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THE THREE-ARC AND THREE-SEPARATED-ARC

PROPERTIES OF MEROMORPHIC FUNCTIONS

FREDERICK BAGEMIHL

Let Γ be the unit circle and D be the open unit disk in the complex
plane, and denote the Riemann sphere by Ω. Suppose that f(z) is a
meromorphic function in D, and that ζ e Γ. The principal cluster set
of / at ζ is the set

where A ranges over all arcs at ζ; the chordal principal cluster set of
/ at ζ is the set

ΰz(/,o-ncz(/,o,

where X ranges over all chords at ζ; and we define the set

where it is clear that Π(f,ζ) Q Πχ(f,ζ). We say that / has the three-
arc property at ζ, if there exist three arcs AlfA2,A3 at ζ such that

CΛl(f,ζ) ΓΊ CJJ,Q Π C*(/,C) = φ

if, moreover, the three arcs can be taken to be mutually exclusive, we
say that / has the three-separated-arc property at ζ; and if the three
arcs can be taken to be chords at ζ, we say that / has the three-chord
property at ζ.

Gresser [5, p. 145, Theorem 2] has shown that there exists a mero-
morphic function in D that has the three-chord property (and hence the
three-separated-arc property) at each point of a perfect subset of Γ.
Belna [4, p. 220] has raised the question of the existence of a mero-
morphic function in D that has the three-separated-arc property at each
point of Γ.
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THEOREM 1. There exists a normal meromorphic function f(z) in
D that has the three-separated-arc property at every point of Γ.

Proof. Let f(z) be a Schwarzian triangle-function in D whose fun-
damental triangle has angles ττ/7, ττ/3, ττ/2, and let its system of triangles
be that displayed in [6, p. 437, Fig. 122]. A vertex of the figure is a
common vertex of either fourteen, six, or four of the figure's triangles
we assume that / has the value oo,0,1 at a vertex of the first, second,
third kind, respectively. Then, as is well known, / is meromorphic
and normal in D.

By a 14-star, 6-star, 4-star of the figure, we shall mean the union
of the fourteen, six, four triangles having a common vertex of the first,
second, third kind, respectively, which vertex will be called the center
of the n-star; we consider the interior points as well as the boundary
points as belonging to the triangle in question. The hyperbolic diameter
of an w-star is independent of its center, and will be denoted by dn

(n = 14,6,4). As z describes the frontier of an w-star, f(z) varies over
the closed interval Ix of the real axis between 0 and 1 if n = 14, the
closed interval I2 of the positive real axis between 1 and oo if n — 6,
and the closed interval I3 of the nonpositive real axis between 0 and
oo if n = 4.

Now suppose that ζ is any point of Γ. Denote the radius at ζ by
R and the diameter with end points ζ and - ζ by M. Let Gx be the
lens-shaped region between two hypercycles H2 and Hz through ζ and
—ζ, one on either side of M and each the same hyperbolic distance
greater than du from M. Denote by G2, G3 the remaining two regions
into which the hypercycles divide D, where H2, H3 is part of the frontier
of G2, Gr3, respectively. Take a hypercycle H'2 in G2 through ζ and —ζ
such that its hyperbolic distance from H2 is greater than dQ, and let H's
be a hypercycle in Gz through ζ and —ζ such that its hyperbolic distance
from H3 is greater than d4.

Consider the union U1 of those 14-stars that intersect the radius R
at ζ, the union U2 of those 6-stars that intersect the arc at ζ that ex-
tends along H'2 from some point of H'2 to ζ, and the union U3 of those
4-stars that intersect the arc at ζ that extends along H'z from some point
of Hi to ζ. For each (fixed) n — 14,6,4, it is evident that D is the
union of all the w-stars of the figure, and any two of these w-stars are
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either mutually exclusive or have only frontier points in common. Con-
sequently each of the sets U19 U2, U3 is connected, and there are arcs
ΛlfΛ2,Λ3 at ζ which lie on the frontiers of the respective sets Uι,U2,U3.
Since UjCzGj 0" = 1,2,3), the arcs Λι,Λ2,Λi are mutually exclusive.
Moreover CΛ.(f,ζ) C Ij (j = 1,2,3), and so / has the three-separated-arc
property at ζ. In view of the fact that ζ was an arbitrarily chosen
point of Γ, the proof of the theorem is complete.

Although there exists [3, p. 31, Theorem 4] a function of bounded
characteristic in D that has the three-arc property at each point of a
perfect subset of Γ, the general behavior of a function of bounded
characteristic relative to the three-arc property is markedly different
from that of a normal function.

THEOREM 2. The set of points on Γ at ivhίch a meromorphic func-
tion f(z) of bounded characteristic in D has the three-arc property is
of measure zero.

Proof. According to [7, p. 208], / has a radial limit at almost
every point of Γ. If ζ e Γ, and if / has the radial limit ω at ζ, then
unless ζ is an ambiguous point of /, we have ω e CΛ(f, ζ) for every arc
A at ζ, and consequently / cannot have the three-arc property at ζ.
Since / has at most enumerably many ambiguous points on Γ [1, p. 380,
Theorem 2], the theorem is proved.

The following question was raised in [3, p. 32, Question 41 :
"Let / be of class (A) in D that is, let / be bounded and holomor-

phic in D, and let the radial limit of / have modulus 1 at almost all
points eίθ. Does / have the three-arc property at all (or almost all)
singular points eίθ that are not isolated singularities?"

Theorem 2 answers this question in the negative, because if we take
/ to be a Blaschke product such that the set of limit points of its zeros
is Γ, then every point of Γ is a nonisolated singularity of /, but / has
the three-arc property almost nowhere on Γ.

There exists [3, p. 33] a normal holomorphic function f in D such
that A(f, ζ) = Ω for almost all ζ e Γ and there exists [2] a meromorphic
function / in D such that Δ(J,ζ) = Ω for all ζeΓ. The proof of
Theorem 2 shows, however, that for functions of bounded characteristic
we have the following
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COROLLARY. // f(z) is a meromorphίc function of bounded charac-

teristic in Dy then A(f, ζ) = φ for almost all ζ e Γ.
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