THE THREE-ARC AND THREE-SEPARATED-ARC
 PROPERTIES OF MEROMORPHIC FUNCTIONS

FREDERICK BAGEMIHL

Let Γ be the unit circle and D be the open unit disk in the complex plane, and denote the Riemann sphere by Ω. Suppose that $f(z)$ is a meromorphic function in D, and that $\zeta \in \Gamma$. The principal cluster set of f at ζ is the set

$$
\Pi(f, \zeta)=\bigcap_{A} C_{A}(f, \zeta)
$$

where Λ ranges over all arcs at ζ; the chordal principal cluster set of f at ζ is the set

$$
\Pi_{x}(f, \zeta)=\bigcap_{x} C_{x}(f, \zeta),
$$

where X ranges over all chords at ζ; and we define the set

$$
\Delta(f, \zeta)=\Pi_{x}(f, \zeta)-\Pi(f, \zeta),
$$

where it is clear that $\Pi(f, \zeta) \subseteq \Pi_{x}(f, \zeta)$. We say that f has the threearc property at ζ, if there exist three $\operatorname{arcs} \Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ at ζ such that

$$
C_{\Lambda_{1}}(f, \zeta) \cap C_{\Lambda_{2}}(f, \zeta) \cap C_{\Lambda_{3}}(f, \zeta)=\phi ;
$$

if, moreover, the three arcs can be taken to be mutually exclusive, we say that f has the three-separated-arc property at ζ; and if the three arcs can be taken to be chords at ζ, we say that f has the three-chord property at ζ.

Gresser [5, p. 145, Theorem 2] has shown that there exists a meromorphic function in D that has the three-chord property (and hence the three-separated-arc property) at each point of a perfect subset of Γ. Belna [4, p. 220] has raised the question of the existence of a meromorphic function in D that has the three-separated-arc property at each point of Γ.

THEOREM 1. There exists a normal meromorphic function $f(z)$ in D that has the three-separated-arc property at every point of Γ.

Proof. Let $f(z)$ be a Schwarzian triangle-function in D whose fundamental triangle has angles $\pi / 7, \pi / 3, \pi / 2$, and let its system of triangles be that displayed in [6, p. 437, Fig. 122]. A vertex of the figure is a common vertex of either fourteen, six, or four of the figure's triangles; we assume that f has the value $\infty, 0,1$ at a vertex of the first, second, third kind, respectively. Then, as is well known, f is meromorphic and normal in D.

By a 14 -star, 6 -star, 4 -star of the figure, we shall mean the union of the fourteen, six, four triangles having a common vertex of the first, second, third kind, respectively, which vertex will be called the center of the n-star; we consider the interior points as well as the boundary points as belonging to the triangle in question. The hyperbolic diameter of an n-star is independent of its center, and will be denoted by d_{n} ($n=14,6,4$). As z describes the frontier of an n-star, $f(z)$ varies over the closed interval I_{1} of the real axis between 0 and 1 if $n=14$, the closed interval I_{2} of the positive real axis between 1 and ∞ if $n=6$, and the closed interval I_{3} of the nonpositive real axis between 0 and ∞ if $n=4$.

Now suppose that ζ is any point of Γ. Denote the radius at ζ by R and the diameter with end points ζ and $-\zeta$ by M. Let G_{1} be the lens-shaped region between two hypercycles H_{2} and H_{3} through ζ and $-\zeta$, one on either side of M and each the same hyperbolic distance greater than d_{14} from M. Denote by G_{2}, G_{3} the remaining two regions into which the hypercycles divide D, where H_{2}, H_{3} is part of the frontier of G_{2}, G_{3}, respectively. Take a hypercycle H_{2}^{\prime} in G_{2} through ζ and $-\zeta$ such that its hyperbolic distance from H_{2} is greater than d_{6}, and let H_{3}^{\prime} be a hypercycle in G_{3} through ζ and $-\zeta$ such that its hyperbolic distance from H_{3} is greater than d_{4}.

Consider the union U_{1} of those 14 -stars that intersect the radius R at ζ, the union U_{2} of those 6 -stars that intersect the arc at ζ that extends along H_{2}^{\prime} from some point of H_{2}^{\prime} to ζ, and the union U_{3} of those 4 -stars that intersect the arc at ζ that extends along H_{3}^{\prime} from some point of H_{3}^{\prime} to ζ. For each (fixed) $n=14,6,4$, it is evident that D is the union of all the n-stars of the figure, and any two of these n-stars are
either mutually exclusive or have only frontier points in common. Consequently each of the sets U_{1}, U_{2}, U_{3} is connected, and there are arcs $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ at ζ which lie on the frontiers of the respective sets U_{1}, U_{2}, U_{3}. Since $U_{j} \subset G_{j}(j=1,2,3)$, the $\operatorname{arcs} \Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ are mutually exclusive. Moreover $C_{A_{j}}(f, \zeta) \sqsubseteq I_{j}(j=1,2,3)$, and so f has the three-separated-arc property at ζ. In view of the fact that ζ was an arbitrarily chosen point of Γ, the proof of the theorem is complete.

Although there exists [3, p. 31, Theorem 4] a function of bounded characteristic in D that has the three-arc property at each point of a perfect subset of Γ, the general behavior of a function of bounded characteristic relative to the three-arc property is markedly different from that of a normal function.

THEOREM 2. The set of points on Γ at which a meromorphic function $f(z)$ of bounded characteristic in D has the three-arc property is of measure zero.

Proof. According to [7, p. 208], f has a radial limit at almost every point of Γ. If $\zeta \in \Gamma$, and if f has the radial limit ω at ζ, then unless ζ is an ambiguous point of f, we have $\omega \in C_{A}(f, \zeta)$ for every arc Λ at ζ, and consequently f cannot have the three-arc property at ζ. Since f has at most enumerably many ambiguous points on $\Gamma[1, \mathrm{p} .380$, Theorem 2], the theorem is proved.

The following question was raised in [3, p. 32, Question 4]:
"Let f be of class (A) in D; that is, let f be bounded and holomorphic in D, and let the radial limit of f have modulus 1 at almost all points $e^{i \theta}$. Does f have the three-arc property at all (or almost all) singular points $e^{i \theta}$ that are not isolated singularities?"

Theorem 2 answers this question in the negative, because if we take f to be a Blaschke product such that the set of limit points of its zeros is Γ, then every point of Γ is a nonisolated singularity of f, but f has the three-arc property almost nowhere on Γ.

There exists [3, p. 33] a normal holomorphic function f in D such that $\Delta(f, \zeta)=\Omega$ for almost all $\zeta \in \Gamma$; and there exists [2] a meromorphic function f in D such that $\Delta(f, \zeta)=\Omega$ for all $\zeta \in \Gamma$. The proof of Theorem 2 shows, however, that for functions of bounded characteristic we have the following

Corollary. If $f(z)$ is a meromorphic function of bounded characteristic in D, then $\Delta(f, \zeta)=\phi$ for almost all $\zeta \in \Gamma$.

References

[1] F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 379-382.
[2] -, The principal and chordal principal cluster sets of a certain meromorphic function, Rev. Roum. Math. Pures Appl. 15 (1970), 3-6.
[3] -, G. Piranian and G. S. Young, Intersections of cluster sets, Bul. Inst. Politehn. Iaşi (N.S.) 5 (1959), 29-34.
[4] C. L. Belna, Intersections of arc-cluster sets for meromorphic functions, Nagoya Math. J. 40 (1970), 213-220.
[5] J. T. Gresser, On uniform approximation by rational functions with an application to chordal cluster sets, Nagoya Math J. 34 (1969), 143-148.
[6] A. Hurwitz and R. Courant, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen (3d ed.), Berlin, 1929.
[7] R. Nevanlinna, Eindeutige analytische Funktionen (2d ed.), Berlin, 1953.

University of Wisconsin-Milwaukee

