,

where M and JV are nxn and m x ^-dimensional symmetric positive-
definite constant matrices respectively. Then we can prove that all the
conditions of Theorem 2.1* and Theorem 2.1** are satisfied with p = 2
and λ > 0. Therefore we have optimal controls uf (x), λ > 0, in the first
sense and u**(x) in the second sense. One of the interesting results is
Theorem 3.2 which asserts that

lim uf(x) = u**(x) .

This formula gives us an answer to the problem to make clear the
relation between the two concepts of optimality.

The author wishes to thank Professor H. Kunita for his valuable
advice.



STOCHASTIC PROCESSES 159

§ 2. Optimality problems and criterion theorems

We consider a stochastic process which is given by a stochastic dif-
ferential equation

(2.1) dXiX) = fit, X(f), uit, X(t)))dt + Git, X(f), u(t, X((t)))dW(t) ,

where fit, x, n) is an ^-dimensional vector-valued function defined on
[0, oo) x Rn x Rm, Git, x, u) is an n x d-matrix valued function,
W(t) is a d-dimensional standard Wiener process and u(t, x) is an
admissible control. (The definition of admissible control will be given
later.)

We will treat the optimality problem in two ways.

1. Optimality problem (*)
Suppose that we are given a continuous cost function L(t, x, %ί) and

two positive constants p and λ. We say that an m-vector valued function
uit, x) is admissible in the sense (*) if it satisfies the following conditions
(i) and (ii)*.

(i) f{t, x, nit, x)) and Git, x, nit, x)) are continuous functions of it, x),
and satisfy the assumptions (Ax) and (A2)

(Aj) (Lipschitz continuity) there is a constant K such that

\fit,x,uit,x)) - fit,y,uit,y))\ ^K\x-y\

\Git,x,nit,x)) - Git,y,nit,y))\^K\x-y\

for any it, x, y) ,

(A2) \fit,x,uit,x))\^Ki\x\ + 1)

\Git,x,uit,x))\<Ki\x\ + 1),

(ii)* the process Xuit) which is determined by (2.1) for given nit, x)
is p-th ultimately bounded (see Y. Miyahara [2]).

We denote the set of all admissible controls by <2f*. For ueW* we
define the cost by

Jfju\ -

where it, x) is the initial point and MtyX is the expectation under the
condition Xuit) = x.

DEFINITION 2.1. We call uo(t, x) e ̂ * an optimal control in the sense
(*) if J?tX[u], u e <%*, attains the minimum at u0 for any it, x). The in-
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fimum J*[t, x] = inΐue^Jfx[u] is called the optimal cost.

2. Optimality problem (**)

We now consider temporary homogeneous cases, that is, we consider

a system given by

(2.1)' dXit) = f(X(t),u(X(t)))dt + G(X(t),u(X(t)))dW(t) .

Let a continuous cost function L(x,u) and two constants p(> 0) and γ be

given. We assume here t h a t L(x,u) ;> — c\x\p — /3 for some positive con-

stants c and β. An m-dimensional vector valued function u(x) is said

to be admissible in the sense (**) if it satisfies;

( i ) f(x,u(x)) and G(x,u(x)) a re Lipschitz continuous,

(ii)** the corresponding process Xu(t) has an invariant probability

measure μ such t h a t

J R
\x\p dμ(x) < oo

We denote the set of all admissible controls in the sense (**) by

The cost of u e °tt** is defined by

where

J**[w,/ί] = I L(x,u(x))dμ(x) ,
J Rn

and μ is an invariant measure of Xu(t) given by (ii)**. We mention

here that J**[u,μ\ > —oo by the assumption L ;> — c[ίc|p — β.

DEFINITION 2.2. An admissible control uo(x) e °U** is called an optimal

control in the sense (**) if J * * M , w G ̂ * * , attains the minimum at uQ.

The infimum J** = inf t t e«*J**M is called the optimal cost.

Remark 2.1. In temporary homogeneous cases, we know the relation

^ * c ^ * * . (Y. Miyahara [3])

We are now ready to state two criterion theorems.

T H E O R E M 2.1*. Assume that there exist a function V(t, x) of C{2)-class

and an m-vector valued function uQ(t, x) which satisfies the condition (i)

of the definition of admissible control, and assume that the following

conditions are satisfied;
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(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

dv

L(fi,x,u) ^ cx\x\* — a ,

0 < V(t,x) ^ c2\x\* + a ,

^ c 3 ( l + | a ? | 0 , i,3--
dxtdXj

—ZV(t, x) + ^Uo{t,x)V(t, x) + L(t, x, uQ(t, x)) = 0 ,

—λV(t, x) + «5?tf7(t, a;) + L(ί, a:, w) ^ 0 ,

/or α τ̂/ ueRm ,

where cl9c29c3,a and £ are all positive constants and

(σίj) =

(^ can &e a constant or a function of t and x.) Then uo(t, x) is an optimal

control in %* and the function V(t, x), being uniquely determined, coin-

cides with the optimal cost J*[t,x], The process XUo(t), corresponding to

uo(t,x)y is exponentially p-th ultimately bounded.

Remark 2.2. The function V(t, x) turns out to be a Liapunov function

of the exponentially p-th ultimately bounded process XUo(t). This fact

follows from the proof of Theorem 2.1*.

THEOREM 2.1**. Assume that there exist a function V(x) of C{2)-class,

an admissible control uo(x) e °tt** and a constant γ such that

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

dV
3a?ί

d2V

r 9

+ L(x, u) :> γ , for any ueR

L(x,u) Ξ> — c3 ,

where c19 c2, c3, and £ are all positive constants. Then uo(x) is an optimal

control in W** and the constant γ coinsides with the optimal cost /**.

The integral

L(x,uQ(x))dv(x)
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is equal to γ for any invariant probability measure v of XUQ which is

given by the condition (ii)**.

COROLLARY 2.1. Assume that there exist two functions V(x) and uo(x),

where V(x) is of Ci2)-class and uo(x) satisfies the condition (i) of the

definition of admissible control, and a constant γ. Further assume that

L(x,u), V(x), uo(x) and γ satisfy the conditions (2.7), (2.8), (2.9), (2.10) and

(2.11)' L{x,u)^c,{\x\* -a,) ,

(2.12) V(t,x)^c,(\x\v-a2) .

Then uo(x) belongs to °U** and the conclusion of Theorem 2.1** holds.

Proof. It is sufficient to prove that uo(x) e %**. From the assump-

tions of Corollary 2.1 all conditions of Theorem 3.1 (B) in Y. Miyahara

[2] are satisfied. Therefore XUo(t) is exponentially p-th ultimately bounded,

and it has a finite invariant measure by Y. Miyahara [3]. This proves

that uQ(x)eW**. (Q.E.D.)

Remark 2.3. These theorems are applicable in linear cases (see § 3).

But we have not known yet whether they are useful in non-linear cases

too or not.

The rest of this section is devoted to give the proofs of the above

two theorems.

Proof of Theorem 2.1*

Step 1. Choose any admissible control u(t, x) e <%*. By the condition

(i) of the definition of admissible control and the assumptions (2.3) and

(2.4) of V(t, x)9 we are able to apply Dynkin-Ito formula to a function

e~uV(t9x) to obtain

e-λtMttXV(s,X»(s)) - e~λtV(t,x)

(2.13) = M^ \\ ̂ n{e-λτV(τ, X"(τ))}dt

^ - M M Γ {e-;τL(τ, Z(r), u(τ, Xu(τ))}dτ , s > t ^ 0 ,

where the last inequality comes from (2.6). If in particular we take

u(t, x) = uQ(t;x), then we have an equality

(2.14) '
= V(t9x) -
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On the other hand it is proved that

(2.15) φ(s) Ξ e~uMtt<tV{s, X"»(s)) -> 0 (as s — oo) .

In fact, (2.15) follows from

- ^ - = — ^ f Γ {e-hMt Mr, Xu°(τ), uΰ(τ))}dτ (by (2.14))
dt dsut

(2.16) = -e-isMt>xL(s,Xu°(s),u0(s))

^ -e-χsMt,x{cV(s,X"°(s)) - β} , (by (2.2) and (2.3),)

= -e'φ(s) + βe-χs ,

where c, c' and β are positive constants.

Two relations (2.14) and (2.15) prove that

ι J- I )
V(t, x) = Mt<x Γ {e-«-«L(τ, Z-(τ), uo(τ))}dτ

v t

Step 2. Let u(t, x) be an admissible control. Then the correspond-

ing process Xu(t) is p-th. ultimately bounded. We therefore have

(2.8) e-«-»Mt%x \XU(S)\P -> 0 , (as s -> oo) ,

with this and (2.3) we easily see that (2.15) holds for any admissible

control u(t,x). We therefore conclude from (2.13) and (2.15), that

(2.19) J*x[u] ^ V(t9x) .

Step 3. We then prove that the process XUo(t), corresponding to

uo(t, x), is exponentially p-th ultimately bounded. It is sufficient to prove

that all assumptions of Theorem 3.1(B) in [2] are satisfied. It is obvious

that the assumptions (i), (nY and (iii) are satisfied. The only condition

we have to prove is (ii), that is,

V(t,x) ^ c\x\p - β

for some positive constants c and β. From Corollary 2.2 in [2 § 2] we

know that

(2.20) MttX \XU0(s)\p ^ \ x \ p β - * 1 " - " - k2

for some positive sonstants kx and fc2. Take a positive constant Γ, then

we have the following formula by using (2.18), (2.2) and (2.20):
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V(f, X) = Γ e-^-»Mt xL(τ, Xuo(τ), U0(τ))dτ
Jί

rt+τ

(o OΛ\ ^ e"Kt"^Mt xL(τ,XUo(τ),uQ(τ))dτ — a/λ
{6.ΔL) Jt

^ Γ+ Γ e-^ΉCiMt^ \XU0(τ)\p - a)dτ - αr/ί

This proves that XUQ(t) is exponentially p-th ultimately bounded, hence
*. (Q.E.D.)

Proof of Theorem 2.1**. Choose an admissible control u{x) and con-
sider Xu(t). By the assumption (2.7) and (2.8) we are able to apply
Dynkin-Ito formula to V(x) to obtain

(2.22) MxV(X%t)) - V(x) - f MxJ?uV(Xu(s))ds .
Jo

Let μ be an invariant measure of Xu(t) given by (ii)** of the definition
of admissible control. Then we have

ί MxV(Xu(t))dμ(x) - f V(x)dμ(x)

= f ίJ MxJ?uV(Xu(s))dsdμ(.x)

^ f Γ Mx(-L(X\s),u(X%s))) + γ)dsdμ{x) (by (2.10))

(2.23) JR"JO

 t

= - f P MxL(Xu(s), u(.Xu(s)))dsdμ(x) + γt
J JR» JO

= - Γ f MxL(Xu(s),u(Xu(s)))dμ(x)ds + rt (Fubini's theorem)
Jθ J Rn

= —ί I L(x,u(x))dμ(x) + rt .

(The last integral may be +00).
The first formula in (2.23) is to be zero since μ is an invariant

measure. Now we have

(2.24) f L(x,u(x))dμ(x) ^ γ .
JΛ«

If we set u(x) = uo(x), then we obtain, by (2.9), an equality in (2.24),
namely
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(2.25) ί L(x, uo(x))dμo(x) = γ .

This completes the proof of Theorem 2.1**. (Q.E.D.)

Remark 2.4. The condition (2.11) may be replaced by

For we can use Fubini's theorem by the use of Corollary 2.1 of [2].

§ 3. Relation between the problems (*) and (**)

We shall illustrate a relation between the problems (*) and (**) by
showing an example due to W. M. Wonham [4].

Consider a system determined by

(3.1) dX(t) = (AX(t) - Bu(X(t)))dt + CdW.it) + G{X{t))dW 2{t) ,

where G(x) = 2]?-i χi@i an& A, B, C and G* are n X n, n x m, n x dλ and
n x c?2-dimensional constant matrices respectively, and where Wλ(f) and
W2(t) are mutually independent standard Wiener processes. Only the
case p~2 will be treated for simplicity. We assume that (A,B) is
controllable (see W. M. Wonham [5] for the definition) and that the cost
function L is of the form

L(x, u) — x'Mx + u'Nu , x' transpose of x ,

where M and N are n X n and m x ^-dimensional symmetric positive-
definite constant matrices respectively. This somewhat simple example
will serve to illustrate a relation between the problems (*) and (**).

1. Problem (*). Let λ be a fixed positive constant, and put A(K) =
A — \XE — BK, where K is an m x n-matrix. We define a n n x ^-matrix
Γ(P) by Γ(P)ktl = trace (GiPGJ for an n X ̂ -matrix P. Then Γ(P) = (Γ(P)kJ
is a linear matrix-valued functional of P. It has a property that if P
is symmetric and non-negative definite so is Γ(P). With these notations
we state a theorem which is obtained as a consequence of Theorem 2.1*,

THEOREM 3.1.* The equation

{Ά(KYP + PA(K) + {Γ(P) + M + K'NK) = 0

K = N-'B'P

has a unique symmetric positive solution P*. The function u\x) given by
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uλ{x) = Kλx , with Kλ = N~ιB'Pλ ,

is an optimal control in °U* and the optimal cost is Jf(x) = x'Pλx +

(1/X) trace {C;PλC}. The corresponding process Xuλ{t) is exponentially 2-nd

ultimately bounded.

To prove this theorem we prepare several lemmas.

LEMMA 3.1 (W. M. Wonham [5]). // (A,J3) is controllable, then for

any (σl9 •• ,<7n)e(7* there exists a matrix K such that the eigen-values

of (A - BK) are (σ19 •••,*«).

LEMMA 3.2 (W. M. Wonham [4, Lemma 3.1]). If a matrix A is suf-

ficiently stable relative to the norm of JΓ( )> then the equation

(3.3) A'P + PA + {Γ(P) + Q} = 0

has a unique symmetric positive-definite solution P for any symmetric posi-

tive matrix Q.

Proof of Theorem 3.1*. Using these lemmas, we are now able to

constract a solution of (3.2) by the method of successive approximation.

Given a matrix K, we consider a linear equation of P

(3.4) Ά(KYP + PA(K) + {Γ(P) + M + K'NK} = 0 .

Step 1. Using Lemma 3.1 and Lemma 3.2, we can easily find a

matrix Ko such that the equation (3.4) has a unique symmetric positive

solution Po.

Step 2. Put Kx = N-ιB'P* and denote the left side of (3.4) by Π(P, K).

Then we have i7(P0, KQ) = 0. From the definition of Kv we see that

xfΠ(PQ, Kλ)x = min x'Π(P0, K)x , for any x .

We therefore have an inequality ΠiP^KJ ^ Π(P0,K0) = 0, that is,

(3.5) Ά(KyPQ + P,Ά{KX) + {Γ(P0) + M + KίNKJ ^ 0 .

Then the Liapunov's fundamental theorem proves that ~Ά(K^ is stable.

Therefore, the equation (3.4) is equivalent to

(3.6) P - Γ etI{Kί)'[Γ(P) + M +
Jo
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It can be proved by the same way as Wonham [4] pp. 492 that this

equation has a unique symmetric positive solution Pλ and 0 < Px < Po.

Step 3. We can inductively construct a sequence of solutions (Pn,Kn)

n = 0,1,2, . such that Π(Pn> Kn) = 0,

P > P > . . . > P > . . . P "> 0 K — N-ιR'P
i 0 b ^ 1 = = * 71 ^= > •* 7i -^ V > -tt-72 i V ^ •* 71-1

It is clear that there exist the limit matrices Pλ and Kλ,

Pλ = lim Pn ^ 0 , Kλ = lim K, - lim N~ιB'Pn = N~ιB'P ,

and that (P\Kλ) satisfies the equation (3.2).

Step 4. Put V\x) = x'Pλx + (1/X) trace {CfPλC} and uλ

0(x) = Kλx. Then

it is easy to check that Vλ(x) and u&x) satisfy all conditions of Theorem

2.1*. We therefore have proved that uλ

Q{x) is an optimal control in ̂ *

with the optimal cost Vλ(x) and that the corresponding process Xu° is ex-

ponentially ultimately bounded with a Liapunov function Vλ(x). The

uniqueness of the solution of equation (3.2) is proved as follows: Let P

be another solution of (3.2), then u(x) = N~ιB'P is also an optimal

control and V(x) = x'Fx + (IIX) trace {CPC} is to be an optimal cost.

Hence we must have P = Pλ. While the positivity of Pλ is easily proved.

In fact, since Vλ(x) is a Liapunov function of Xu», it follows that there

are two positive constants c and cf such that V(x) ̂  c\x\2 — c', which

implies that Pλ > 0. Thus we have proved theorem. (Q.E.D.)

COROLLARY 3.1. // λί > λ2 > 0, then 0 < Ph ^ Pλ\ where both Pλl and

Ph are the solutions of (3.2).

Proof. Since V\x) is optimal cost and L ^ 0, it is clear from the

definition of cost that Vh(x) <̂  Vh(x), that is,

L tr {C'Ph
tr {C'PhC}

for any x e Rn.

Thus we have Pλί ^ P^2. (Q.E.D.)

We then come to the investigation of the behavior of Pλ when λ j 0.

LEMMA 3.3. Let Pλ be the solution of (3.2). Then the collection



168 YOSHIO MIYAHARA

{Pλ}, λ > 0, are bounded, that is, there exists a symmetric positive matrix

P such that 0 < Pλ ^ P for every λ > 0.

Proof. Find a matrix KQ for which the matrix

A(λ, KQ) = ( A - 1 E - BKQ^j , λ ^ 0 ,

is stable enough to guarantee the existence of a unique positive solution

PI of (3.4) for every λ >̂ 0. This is possible by Lemma 3.1 and Lemma

3.2. We now prove that PI ^ P°o for any λ > 0. As in W. M. Wonham

[4, Lemma 3.1], the solution (3.4) λ,λ ^ 0, can be obtained as follows:

Rλ = Pλ

0(l) = Γ etl( k>Ko)'[M
Jo

where

Tλ(P) = Γ e"«>*
JO

Pλ

0(n) > PQ as n —> oo .

Since AU, ίC0), Λ > 0, is more stable than A(0,K0) = (A — βϋCo)> we have

Γ
Jo

^ β + Γβ(Pg(l)) - PS(2) ,

and inductively P Q W ^ Po(%) Therefore we obtain

(3.7) Pi = lim P (̂w) ^ lim P°0(n) = Pg.

By Step 3 of the proof of Theorem 3.1* we know

Pλ

n[Pλ as n -> oo .

This fact and (3.7) prove that PA ^ PJ. (Q.E.D.)

As a consequence of Lemma 3.3 and Corollary 3.1 we know that

there exists the limit
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LEMMA 3.4. The positive matrix P°, obtained abovey is a solution
of equation (3.2) with λ = 0.

Proof, Because Pλ is a solution of (3.2),, the result is trivial by
letting 2 JO. (Q.E.D.)

THEOREM 3.2. The control u\x) = K°x = N~lBT°x == l im, 1 0 ^^ is
optimal control in %**. The optimal cost J** is eg^aί ίo ίλe trace

Proof. Since P° is a solution of (3.2)0 by Lemma 3.4, the result of
this theorem can be obtained as a corollary of Theorem 3.1** which is
to be proved in the following paragraph (Problem (**)). (Q.E.D.)

Remark 3.1. The corresponding process Xu\t), λ > 0, tends to Xu\t)
in the sense of L\Ω x [0, T],PX X d£)-norm when λ tends to 0.

For proof we may proceed as follows: The solution of (3.1) is
obtained by the method of successive approximation, where the conver-
gence is uniform in λ, 0 < λ < λQ. From this and the fact that

\f{x,u\x)) - f(x,u\x))\ < k(λ) \x\

and ftW)~>0 U->0), we can prove that Xu\ ) -> Xu\ ) in the sense of
L\Ω X [0, T\,PX X dί)-norm.

2. Problem (**). If we consider the same example in the sense
(**), then we have a theorem as a corollary of Theorem 2.1**.

THEOREM 3.1.** If an equation

(A - BKYP + P(A - BK) + {Γ(P) + M + K'NK} - 0

K = N~ιB'P

has a symmetric positive solution P, then uo(x) = N~ιBfPx is an optimal
control in ^** and the optimal cost J** is equal to the trace {C'PC}.

Proof. If we put V(x) = x'Px, uo(x) = N~ιBΎx and r = trace
then all the assumptions of Theorem 2.1** and Corollary 2.1 are satisfied.
The method of the proof is similar to that of Theorem 3.1*, hence we
omit the detail. (Q.E.D.)

Remark 3.2. The method of the proof of Theorem 3.1** is essentially
the same as that of W. M. Wonham [4].
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COROLLARY 3.2. Let Jf(x) be the optimal cost of the problem (*) and

/ * * be the optimal cost of the problem (**) respectively. Then

lim λJf(x) = / * * for any x e Rn .
no

Proof. By Theorem 3.1* and Theorem 3.2, we know

XJKx) = λxTλx + trace {CPλC},

/ * * = trace {CP°C} .

Letting λ[09 we have the desired result, because l i m ^ F * = P° and {Pλ}9

λ>0, are bounded. (Q.E.D.)
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