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BANACH SPACES OF BOUNDED SOLUTIONS OF Δu = Pu(P> 0)

ON HYPERBOLIC RIEMANN SURFACES

MITSURU NAKAI

Consider a nonnegative Holder continuous 2-form P(z)dxdy on a
hyperbolic Riemann surface R (z = x + iy). We denote by PB(R) the
Banach space of solutions of the equation Δu = Pu on R with finite
supremum norms. We are interested in the question how the Banach
space structure of PB(R) depends on P. Precisely we consider two such
2-forms P and Q on R and compare PB(R) and QB(R). If there exists
a bijective linear isometry T of PB(R) to QB(R), then we say that PB(R)
and QB{R) are isomorphic. If moreover \u — Tu\ is dominated by a
potential pu on R for every u in PB(R), then we say that PB(R) and
QB(R) are canonically isomorphic. Intuitively this means that u and
Tu have the same ideal boundary values. Using these terminologies our
problem is formulated as follows:

1° When are Banach spaces PB{R) and QB(R) isomorphicΊ
2° When are Banach spaces PB(R) and QB(R) canonically isornorphicΊ

For this purpose we consider the set ΔP, which we call the nondensity
point set associated with P(z)dxdy9 of points z* in the Wiener harmonic
boundary Δ of R such that there exists a neighborhood E7* of z* in the
Wiener compactification i2* of R such that

G(z, ζ)P(ζ)dξdη < oo (ζ = ξ + iφ
U*f]R

for some and hence for every z in R where G(z, ζ) is the harmonic Green's
function on R. We shall see that the set ΔP is a compact Stonean space
with the relative topology of R*. Our main result in this paper is that
the Banach space structure of PB(R) is completely determined by the
space ΔP. More precisely the questions 1° and 2° can be answered in
terms of ΔP as follows:
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T H E MAIN THEOREM. Banach spaces PB(R) and QB(R) are isomor-

phic (canoncally isomorphic, resp.) if and only if spaces ΔP and ΔQ are

homeomorphic {identical, resp.).

Sufficient conditions to the question 2° thus far obtained by Royden

[18], Nakai [14], Maeda [9], Lahtinen [7], etc. are then direct conse-

quences of the above theorem. These will be discussed in nos. 15-18.

In nos. 1-5 we shall discuss behaviors of functions in PB(R) on the

Wiener compactification i?* of R. The Heins canonical extension λ% is

one of the important tools in our study. Another important tool, the

reduction operator TP, is discussed in nos. 6-7. The structure of ΔP

will be studied in nos. 8-11. The main theorem will then be proven in

nos. 12-13. An alternate definition of ΔP is appended in no. 14.

Wiener compactification

1. Let P(z)dxdy be a 2-form on a Riemann surface R such that Piz)

is a Holder continuous function of each local parameter z = x + iy, i.e.

|P(2i) — P(z2)\ < K \zx — z2\
a for every pair of points zλ and z2 in the para-

metric disk of z with a Ke(0, oo) and an ae(0,1]. Then the elliptic

equation Δuiz) = P{z)u{z) can be invariently defined on R where Δu{z)dxdy

= d*du(z). Denote by P(U) the linear space of solutions of Δu = Pu on

an open subset U of R. We also use the standard notation H(U) for

PiJJ) with P Ξ O ,

LEMMA. The absolute value \u\ of any u in P{U) is subharmonίc on

U for every open subset U of R if and only if P{z)dxdy is nonnegative,

i.e. Piz) > 0 for every choice of local parameters z.

Proof. Suppose P > 0 and u e P(U). Then Δ \u(z)\ = P(z) \u(z)\ > 0

on the open set Ur = {z e U; u(z) Φ 0}, i.e. \u\ is subharmonic on U'. The

submean value property is clearly valid for \u\ at each point ofU— U'.

Therefore \u\ is subharmonic on U. To show that P > 0 is necessary,

let z be an arbitrary point in β. If we take a sufficiently small regular

parametric disk U with z its center, then the Dirichlet problem of Δu

= Pu is solvable for U with continuous boundary values φ and the solution

is nonnegative (positive, resp.) for ψ > 0 (φ > 0, resp.) (cf. Miranda [10]).

If u is the solution with φ = 1, then, since \u\ = u > 0 is subharmonic,

P(z) - Δu(z)/u(z) > 0. Q.E.D.
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2. Hereafter, we always assume that P(z) > 0. For simplicity such
a 2-form P(z)dxdy, i.e. Holder continuous and nonnegative, will be
referred to as a density on R. We denote by PB(R) the subspace of
P(R) consisting of solutions u with finite supremum norms:

We also use the standard notation HB(R) for PB(R) with P = 0. Then
(PJ5(β),|| ||) is a Banach space. We wish to determine the Banach space
structure of PB(R). We say that R is hyperbolic if there exists the
harmonic Green's function on R. Nonhyperbolic surfaces are called
parabolic. The Ahlfors-Ohtsuka characterization (cf. [19]) says that R
is parabolic if and only if there does not exist any nonconstant positive
superharmonic function on R. Therefore if R is parabolic and u e PB(R),
then, since \\u\\ — \u\ is a nonnegative superharmonic function on R,
\\u\\ — \u\ and hence u is a constant. This proves the following Brelot
[l,2]-0zawa [17] theorem:

LEMMA. If R is parabolic, then PB(R) = {0} for densities P Ξ£ 0 and

HB(R) = R (the real number field).

In view of this lemma the Banach space PB(R) is of no interest if
R is parabolic, and for this reason, hereafter, we always assume that
R is hyperbolic.

3. The Wiener compactification i?* of a hyperbolic Riemann surface
R is a compact Hausdorff space containing R as its open and dense sub-
set such that C(/2*) = {/1 i? / e C(β*)} is the totality of bounded con-
tinuous Wiener functions on R. If F e C(R*), then / = F\R is of course
defined only on R but we always make the convention that f(z*) — F(z*)
for z* e R* — R. Typical examples of Wiener functions on R are sub-
harmonic functions s on R such that |s| is bounded or more generally
dominated by superharmonic functions. Denote by Δ the set of points
z* in #* such that

lim inf p(z) = 0
z<SR,z^z*

for every potential p on R, i.e. a superharmonic function p on R whose
greatest harmonic minorant is zero. The set Δ is contained in the Wiener
boundary R* — R of R and referred to as the Wiener harmonic boundary
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of R. For a subset A of i2* we denote by A the closure of A in R*
and by dA the relative boundary (A — Int A) Γ\ R with respect to J2. Let
U be an open subset of R and a be a subharmonic function Z7 bounded
from above. The maximum principle says that if

(1) lim sup s(z) < M
zeu,z~*z*

for every z* in @E7) U (Π Π J), then s < M on [/.
An open subset W oί R will be called normal if dW is analytic. We

do not exclude W with dW ~ φ, i.e. TF = R, from our family of normal
open sets. We denote by Δw the open subset Δ Π (W — dW) of Δ. We
can define an operator πw\ C(R*) —> C(β*) such that π^/l WeH"(PF), and
πwf\(R* - W)ϋ(dW)ϋΔw = f for every feC(R*). For details of
Wiener compactification and the operator πw, we refer to Constantinescu-
Cornea [3] or Sario-Nakai [19].

4. For a normal open subset W of R (including the case W — R)
we denote by PB(W; dW) the family {uePB(W) Π C(B); u\R - W = 0}.
We also use the notation tfβOF dPF) for PJ5(Ψ;3PF) with P Ξ O , If
W = R, then PJS(PF; 9W0 = PB(W;φ) = PJ5(Tf). By the same proof as
in no. 1 we see that u\J 0 = max (iί, 0), ~(^Π0) = —min(^, 0), and \u\
=z u\J 0 — ud 0 are subharmonic on R for every u e PB(W dW). There-
fore PB(W dW) c C(R*). By the maximum principle (1), \\u\\B = ||w||4
for every u 6 P5(PF; dW). For a regular region Ω, i.e. relatively compact
and normal region in R, and a continuous function p in C(dΩ), we denote
by P^ the function in P(β) Π C(Ω) such that P^ | dΩ = 9?. We also use
the notation H^ for P^ with P = 0. We define a linear operator

by

( 2 )

for every weP^ίΐ^; 9Tί0. Then it satisfies

(3)

In particular λj is isometric and hence injective. We use the notation
λsί for p̂ with P Ξ O . These operators are referred to as canonical ex-
tensions (Heins [6]).

To see that (2) is well defined and (3) is valid, set vt = u U 0 and
v2 = -(wfl 0). Since \\u\\ > Hξ. > P£ > Vi > 0, {PJJ is increasing and
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thus Pξt converges to a UiGPB(R) as Ω exhausts R (ί = 1,2) and there-

fore P£ = P£ - P£ to ^ - ^2, i.e. (1) is well defined. Similarly Hξ.

converges incleasingly to an ht e HB(R) which is the least harmonic

majorant of the subharmonic function vt on R and hence pt = hi — vt

is a potential on β (ί = 1,2). Since

| ^ — u\ < \ux — vx\ + |^2 — ι;2| < (^ — i;x) + (h2 — v2) = p

with p = px + p2, a potential on R,

I #tt(z*) - u(z*) I - lim I ^ ( j ? ) - u{z) \ < lim inf p(z) = 0

for every point 2* e J, i.e. (3) is valid.

5. Denote by PB(W dW)+ the family {^ePB(W;dW);u> 0}. We

maintain that PB(W;dW)+ generates PB(W;dW); more precisely, for

any uePB(W; dW) there exist utePB{W; dW)+ (i = 1,2) such that

( 4 ) u = U! — u2 , ux\Δ — w U 0 | J , ^ 2 | J = —(v Π

The proof of (4) is similar to t h a t of (2) and (3). Let ^ = M U 0 and

^2 — — (u Π 0). As in no. 4 we see t h a t H°t > uίΩ > vt > 0, where w<ί? —

Pζ^Ω on PF Π Ω and tί i ί ? — 0 on Ω — W Π 42, and t h a t w< = l i m ^ ^ uiΩ ex-

ists in PB(W;dW)+ and ^ = l i m ^ ^ H%. exists in HB(R)+ (i = l ,2) .

Since % = w1Λ — u2Ω, we deduce ^ = ux — w2. Moreover 0 < Ut — Vi < hi

— Vi = Pi and p< is a potential (i = 1,2). Therefore (4) is t rue .

Reduction operator

6. Since we have assumed that our base Riemann surface R is

hyperbolic, there exists the harmonic Green's function G(z, ζ) = GR{z,ζ)

on R. Let W be a normal open subset of R. The harmonic Green's

function Gw(z,ζ) on W is defined as follows. Let W = \JnWn be the

decomposition of W into connected components Wn such that each Wn is

a normal region. If both of z and ζ belong to the same Wn9 then Gjpfoζ)

= GWn{z, ζ) otherwise G^O, ζ) = 0. Including the case W — R, we define

a linear operator T J : PB(W 3W0 -> iϊSCT^ dW) by

( 5 ) Γ?M - u + 4- ί Gw(-,ζ)u(ζ)P(ζ)dξdv .

To see t h a t (5) is well defined, first let u ePB(W; dW)\ Then by the

Green formula
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HZno - u + - i - f Gwς]Ω{ ,ζ)u{ζ)P{ζ)dξdη

Since w is subharmonic, limΛ^ j BHJ r n f l exists in HB(W dW). Observe that

{GWΐ]Ω{>yζ)u(ζ)}Ω is increasing, and therefore the Lebesgue-Fatou theorem

yields (5) for u > 0. The general case follows from the decomposition

(4). Similarly, as above,

HΩ

U = P A- f GΛ(.,ζ)PS
2π JΩ2π

for %eP.B(ΐF; 3PF)+ and by making Ω tend to R we deduce

Since 0 < u < λju and Gw <GR, we conclude that

A- f GΛ( ,0

with p a potential on R. By the decomposition (4) we can also conclude

that I TJu — u\ is dominated by a potential on R for general ^ePβ(PF dW).

Therefore we see that

(6) TJu\Δ = u\Δ

for every uePB(W dW). In particular TJ is isometric and hence

injective.

7. The operator TP — T* is referred to as a reduction operator

since ΓP reduces the study of PB(R) to that of more tractable class

HB(R) (cf. Singer [20]). In this sense it is important to determine when

TP is surjective. As a preparatory observation we state the following: If

( 7 ) f GΛ(.,C)P(C)d£efy<oo

for some zeR and hence by the Harnack inequality for every z eR, then

TJ is surjective. To prove this take an h e HB(W dW)+. Since 0 <

< ft, {Pfnβ} is decreasing and converges to a w ePSCT^: dW0+. Then

h - P Γ * + ~

In view of (7) the Lebesgue convergence theorem is applicable to deduce
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h = tt + -A- f G^O , ζMζ)P(ζ)dξdη ,

i.e. Γ£w - A. Since iϊ£(PF; dW)+ generates /TB(T7; 3Tf), we obtain the

required conclusion.

Nondensiίy points

8. We introduce the set ΔP of points z* in Δ such that there exists

a neighborhood [7* of z* in #* such that

(8) f GR(z,ζ)P(ζ)dξdv< OO

for some and hence for every point z in R. Such a point z* will be

referred to as a nondensίty point of P with the weight G. If we denote

by J# for ΔP with P Ξ O , then ΔH = J. Clearly the nondensity point

set Jp is opew. Since J is a Stonean space i.e. every point in Δ has a

base of compact and open neighborhoods in Δ, the same is true of ΔP.

Another kind of nondensity point was first introduced in Glasner-Katz

[5] (cf. also [15]) for the Royden harmonic boundary. In the definition

(8) we can moreover assume that £7* Ω R is a normal open subset of R

since we can replace £7* by a smaller neighborhood (cf. [3], [19]). First

we remark that

(9) u\Δ-ΔP = 0

for every uePB(R). In fact, let z* eΔ with u(z*) Φ 0. We can choose

a neighborhood U* of z* such that \u(z)\ > |w(s*)|/2 on [/* Ω R. By (5),

u is GB{ -, ζ)P(ζ)dξd^-integrable on R. Therefore

f G(z,ζ)P{ζ)dξdη < , , 2 , - ί G(«,0

i.e. ^*eJp. This proves (9).

9. Let K be a compact and open set in ΔP. We can find a neigh-

borhood W* of K in #* such that W = W* Ω R is normal in J? and (7)

is valid since K is compact. Choose a ^ e C(β*) such that <p\K = 1 and

£>!(#* — TF*) U (J — i£) = 0. Such a p exists since K is open and com-

pact in Δ and K Ω (R* - W*) = φ. Observe that πwψ e HB(W dW) with

πwφ\K = l and πwφ\K = 0 (cf. no. 3). By (7), T% PB(W dW)-»

HB(W;dW) is surjective and hence (Tjy'oπ^e PB(W 3W) with
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(TJ)-ιoπwφ\K = 1 and {T^yγoπwφ\Δ - K = 0 (cf. (6)). Finally set eκ

>ePB(R). By (3), eκ\K = 1 and e x | J - Z = 0. Put

eP = sup e x ,

where K runs over all compact open subsets of ΔP. The conditionally

monotone compactness of PB(R) assures that ePePB(R). Clearly 0 <

eP < 1 on J . Since every point z* e ZfP has such a K with £* e K, we see

that βp |J P = 1. With (9) we now conclude that

(10) ePePB(R) , 0 < eP < 1 , eP\ΔP = 1 , eP\Δ - ΔP = 0 .

The function eP will be refered to as the P-unit (cf. Singer [21]). It is

easy to see that eP is the greatest function in PB(R) dominated by 1

and actually

eP = lim Pζ .

Therefore eP is the P-elliptic measure in the terminology of Royden [18].

Since eP\ΔeC(Δ) and eP\Δ is the characteristic function of ΔP1 we obtain

the following

THEOREM. The nondensίty point set ΔP is compact and open in Δ.

10. We denote by C(Δ;ΔP) the family {^e C(Δ); φ\Δ - ΔP = 0}.

Clearly C(Δ ΔP) is isomorphic to C(ΔP) as Banach spaces by the natural

correspondence τP: C(Δ; ΔP) —> C(ΔP) given by τPu = u\ΔP. We define an

o p e r a t o r , t h e boundary restriction, p P : PB{R) -+ C(Δ; ΔP) b y pPu — u\Δ

for every u e PB(R). We write pH for pP with P = 0. By (1), ^p is

isometric. We prove

THEOREM. Tfee boundary restriction pP is surjective.

Proof. Let φ e C(Δ ΔP) and TT7* be an open neighborhood of ΔP in

i?* such that TF = TF* Π i? is normal and (7) is valid for TF. We can

extend φ to Λ* so that p € COR*) with p(β* - TF*) U (J - J P ) = 0. Then

as in no. 9 u = λψo (TJ)'1 o 7rτ̂ p belongs to PB(R) and w | Δ = p, i.e. ^ P ^ = p.

Q.£7.D.

11. The surjectiveness question of the canonical extension λj can

now be settled in terms of ΔP:
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THEOREM. The canonical extension Z% is surjective if and only if

W — 3W is a neighborhood of ΔP in β*.

Proof. Suppose λj is surjective. Then there exists a u e PB(W dW)

such that λju = eP. Since u\Δ = λ^u\Δ = eP\Δ, we see that u\ΔP = 1.

In view of u\R* — W — 0, IF — dW is a neighborhood of zfP. Conversely

if W — 3FF is a neighborhood of J P , then we can choose an open neigh-

borhood T̂ o* of ΔP such that W -dWlD Wf, Wo = Wf Π β is normal in

β, and (7) is valid for Wo. The canonical extension λ^w: PB(W0

dW) relative to W can be defined by

on W and 0 on R - W. As in no. 4, ^ ^ | J = u\Δ. Let vePB{R)

and ^ e C(#*) with p | (β* - Wo) Ό (Δ - ΔP) = 0 and ^|z/P = 1. Then u =

(Γ^)- 1 o^β(pi;) € PS(^o,dW,) and u\Δ = v\Δ. Thus ^°

PB{R) is surjective. Since ^ 0 = λjoλj^w and ̂ °

dW0)

PB(W;dW)'

is surjective, λj must be surjective. Q.E.D.

Canonical isomorphisms

12. Let P and Q be two densities on a hyperbobic Riemann surface

R. A linear isomorphism TQiP of PB(R) onto QB(R) will be referred

to as a canonical isomorphism if \TQtPu — u\ is dominated by a potential

p = pu on R for every uePB(R). This is equivalent to that

(11) TQyPu\Δ = u\Δ

for every uePB(R) (cf. Constantinescu-Cornea [3]). By (1) we see that

TQtP is an isometry and thus TQ^P is a special Banach space isomorphism

of PB(R) onto Qβ(-β). In such a case we say that PB(R) and QJS(β)

are canonically isomorphic. We are ready to prove one of our main

result in this paper:

THEOREM. Banach spaces PB(R) and QB(R) are canonically isomor-

phic if and only if nondensity point sets ΔP and ΔQ are identical.
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Proof. Suppose PB(R) and QB(R) are canonically isomorphic. Let

z* eΔP. There exists a φ e C(Δ ΔP) with φ(z*) — 1. By Theorem in no.

10, there exists a uePBiR) with pPu = φ. Then Γρ ι Pw|J = t ί | J shows

that ( T Q ^ X Z * ) = u(z*) = p(s*) = 1 and (9) yields that z* e JQ, i.e. J P c J Q .

Since the reverse inclusion can be shown similarly, we conclude that

ΔP = ΔQ. Conversely assume that ΔP = ΔQ. Then the operator T = ^QVP :

PB(R) -> QB(R) can be defined as a bijective mapping and Γ^ |J = u\Δ

for every uePB(R). Therefore T fulfills the condition of canonical iso-

morphism and T — TQ^p, i.e. PB(R) and QB(R) are canonically isomorphic.

r Q.E.D.
PB(R) > QB(R)

C(Δ;ΔP)

13. We simply say that PB(R) and QB(R) are isomorphic if there

exists a Banach space isomorphism (i.e. bijective linear isometry) of PB(R)

onto QB(R). Then we obtain another of our main result:

THEOREM. Banach spaces PB(R) and QB(R) are isomorphic if and

only if nondensίty point sets ΔP and ΔQ are homeomorphic.

Actually we can prove a bit more general assertion without adding

any elaboration. Let P(Q,resp.) be a density on a hyperbolic Riemann

surface R(S, resp.). We can speak of isomorphisms of PB(R) onto QB{S)

as Banach spaces and also nondensity point sets ΔP and ΔQ relative to

Wiener compactifications R* and S* of R and S, respectively. The above

theorem is, then, a special case, i.e. R = S, of the following:

THEOREM. Banach spaces PB(R) and QB(S) are isomorphic if and

only if nondensity point sets ΔP and ΔQ are homeomorphic.

Proof. Suppose there exists a homeomorphism a of ΔP onto ΔQ.

Then φ —> Aψ = φ°a~ι is a Banach space isomorphism of C(ΔP) onto C(ΔQ).

PB(R) — • QB(S)

C(Δ ΔP) C(Δ ΔQ)

C(ΔP) — - — > C(Δq)
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Then T = pp-oτ^oAoτpopp is a Banach space isomorphisms of PB(R)

onto QB(S). Conversely assume that there exists a Banach space iso-

m o r p h i s m T of PBiR) o n t o QB(R). T h e n A = τQoPQOTop-'oτp1 i s a

Banach space isomorphism of C(ΔP) onto C(ΔQ). In such a case there

exists a

_ — > QB(S)

C(Δ ΔP) C(Δ

C(ΔP) — > C(ΔQ)

homeomorphism a of ΔP and ΔQ and an aeC(ΔQ) with |α | = 1 such that

Aφ — a>φoa~ι (cf. e.g. Dunford-Schwartz [4]); in particular ΔP and J Q

are homeomorphic. Q.E.D.

14. Suppose there exists a neighborhood £7* of z* e Δ such that

(12) £ Gσ(s, ζ)P(ζ)dξdy] <™ (U=U*ΠR)

for every 2 in U. We can replace E7* by a ΐί7* c Z7* which is also a

neighborhood of z* such that W — W* Π i? is normal and (12) with U

replaced by W is valid. Let h eHB(W; dW) such that 0 < h < 1 and

h(z*) = 1. Then as in no. 7 T J : PJ5(TF dW) -> HB(W;dW) is surjective

and T^v\Δ — v\Δ for every 1; ePB(W 5TF), where Δ is the Wiener

harmonic boundary of W. There exists a projection p of the Wiener

compactification W of W onto the closure W of W in iϋ* such that p | W

is an identity, p-^zF) c J, and p : TF U p " 1 ^ ^ ) -• TF U Δw is homeomorphic

(cf. e.g. Constantinescu-Cornea [1] and [19]), where Δw = J Π (W - dW).

Therefore TJv \ Δw = v | Δw. Since TJΊ; 13Ψ = v 13TF = 0, Γ ^ | dW = v | dW

= 0 and hence TJv\3W = v\dW = 0 and hence ΓJv\Δ — v\Δ. In particu-

lar, if v = (T^)-% then v(«*) = (TJv)(z*) - Λ(«*) - 1 and z*eΔP. Thus

we have shown the following

THEOREM. A point z* in Δ belongs to ΔP if and only if (12) is valid.

Applications

15. A subset KczR is said to be B-negligible if there exists a po-
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tential p such that p > 1 on K. In this case, since lim mΐzeR^z* p(z) =

0 for z* e Δ, we see that K Π Δ — φ. Conversely, if K Π Δ — φ, then

there exists a <peC(R*) such that 0 < p < 1, <p\K=l, and ψ\Δ — 0.

Then there exists a potential p with ψ <p on R (cf. [3]). Hence p > 1

on K and therefore K is i?-negligible. Thus we have the following

characterization: A subset KcR is B-negligible if and only if R* — K

is a neighborhood of Δ. Compact sets in R are trivial examples of B-

negligible sets. From Theorem in no. 12 the following criterion of

Royden follows at once:

COROLLARY (ORDER COMPARISON THEOREM). // there exists a con-

stant c e [1, oo) such that c~Ψ <Q <cP on R except possibly for a B-

neglίgible set K, then PB(R) and QB(R) are canonically isomorphic.

In general, Q < cP on R — K implies

f G(s, QQiOdξdq < c ί G{z, ζ)P(ζ)dξdy .
JE-K JR-K

Since R — K — (d(R — K)) is a neighborhood of Δ, the above inequality

implies that ΔPaΔq. In passing we insert here a consequence of ΔPaΔQ,

i.e. a consequence of Q < cP on R — K with J5-negligible K. Since ΔP

is also compact and open in ΔQ, the function τψ given by τψ = ψ on ΔP

and τψ = 0 on ΔQ — ΔP belongs to C(ΔQ) for every ψe C(ΔP), i.e. τ : C(ΔP)

—» C(ΔQ) is a linear isometry. Then T = ̂ o r ^ o r o r p o ^ P is a linear

isometry of PB(R) into Qβ(β) with Tu\Δ = u\Δ for every uePB{R).

Returning to the above corollary, we also see that ΔP 3 ΔQ from c~Ψ < Q.

Thus ΔP — ΔQ PB(R) and QB(R) are canonically isomorphic. This criterion

was obtained by Royden [18] for compact exceptional set K and by Loeb

[8] in an abstract setting. The present formulation is stated in [16].

16. Let GF(z,ζ) be the Green's function on R for the equation Δu

— Pu whose existence is always assured for any R (even for compact R)

if P =£ 0 (Myrberg [11,12,13]). In the present case, since we have as-

sumed that R is hyperbolic, Gp(z, ζ) exists for every density P including

P ~ 0 as before we write G(z, ζ) for Gp(z, ζ) with P = 0. Consider

conditions

(13) ί \P(ζ)-Q(Q\dtdη<oo
J R-K
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(14) f G(z, 0 |P(ζ) - Q(ζ) I dξdη < oo
t/ R — K

(15) ί (Gp(z, ζ) + GHz, 0) I P(ζ) - Q(ζ) I dfd^ < oo
J R — K

(16) f (.Gp(z,ζ)Q(ζ) + GHz,OP(Q)dξdη < oo .
J R — K

Here K is a B-negligible set in R and (14)-(16) are assumed to be valid

for one and hence by the Harnack inequality for every z in S. Since

Gp(z,ζ)<G(z,ζ) and f Gp{z, ζ)P(ζ)dξdη < oo
J R

because of

βP = l - _ M Gp(.,ζ)P(ζ)dξdv

(see the proof of the corollary below) it is clear that the following im-

plications are valid: (13) -> (14) -> (15) =̂> (16).

COROLLARY (INTEGRAL COMPARISON THEOREM). // one of conditions

(13)-(16) is valid, then PB(R) and QB(R) are canonically isomorphίc.

This was obtained in [14] for K — φ and in the present form in [16]

(cf. also Maeda [9]). The fact that (14) and hence (13) implies ΔP — ΔQ

is entirely clear. To show (15) or (16) implies ΔP — Δq, we may assume

that K = φ in (15) since we can replace R by its normal open subset W

whose Δ contains Δ (cf. no. 14). The Green formula yields

G2(,C)Pf(0(P(C) - Q(O)dξdη .
2π JΩ

Since eP = limQ^BP? and eQ = \imo^BQf, (15) and the Lebesgue conver-

gence theorem imply

^ [ G(,OβP(C)(P(ζ) - Q(ζ))dξdv

2π JR

Similarly

and the Lebesgue-Fatou theorem yield
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eβ = l
2π

Set

h = Γpβp = eP + - L f G( ,

Observe that

4 ί ^(,06p(0Q(0rff^<^
2π JR 2π

and

- ^ f G«( , ζ)eP{ζ)P(Odξdη < - 1 - f G( , OeP(C)P(ζ)dfd? = Λ - eP .

2ττ J ^ 2TΓ JR

Therefore \eQ — e P | < (h — eP) + (1 — e ρ ). Since λ | Δ — TPeP\Δ — eP\Δ9

\eQ - eP\ < 1 - eQ

on J . If z* e ΔQ, then 6̂ (2;*) = 1 and hence eP(z*) = 1, i.e. ̂ * e ΔP. Thus

we conclude that ΔQcz ΔP, and similarly J P c J Q , i.e. ΔP = J e .

17. Each of the conditions (14)-(16) takes the following form for

Q ΞΞ 0 :

(17) f G(z,OP(Odξdη<oo,
J R-K

where again K is a ^-negligible set. Clearly ΔP = Δ is equivalent to (17)

for some B-negligible K. Thus we have

COROLLARY. Banach spaces PB(R) and HB(R) are canonically iso-

morphic, i.e. the reduction operator TP: PB(R) —• HB(R) is surjective, if

and only if (17) is valid for some B-negligible set K.

The sufficiency of (17) for K = φ was obtained in [14]. The con-

dition (17) for K = φ may not be necessary is remarked by Lahtinen

[7]. The assertion in the present form is stated in [16].

18 Let hP be the least harmonic majorant of the P-unit eP (the

P-elliptic measure). Clearly hP = TPeP. Then eP\Δ = hP\Δ. Therefore

ΔP = ΔQ if and only if hP = hQ and we have the following

COROLLARY. Banach spaces PB{R) and QB(R) are canonically iso-
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morphίc if and only if hP = hQ. In particular PB(R) and HB(R) are

canonically isomorphic if and only if hP = 1.

That hP = hQ is sufficient and that hP — 1 is necessary and sufficient

are recent results of Lahtinen [7], in which he also studies the class PB(R)

for not necessarily P > 0 (cf. also Myrberg [13]).
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