Kentaro Takaki Nagoya Math. J. Vol. 53 (1974), 71-82

LIPEOMORPHISMS CLOSE TO AN ANOSOV DIFFEOMORPHISM

KENTARO TAKAKI

§ 0. Introduction

It is well-known that an Anosov diffeomorphism f on a compact manifold is structurally stable in the space of all C^1 -diffeomorphisms, with the C^1 -topology (Anosov [1]). In this paper we show that f is also structurally stable in the space of all lipeomorphisms, with a lipschitz topology. The proof is similar to that of the C^1 -case by J. Moser [4]. If a C^1 -diffeomorphism g is sufficiently close to f in the C^1 -sense g is also sufficiently close to f in the lipschitz sense by the mean value theorem. Hence our result is somewhat stronger than that of Anosov.

In the following let M be a compact connected boundaryless C^{∞} manifold of dimension n with a Riemannian metric $\|\cdot\|$, d the distance function induced by $\|\cdot\|$, and $\{(U_{\alpha}, \alpha)\}$ a covering of M by finite charts $M = \bigcup_{\alpha} U_{\alpha}$, where each local diffeomorphism α onto an open subset of \mathbb{R}^n is defined on an open subset of M which contains the closure of U_{α} : $\mathscr{D}(\alpha) \supset \overline{U}_{\alpha}(\mathscr{D}(\alpha))$ denotes the domain of α .). Let $|\cdot|$ be the standard norm in \mathbb{R}^n .

§1. Lipschitz maps on M.

Let $C^{\circ}(M)$ be the set of all continuous maps of M into itself and d_{0} the distance function on $C^{\circ}(M)$ induced by the distance function d on $M: d_{0}(f, g) = \operatorname{Sup}_{x \in M} d(f(x), g(x))$ for $f, g \in C^{\circ}(M)$. L(M) denotes the set of all lipschitz maps of M into itself. It is clear that L(M) is contained in $C^{\circ}(M)$. We may choose a positive number λ_{1} such that for any α $f(\overline{U}_{\alpha}) \subset \mathscr{D}(\alpha)$ holds for $f \in C^{\circ}(M)$ with $d_{0}(f, 1_{M}) < \lambda_{1}$, 1_{M} denoting the identity map of M. For any $f \in C^{\circ}(M)$ with $d_{0}(f, 1_{M}) < \lambda_{1}$, f is lipschitz if and only if for any α the map $\alpha \circ f \circ \alpha^{-1}$ of $\alpha(U_{\alpha})$ into \mathbb{R}^{n} is lipschitz i.e. the lipschitz constant of $\alpha \circ f \circ \alpha^{-1}: \alpha(U_{\alpha}) \to \mathbb{R}^{n}$, which is denoted by

Received June 29, 1973.

 $L(\alpha \circ f \circ \alpha^{-1} \text{ on } \alpha(U_{\alpha}))$ or simply by $L(\alpha \circ f \circ \alpha^{-1})$, is finite. This follows from the facts that we can choose a positive number ρ_1 such that for each x the closed ρ_1 -ball $B(x; \rho_1) = \{y \in M \mid d(x, y) \leq \rho_1\}$ around x is contained in some U_{α} and that for any chart (V, γ) for M, and for each compact subset X of M contained in V the map $\gamma: (X, d) \to (\gamma(X), |\cdot|)$ is a lipeomorphism. We have the following

PROPOSITION 1-1. There exists a positive number C_1 with the following property: For each α and each $x, y \in U_{\alpha}$ we have $C_1^{-1}|\alpha(x) - \alpha(y)| \leq d(x, y) \leq C_1 |\alpha(x) - \alpha(y)|.$

For each $f \in L(M)$ with $d_0(f, \mathbf{1}_M) < \lambda_1$ we define $d_{\ell}(f, \mathbf{1}_M)$ by $d_{\ell}(f, \mathbf{1}_M) = d_0(f, \mathbf{1}_M) + \operatorname{Sup}_{\alpha} L(\alpha \circ f \circ \alpha^{-1} - 1 \text{ on } \alpha(U_{\alpha})).$

PROPOSITION 1-2. Let f be any element in L(M) with $d_0(f, 1_M) < \lambda_1$. If $d_{\iota}(f, 1_M)$ is sufficiently small f is a lipeomorphism.

Proof. We use the following

LEMMA (Lipschitz Inverse Function Theorem [3]). Let E, F be Banach space, $U \subset E$ and $V \subset F$ non-empty open sets and $g: U \to V$ a homeomorphism such that g^{-1} is lipschitz. Then for each $h: U \to F$ with $L(h-g) \cdot L(g^{-1}) < 1$, h(U) = V' is an open set of F, $h: U \to V'$ is a homeomorphism and $h^{-1}: V' \to U$ is lipschitz.

Let f be an element of L(M) such that $d_0(f, \mathbf{1}_M) < \lambda_1$ and $d_\ell(f, \mathbf{1}_M) < Min \{\mathbf{1}, \rho_1/2\}$. By the above lemma and Prop 1-1 $f(U_a)$ is an open set of M and $f: U_a \to f(U_a)$ is a lipeomorphism. In particular f(M) is open. Since M is compact connected f(M) = M. We can complete the proof by proving that f is injective. To do this, take $x, y \in M$ with f(x) = f(y). Then, $d(f(x), x) \leq d_0(f, \mathbf{1}_M) \leq d_\ell(f, \mathbf{1}_M) < \rho_1/2$. Similarly $d(f(y), y) < \rho_1/2$. Hence y is contained in $B(x : \rho_1)$ which is contained in some U_a . As $f: U_a \to f(U_a)$ is injective we have x = y. q.e.d.

§ 2. Lipschitz vector fields on M.

Let $X^{0}(M)$ denote the set of all continuous vector fields on M and $\|\cdot\|$ be the norm on $X^{0}(M)$ induced by the Riemannian metric $\|\cdot\|:\|u\| =$ $\sup_{x \in M} \|u_x\|$ for any $u = (u_x)_{x \in M} \in X^{0}(M)$. $(X^{0}(M), \|\cdot\|)$ is a Banach space. For each (U_{α}, α) put $U'_{\alpha} = \alpha(U_{\alpha})$ and let $T_{\alpha}: TM | U_{\alpha} \to U'_{\alpha} \times \mathbb{R}^{n}$ be the isomorphism induced by α . Let $D\alpha: TM | U_{\alpha} \to \mathbb{R}^{n}$ be the composite of

LIPEOMORPHISMS

 $T_{\alpha}: TM | U_{\alpha} \to U'_{\alpha} \times \mathbb{R}^{n}$ and the projection $U'_{\alpha} \times \mathbb{R}^{n} \to \mathbb{R}^{n}$. $D\alpha$ is considered as the differential of α . Then for each $v \in X^{0}(M)$ we define v_{α} by $v_{\alpha} = D\alpha \circ v: U_{\alpha} \to \mathbb{R}^{n}$, and define |v| by $|v| = \operatorname{Sup}_{\alpha} \operatorname{Sup}_{x \in U_{\alpha}} |v_{\alpha}(x)|$. Then $|\cdot|:$ $X^{0}(M) \to \mathbb{R}^{+} = \{a \in \mathbb{R} | a \geq 0\}$ is a norm on $X^{0}(M)$ and it is equivalent to $\|\cdot\|$. The equivalence of $|\cdot|$ and $\|\cdot\|$ follows from the following.

PROPOSITION 2-1. There exists a positive number C_2 such that for any α and any $v \in TM | U_{\alpha}$ we have $C_2^{-1} ||v|| \leq |D\alpha(v)| \leq C_2 ||v||$.

An element $v \in X^{0}(M)$ is called a lipschitz vector field on M if and only if for each $\alpha, v_{\alpha} : U_{\alpha} \to \mathbb{R}^{n}$ is lipschitz i.e. $v_{\alpha} \circ \alpha^{-1} : U'_{\alpha} \to \mathbb{R}^{n}$ is lipschitz. Denote the set of all lipschitz vector fields by $X_{\ell}(M)$. We define a norm $|\cdot|_{\ell}$ on $X_{\ell}(M)$ by $|v|_{\ell} = |v| + \operatorname{Sup}_{\alpha} \{L(v_{\alpha} \circ \alpha^{-1})\}$ for any $v \in X_{\ell}(M)$. Then $(X_{\ell}(M), |\cdot|_{\ell})$ is a Banach space.

Let $\exp = (\exp_x)_{x \in M}$ be the exponential map induced by the Riemannian metric $\|\cdot\|$. In a normed space $(E, \|\cdot\|)$ we denote the closed λ -ball around the origin by $(E, \|\cdot\|)_{\lambda}$ and the open λ -ball around the origin by $(E, \|\cdot\|)_{\lambda}^{\circ}$. We can choose a positive number λ_2 such that for each $x \in M \exp_x$ is a diffeomorphism of $(T_x(M), \|\cdot\|)_{\lambda_2}^{\circ}$ onto the open λ_2 -ball around x in (M, d). Hence for this $\lambda_2 \exp: (X^{\circ}(M), \|\cdot\|)_{\lambda_2}^{\circ} \ni v \to \exp v = \exp \circ v \in \{f \in C^{\circ}(M) \mid d_0(f, \mathbf{1}_M) < \lambda_2\}$ is a bijective map. And for each $v \in (X^{\circ}(M), \|\cdot\|)_{\lambda_1}^{\circ}$ we have $d_0(\exp v, \mathbf{1}_M) = \|v\|$. For the convenience assume $\lambda_2 \leq \lambda_1$. By the equivalence of $|\cdot|$ and $\|\cdot\|$ we can choose a positive number ε_1 such that $(X^{\circ}(M), |\cdot|)_{\iota_1}^{\circ}$ is contained in $(X^{\circ}(M), \|\cdot\|)_{\lambda_2}^{\circ}$.

PROPOSITION 2-2. We can choose a positive number $\varepsilon_2: 0 < \varepsilon_2 \leq \varepsilon_1$ such that

(i) for each $v \in (M, |\cdot|)_{\epsilon_2}^{\circ} \exp v$ is contained in L(M) if and only if v is contained in $X_{\ell}(M)$ and that

(ii) for each sequence $\{v^{(i)}\}_{i=1}^{\infty} \subset X_{\ell}(M) \cap (X^{0}(M), |\cdot|)_{\ell_{2}}^{\circ}$

$$d_{\ell}(\exp v^{(i)}, 1_{M})
ightarrow 0 \quad as \quad i
ightarrow \infty$$
 ,

 $i\!f\!f$

$$|v^{(i)}|_{\ell} \rightarrow 0 \quad as \quad i \rightarrow \infty \; .$$

Proof. We take any (U_{α}, α) and fix it. For each $(x', \xi) \in U'_{\alpha} \times \mathbb{R}^n$ with $|\xi| < \varepsilon_1$ we define $e(x', \xi)$ by $e(x', \xi) = \alpha \circ \exp \circ T\alpha^{-1}(x', \xi)$. By the choice of ε_1 this is well-defined and e is of class C^{∞} . Since e(x', 0) = x' and $(De)_{2(x',0)} = 1_{R^n}$, if we represent $e(x',\xi)$ by $e(x',\xi) = x' + \xi + r(x'\xi)$, then r is of class C^{∞} and $(Dr)_{(x',0)} = 0$ as $(Dr)_{1(x',0)} = (Dr)_{2(x',0)} = 0$ for any $x' \in U'_{\alpha}$. Recalling that $\mathscr{D}(\alpha) \supset \overline{U}_{\alpha}$, by the mean value theorem, we have the following

(A): There exist a positive number $\varepsilon_2^{(\alpha)}: 0 < \varepsilon_2^{(\alpha)} \leq \varepsilon_1$ and a function $L^{(\alpha)}: (0, \varepsilon_2^{(\alpha)}) \to [0, 1)$ satisfying the following properties.

(iii) For each $x', y' \in U'_{\alpha}, 0 < \varepsilon < \varepsilon_2^{(\alpha)}$ and $\xi, \eta \in \mathbb{R}^n$ with $|\xi|, |\eta| \le \varepsilon$ we have $|r(x',\xi) - r(y',\eta)| \le L^{(\alpha)}(\varepsilon) \{|x' - y'| + |\xi - \eta|\}.$ (iv) $L^{(\alpha)}(\varepsilon) 0$ as $\varepsilon \to 0$

Now, take $\varepsilon: 0 < \varepsilon < \varepsilon_2^{(\alpha)}$ and $v \in (X^0(M), |\cdot|)$, and put $v_{\alpha} = D\alpha \circ v: U_{\alpha} \to \mathbb{R}^n$ and $h = \exp v \in C^0(M)$. We have $h(\overline{U}_{\alpha}) \subset \mathcal{D}(\alpha)$ since $d_0(h, \mathbf{1}_M) = ||v|| < \lambda_2 \leq \lambda_1$. For each $x' \in U'_{\alpha}$ put $x = \alpha^{-1}(x')$. Then, we have

$$\begin{aligned} (x', v_{\alpha} \circ \alpha^{-1}(x')) &= T\alpha(v_x) = T\alpha \circ \exp_x^{-1}(h(x)) \\ &= T\alpha \circ \exp_x^{-1} \circ \alpha^{-1}(\alpha \circ h \circ \alpha^{-1}(x')) \end{aligned}$$

which implies

$$\begin{split} \alpha \circ h \circ \alpha^{-1}(x') &= e(x', v_{\alpha} \circ \alpha^{-1}(x')) \\ &= x' + v_{\alpha} \circ \alpha^{-1}(x') + r(x', v_{\alpha} \circ \alpha^{-1}(x')) , \end{split}$$

from which we get

$$(\alpha \circ h \circ \alpha^{-1} - 1)(x') = v_{\alpha} \circ \alpha^{-1}(x') + r(x', v_{\alpha} \circ \alpha^{-1}(x')) .$$

Hence for each $x', y' \in U'_{\alpha}$ we have

$$\begin{aligned} (\alpha \circ h \circ \alpha^{-1} - 1)(x') &- (\alpha \circ h \circ \alpha^{-1} - 1)(y') \\ &= \{ v_{\alpha} \circ \alpha^{-1}(x') - v_{\alpha} \circ \alpha^{-1}(y') \} + \{ r(x', v_{\alpha} \circ \alpha^{-1}(x')) - r(y', v_{\alpha} \circ \alpha^{-1}(y')) \} . \end{aligned}$$

By this equality we have the followings:

(v) If v is lipschitz then we have

$$\begin{aligned} |(\alpha \circ h \circ \alpha^{-1} - 1)(x') &- (\alpha \circ h \circ \alpha^{-1} - 1)(y')| \\ & \leq L(v_{\alpha} \circ \alpha^{-1})|x' - y'| + L^{(\alpha)}(\varepsilon)\{|x' - y'| + L(v_{\alpha} \circ \alpha^{-1})|x' - y'|\} \\ & \leq \{L^{(\alpha)}(\varepsilon) + |v|_{\ell} + L^{(\alpha)}(\varepsilon)|v|_{\ell}\}|x' - y'| . \end{aligned}$$

(vi) If $h = \exp v$ is lipschitz then we have

$$\begin{aligned} d_{\ell}(h, \mathbf{1}_{M}) \cdot |x' - y'| &\geq L(\alpha \circ h \circ \alpha^{-1} - 1) |x' - y'| \\ &\geq |(\alpha \circ h \circ \alpha^{-1} - 1)(x') - (\alpha \circ h \circ \alpha^{-1} - 1)(y')| \\ &\geq |v_{\alpha} \circ \alpha^{-1}(x') - v_{\alpha} \circ \alpha^{-1}(y')| \end{aligned}$$

LIPEOMORPHISMS

$$\begin{aligned} &- |r(x', v_{\alpha} \circ \alpha^{-1}(x')) - r(y', v_{\alpha} \circ \alpha^{-1}(y'))| \\ &\geq |v_{\alpha} \circ \alpha^{-1}(x') - v_{\alpha} \circ \alpha^{-1}(y')| \\ &- L^{(\alpha)}(\varepsilon)\{|x' - y'| + |v_{\alpha} \circ \alpha^{-1}(x') - v_{\alpha} \circ \alpha^{-1}(y')|\} \end{aligned}$$

As $0 \leq L^{(\alpha)}(\varepsilon) < 1$ we have by this inequality

$$\begin{aligned} |v_{\alpha} \circ \alpha^{-1}(x) - v_{\alpha} \circ \alpha^{-1}(y)| \\ & \leq [\{d_{i}(h, \mathbf{1}_{M}) + L^{(\alpha)}(\varepsilon)\}/(1 - L^{(\alpha)}(\varepsilon))] \cdot |x' - y'| \end{aligned}$$

The proof is complete by using (iv), (v) and (v).

\S 3. Lipeomorphisms close to an Anosov diffeomorphism on M.

LEMMA 3-1. There exist positive numbers $\varepsilon_3: 0 < \varepsilon_3 \leq \varepsilon_1$ and C_3 with the following property. For any $x \in U_{\alpha}$ and $\xi, \eta \in \mathbb{R}^n$ with $|\xi|, |\eta| < \varepsilon_3$ we have

$$C_{\mathfrak{z}}^{-1}|\xi-\eta|\leq |y'-z'|\leq C_{\mathfrak{z}}|\xi-\eta|$$

where $y' = \alpha \circ \exp_x \circ (D\alpha)_x^{-1}(\xi)$ and $z' = \alpha \circ \exp_x \circ (D\alpha)_x^{-1}(\eta)$.

Proof. Take α and fix it. In the proof of Prop. 2-2 we defined e and r. By (A) we can choose a positive number $\varepsilon_{3}^{(\alpha)}: 0 < \varepsilon_{3}^{(\alpha)} \leq \varepsilon_{1}$ such that for any $x', y' \in U'_{\alpha}$ and any $\xi, \eta \in \mathbb{R}^{n}$ with $|\xi|, |\eta| < \varepsilon_{3}^{(\alpha)}$ we have

$$|r(x',\xi) - r(y',\eta)| \leq 1/2(|x'-y'| + |\xi-\eta|)$$

For any $x \in U_{\alpha}$ and $\xi, \eta \in \mathbb{R}^n$ with $|\xi|, |\eta| < \varepsilon_{3}^{(\alpha)}$ putting $y' = \alpha \circ \exp_x \circ (D\alpha)_x^{-1}(\xi)$, $z' = \alpha \circ \exp_x \circ (D\alpha)_x^{-1}(\eta)$ and $x' = \alpha(x)$, we have $y' = e(x', \xi)$ and $z' = e(x', \eta)$. Hence

$$egin{aligned} |y'-z'| &\leq |\xi-\eta|+|r(x',\xi)-r(x',\eta)| \leq |\xi-\eta|+1/2\,|\xi-\eta|\ &\leq C_{3}\,|\xi-\eta| \end{aligned}$$

and

$$\begin{split} |y' - z'| &\ge |\xi - \eta| - |r(x', \xi) - r(x', \eta)| \ge |\xi - \eta| - 1/2 \, |\xi - \eta| \\ &\ge C_3^{-1} \, |\xi - \eta| \end{split}$$

Hence we can take $C_3 = 2$ and $\varepsilon_3 = \text{Inf}_{\alpha} \{\varepsilon_3^{(\alpha)}\}$ q.e.d.

COROLLARY. We can take positive numbers λ and C such that for any $x \in M$ and $u, v \in T_xM$ with $||u||, ||v|| < \lambda$ we have

$$C^{-1} ||u - v|| \le d(\exp_x u, \exp_x v) \le C ||u - v||.$$

75

q.e.d.

KENTARO TAKAKI

Proof. This follows from Lemma 3-1, Prop. 1-1 and Prop. 2-1. q.e.d.

LEMMA 3-2. There exist positive numbers $\delta_1, \varepsilon_4 : 0 < \varepsilon_4 \leq \varepsilon_3$, a function $L_1: (0, \delta_1) \times (0, \varepsilon_4) \rightarrow \mathbb{R}^+$ and a continuous map $r: (X_\ell(M), |\cdot|_\ell)^\circ_{\delta_1} \times (X^0(M), |\cdot|)^\circ_{\epsilon_4}$ $\rightarrow X^0(M)$ with the following properties:

(i) It holds that $\exp w \circ \exp v = \exp (w + v + r(w, v))$ for each $w \in (X_{\ell}(M), |\cdot|_{\ell})^{\circ}_{i_1}$ and $v \in (X^{\circ}(M), |\cdot|)^{\circ}_{i_4}$

(ii) For each $\delta: 0 < \delta < \delta_1$, $\varepsilon: 0 < \varepsilon < \varepsilon_4$, $w \in (X_{\delta}(M), |\cdot|_{\delta})_{\delta}$ and $v, v' \in (X^0(M), |\cdot|)_{\epsilon}$ we have $|r(w, v) - r(w, v')| \leq L_1(\delta, \varepsilon)|v - v'|$ and r(w, 0) = r(0, v) = 0. (iii) $L_1(\delta, \varepsilon) \to 0$ as $\delta, \varepsilon \to 0$.

Proof. Choose open subsets V_{α} of M for each α such that $V_{\alpha} \subset \overline{V}_{\alpha}$ $\subset U_{\alpha}$ and $\bigcup_{\alpha} V_{\alpha} = M$. We define a norm $|\cdot|'$ on $X^{0}(M)$ with respect to the covering by finite charts, $\{(V_{\alpha}, \alpha)\}_{\alpha}$, in the same way as we defined $|\cdot|$: For each $v \in X^{0}(M)$ we define |v|' by $|v|' = \operatorname{Sup}_{\alpha} \operatorname{Sup}_{x \in V_{\alpha}} |v_{\alpha}(x)|$, where $v_{\alpha} = D\alpha \circ v$. As $|\cdot|'$ and $||\cdot||$ are equivalent $|\cdot|'$ and $|\cdot|$ are equivalent. We can choose a positive number $\varepsilon'_4: 0 < \varepsilon'_4 \leq \varepsilon_3$ such that for any w, $v \in X^{0}(M)$ with $|w|, |v|' < \varepsilon'_{4}$ we have $\exp v(\overline{V}_{\alpha}) \subset U_{\alpha}$ for any α and $d_0(\exp w \circ \exp v, \mathbf{1}_M) < \lambda_2$. Then for each $w, v \in X^0(M)$ with $|w|, |v|' < \epsilon'_4$ there exists a unique $r(w, v) \in X^0(M)$ such that $\exp w \circ \exp v = \exp (w + v)$ v + r(w, v) and $d_0(\exp w \circ \exp v, \mathbf{1}_M) = ||w + v + r(w, v)||$. It is clear that r is continuous and r(w, 0) = (0, v) = 0. Take any α and fix it. Put $V'_{\alpha} = \alpha(V_{\alpha})$. For each $(x', \xi, \eta) \in V'_{\alpha} \times \mathbb{R}^n \times \mathbb{R}^n$ with $|\xi|, |\eta| < \varepsilon'_4$ we define $P_{\alpha}(x',\xi,\eta)$ by $P_{\alpha}(x',\xi,\eta) = D_{\alpha} \circ \exp_{x}^{-1} \circ \exp_{y} \circ (D\alpha)_{y}^{-1}(\xi)$, where $x = \alpha^{-1}(x')$ and $y = \exp_x \circ (D\alpha)_x^{-1}(\eta)$. By the choice of ε'_4 this is well-defined and P_{α} is of class C^{∞} . It is clear that $P_{\alpha}(x', 0, 0) = 0$, $P_{\alpha}(x', \xi, 0) = \xi$ and $P_{\alpha}(x', 0, \eta)$ = η . Hence if we express $P_{\alpha}(x',\xi,\eta)$ by $P_{\alpha}(x',\xi,\eta) = \xi + \eta + r^{(\alpha)}(x',\xi,\eta)$ then $r^{(\alpha)}$ is of class C^{∞} , $(Dr^{(\alpha)})_{1(x',\xi,0)} = (Dr^{(\alpha)})_{1(x',0,\eta)} = 0$, $(Dr^{(\alpha)})_{2(x',\xi,0)} = 0$, $(Dr^{\scriptscriptstyle(\alpha)})_{_{_{3(x',0,\eta)}}}=0$ and so in particular $(Dr^{\scriptscriptstyle(\alpha)})_{_{(x',0,0)}}=0.$ Noting that $\mathscr{D}(\alpha) \supset \overline{U}_{\alpha} \supset U_{\alpha} \supset \overline{V}_{\alpha} \supset V_{\alpha}$, we can conclude the following by the mean value theorem.

(B) There exist two positive numbers $\delta'_1: 0 < \delta'_1 \leq \varepsilon'_4$ and $\varepsilon''_4: 0 < \varepsilon''_4 \leq \varepsilon'_4$ and a function $L_1^{(\alpha)}: (0, \delta'_1) \times (0, \varepsilon''_4) \to \mathbf{R}^+$ with the following properties: (iv) For each $\delta: 0 < \delta < \delta'_1$, $\varepsilon: 0 < \varepsilon < \varepsilon''_4$, $x', y' \in V'_{\alpha}$ and $\xi, \eta, \zeta, \theta \in \mathbf{R}^n$ with $|\xi|, |\zeta| \leq \delta$ and $|\eta|, |\theta| \leq \varepsilon$ we have

$$\begin{split} |r^{(\alpha)}(x',\xi,\eta) - r^{(\alpha)}(y',\zeta,\theta)| &\leq L_1^{(\alpha)}(\delta,\varepsilon) \cdot \{|x'-y'| + |\xi-\zeta| + |\eta-\theta|\},\\ (v) \quad L_1^{(\alpha)}(\delta,\varepsilon) \to 0 \text{ as } \delta, \varepsilon \to 0. \end{split}$$

Take any positive numbers δ , ε with $0 < \delta < \delta'_1$ and $0 < \varepsilon < \varepsilon''_4$ and fix them. For each $w, v, v' \in X^0(M)$ with $|w| \leq \delta$ and $|v|', |v'|' \leq \varepsilon$ we define $w_a, v_a, v'_a, r(w, v)_a$ and $r(w, v')_a$ as before. Then for each $x' \in V'_a$ we have $r(w, v)_a \circ \alpha^{-1}(x') = P_a(x', w_a \circ \alpha^{-1}(y'), v_a \circ \alpha^{-1}(x')) - \{w_a \circ \alpha^{-1}(x') + v_a \circ \alpha^{-1}(x')\}$ and

$$egin{array}{ll} r(w,v')_{a}\circlpha^{-1}(x') &= P_{a}(x',w_{a}\circlpha^{-1}(z'),v'_{a}\circlpha^{-1}(x')) \ &- \{w_{a}\circlpha^{-1}(x')+v'_{a}\circlpha^{-1}(x')\}\,, \end{array}$$

where

$$x = \alpha^{-1}(x')$$
, $y' = \alpha \circ \exp_x \circ (D\alpha)_x^{-1}(v_{\alpha} \circ \alpha^{-1}(x)))$

and

$$z' = \alpha \circ \exp_x \circ (D\alpha)_x^{-1}(v'_{\alpha} \circ \alpha^{-1}(x')) .$$

Hence we get

$$\begin{aligned} |r(w,v)_{\alpha} \circ \alpha^{-1}(x') &- r(w,v')_{\alpha} \circ \alpha^{-1}(x')| \\ &\leq |w_{\alpha} \circ \alpha^{-1}(y') - w_{\alpha} \circ \alpha^{-1}(z')| + |r^{(\alpha)}(x',w_{\alpha} \circ \alpha^{-1}(y'),v_{\alpha} \circ \alpha^{-1}(x'))| \\ &- r^{(\alpha)}(x',w_{\alpha} \circ \alpha^{-1}(z'),v'_{\alpha} \circ \alpha^{-1}(x'))| \\ &\leq \{1 + L_{1}^{(\alpha)}(\delta,\epsilon)\} \cdot |w_{\alpha} \circ \alpha^{-1}(y') - w_{\alpha} \circ \alpha^{-1}(z')| \\ &+ L_{1}^{(\alpha)}(\delta,\epsilon)|v_{\alpha} \circ \alpha^{-1}(x') - v'_{\alpha} \circ \alpha^{-1}(x')| . \end{aligned}$$

If we assume that w is contained in L(M), then we have by Lemma 3-1

$$\begin{aligned} |r(w,v)_{\alpha} \circ \alpha^{-1}(x') - r(w,v')_{\alpha} \circ \alpha^{-1}(x')| \\ & \leq \{1 + L_{1}^{(\alpha)}(\delta,\varepsilon)\} \cdot |w|_{\ell} \cdot |y' - z'| + L_{1}^{(\alpha)}(\delta,\varepsilon)|v_{\alpha} \circ \alpha^{-1}(x') - v'_{\alpha} \circ \alpha^{-1}(x')| \\ & \leq \{L_{1}^{(\alpha)}(\delta,\varepsilon) + C_{3} |w|_{\ell} \cdot (1 + L_{1}^{(\alpha)}(\delta,\varepsilon))\} \cdot |v_{\alpha} \circ \alpha^{-1}(x') - v'_{\alpha} \circ \alpha^{-1}(x')| . \end{aligned}$$

From this inequality, the equivalence of $|\cdot|$ and $|\cdot|'$ and (v) the proof of Lemma 3-2 is complete. q.e.d.

In the followings we assume that $f: M \to M$ is a C^1 -diffeomorphism. For this f we define a linear automorphism f_* of $X^0(M)$ by

$$f_*(v) = df \circ v \circ f^{-1}$$
 for any $v \in X^0(M)$,

where df is the differential of f.

LEMMA 3-3. There exist a positive number ε_5 , a bounded function $L_2: (0, \varepsilon_5) \to \mathbf{R}^+$ and a continuous map $s: (X^0(M), |\cdot|)_{\varepsilon_5}^{\circ} \to X^0(M)$ with the

following properties.

- (i) $f \circ \exp v \circ f^{-1} = \exp (f_*(v) + s(v))$ for any $v \in (X^0(M), |\cdot|)_{e_s}^{\circ}$
- (ii) s(0) = 0 and for each $\varepsilon: 0 < \varepsilon < \varepsilon_5$ and $v, v' \in (X^0(M), |\cdot|)_{\varepsilon}$ we have

$$|s(v) - s(v')| \leq L_2(\varepsilon)|v - v'|$$
,

(iii) $L_2(\varepsilon) \to 0 \ as \ \varepsilon \to 0$.

Proof. (cf. [4]) We can define a map F of a neighborhood of the origin in $X^{0}(M)$ into $X^{0}(M)$ such that $\exp(F(v)) = f \circ \exp v \circ f^{-1}$ for each $v \in X^{0}(M)$ with |v| sufficiently small. It is clear that F(0) = 0. Since f is of class C^{1} , F is so and in fact, the differential of F at the origin is f_{*} . Hence the proof is easy by using the mean value theorem for $s = F - f_{*}$.

For the convenience we may assume $\varepsilon_5 \leq \varepsilon_4$.

Let $X_b(M)$ be the set of all bounded vector fields on M. A complete norm $\|\cdot\|_b$ on $X_b(M)$ is defined by

$$\|v\|_b = \sup_{x \in M} \|v_x\| ext{ for any } v \in X_b(M) \;.$$

Lemma 3-3 is also true for $(X_b(M), \|\cdot\|_b)$. We make use of the same notations as those in Lemma 3-3 for $(X_b, \|\cdot\|_b)$, $f_*, \varepsilon_5, L_2, s$. If f is an Anosov deffeomorphism $1 - f_*$ is a linear automorphism of $X^0(M)$ and also of $X_b(M)$, where 1 is the identity map (cf. [4]).

We will prove the following well known fact.

LEMMA 3-4. If f is an Anosov diffeomorphism then f is expansive i.e. there exists a positive number λ_0 such that $\sup_{n \in Z} d(f^n(x), f^n(y)) > \lambda_0$ for any $x, y \in M$ with $x \neq y$.

Proof. (cf. [5]) By the above remark there exists a positive number $\lambda_0: 0 < 2\lambda_0 < \lambda_2$ such that for each $v, v' \in (X_b(M), \|\cdot\|_b)_{2\lambda_0}$ we have

$$\|s(v) - s(v')\|_b \leq 1/2 \cdot \|(1 - f_*)^{-1}\|_b^{-1} \cdot \|v - v'\|_b$$

We assert the following.

(C) Let u be a map of M into itself such that $f \circ u = u \circ f$ and $u \neq 1_M$. Then $d_0(u, 1_M) = \operatorname{Sup}_{x \in M} d(u(x), x) > 2 \cdot \lambda_0$.

Choose any map $u: M \to M$ with $f \circ u = u \circ f$ and $d_0(u, 1_M) \leq 2 \cdot \lambda_0$. For this *u* there exists a unique element $v \in X_b(M)$ such that $u = \exp v$ and

LIPEOMORPHISMS

$$d_0(u, \mathbf{1}_M) = \|v\|_b$$
.

Then we have

$$f \circ \exp v \circ f^{-1} = f \circ u \circ f^{-1} = u = \exp v$$
 ,

and hence $f_*(v) + s(v) = v$, or $v = (1 - f_*)^{-1}(s(v))$.

By the choice of λ_0 , $(1 - f_*)^{-1} \circ s$ is a lipschitz map of $(X_b(M), \|\cdot\|_b)_{2\lambda_0}$ into itself with the lipschitz constant $L((1 - f_*)^{-1} \circ s) \leq 1/2$. Hence by the contraction principle v must be 0 i.e. u must be the identity map of M. Now, take any $x, y \in M$ with $x \neq y$. Put Per $(f) = \{x \in M | x \text{ is a}$ periodic point of $f\}$.

Case 1: the case of $x \in Per(f)$ or $y \in Per(f)$. Suppose $x \in Per(f)$.

We can define a map $u: M \to M$ as following: For any $z \in M$

$$u(z) = \begin{cases} f^n(y) & \text{if } \exists n \text{ with } z = f^n(x) \\ z & \text{otherwise.} \end{cases}$$

Then it is clear that $f \circ u = u \circ f$ and that $u \neq 1_M$. By (c) we have $d_0(u, 1_M) > 2 \cdot \lambda_0$. Hence there exists an integer n with $d(f^n(x), f^n(y)) > \lambda_0$. The case of $y \in \text{Per}(f)$ is similar.

Case II: the case of $x \in Per(f)$ and $y \in Per(f)$. Let r and s be the smallest periods of x and y respectively. Suppose r = s. We can define a map $u: M \to M$ as following:

For any $z \in M$

$$u(z) = \begin{cases} f^n(y) & \text{if } \exists n \text{ with } z = f^n(x) \\ z & \text{otherwise.} \end{cases}$$

It is clear that $f \circ u = u \circ f$ and $u \neq 1_M$. By (c) we have $d_0(u, 1_M) > 2\lambda_0$. By the definition of u we conclude that there exists an integer n with $d(f^n(x), f^n(y)) = d_0(u, 1_M) > 2 \cdot \lambda_0 > \lambda_0$. Suppose r > s. We can define a map $u: M \to M$ as follows:

For any $z \in M$

$$u(z) = \begin{cases} f^{s+n}(x) & \text{if } \exists n \text{ with } z = f^n(x) \\ z & \text{otherwise.} \end{cases}$$

It is clear that $f \circ u = u \circ f$. Since $x \neq f^{s}(x)$, $u \neq 1_{M}$. Hence we have $d_{0}(u, 1_{M}) > 2 \cdot \lambda_{0}$. By the definition of u there exists an integer n with

KENTARO TAKAKI

 $d(f^n(x), f^{s+n}(x)) > 2 \cdot \lambda_0$. As $f^n(y) = f^{s+n}(y)$ we have

$$d(f^{n}(x), f^{n}(y)) + d(f^{s+n}(y), f^{s+n}(x)) \ge d(f^{n}(x), f^{s+n}(x)) > 2 \cdot \lambda_{0}$$

Hence $d(f^n(x), f^n(y)) > \lambda_0$ or $d(f^{n+s}(x), f^{n+s}(y)) > \lambda_0$. The case of r < s is similar.

For each $g \in L(M)$ with $d_0(g \circ f^{-1}, \mathbf{1}_M) < \lambda_1$ we define $d_i(g, f)$ by $d_i(g, f) = d_i(g \circ f^{-1}, \mathbf{1}_M)$. (Note that C^1 -diffeomorphism on M is a lipeomorphism on M.)

q.e.d.

THEOREM. Assume that f is an Anosov diffeomorphism. Then there exists a positive number ε_0 satisfying the following condition. For any $\varepsilon: 0 < \varepsilon < \varepsilon_0$ there exists a positive number $\delta = \delta(\varepsilon)$ with the property that for each $g \in L(M)$ with $d_{\varepsilon}(g, f) < \delta$ there exists a unique homeomorphism $u: M \to M$ such that $g \circ u = u \circ f$ and $d_0(u, 1_M) < \varepsilon$.

Proof. Put $K = |f^*| + \operatorname{Sup}_{0 < \epsilon < \epsilon_5} L_2(\epsilon)$. K is finite by Lemma 3-3. For each $v \in (X^0(M), |\cdot|)_{\epsilon_5}^{\circ}$ we have

$$|f_*(v) + s(v)| \leq |f_*| |v| + L_2(|v|) |v| \leq K |v|.$$

Choose a positive number ε_6 with $\varepsilon_6 \leq Min \{\varepsilon_5, \varepsilon_4/K\}$. From Lemma 3-2 and 3-3 we have

$$\exp w \circ f \circ \exp v \circ f^{-1} = \exp \{w + f_*(v) + s(v) + r(w : f_*(v) + s(v))\}$$

for any $w \in (X_{\ell}(M), |\cdot|_{\ell})_{\delta_1}^{\circ}$ and $v \in (X^0(M), |\cdot|)_{\epsilon_6}^{\circ}$. We may assume that $||w + f_*(v) + s(v) + r(w; f_*(v) + s(v))|| < \lambda_2$ by making δ_1 and ε_6 sufficiently small. From the above expression we see that

$$\exp w \circ f \circ \exp v \circ f^{-1} = \exp v$$

holds if and only if

$$w + f_*(v) + s(v) + r(w : f_*(v) + s(v)) = v$$
.

As f is Anosov, $1 - f_*$ is a linear automorphism. Hence the above equality is equivalent to

$$(1 - f_*)^{-1}(w + s(v) + r(w : f_*(v) + s(v))) = v$$
.

Put $F(v) = f_*(v) + s(v)$ and $G_w(v) = (1 - f_*)^{-1}(w + s(v) + r(w : f_*(v) + s(v)))$. By (ii) in Lemma 3-2 and by (ii) in Lemma 3-3 we have

$$|r(w:F(v))| \leq L_1(|w|_{\ell},K|v|)K|v|$$

and $|s(v)| \leq L_2(|v|)|v|$. Hence by (iii) in Lemma 3-2 and by (iii) in Lemma 3-3 we can choose positive numbers $\delta_2: 0 < \delta_2 \leq \delta_1$ and $\varepsilon_7: 0 < \varepsilon_7 \leq \varepsilon_6$ with the property that for each $w \in (X_\ell(M), |\cdot|_\ell)_{\delta_2}^\circ$ and $v \in (X^0(M), |\cdot|_{\epsilon_7}$ we have

$$|(1 - f_*)^{-1}(r(w : F(v)))| \leq 1/3 |v|$$

and

$$|(1 - f_*)^{-1}(s(v))| \leq 1/3 |v|$$

On the other hand for each $w \in (X_{\ell}(M), |\cdot|_{\ell})_{\delta_1}^{\circ}$ and $v, v' \in (X_0(M), |\cdot|)_{\epsilon_0}^{\circ}$, putting $\delta = |w|_{\ell}$ and $\varepsilon = \operatorname{Max} \{|v|, |v'|\}$, we have

$$\begin{split} |G_w(v) - G_w(v')| &\leq |(1 - f_*)^{-1}| \left\{ |s(v) - s(v')| + |r(w : F(v)) - r(w : F(v'))| \right\} \\ &\leq |(1 - f_*)^{-1}| \left\{ L_2(\varepsilon) |v - v'| + L_1(\delta, K\varepsilon)(|f_*| \cdot |v - v'| + L_2(\varepsilon) |v - v'|) \right\} \\ &\leq |(1 - f_*)^{-1}| \left\{ L_2(\varepsilon) + KL_1(\delta, K\varepsilon) \right\} |v - v'| \;. \end{split}$$

Hence by (ii) in Lemma 3-2 and by (iii) in Lemma 3-3 we can choose positive numbers $\delta_3: 0 < \delta_3 \leq \delta_1$ and $\varepsilon_8: 0 < \varepsilon_8 \leq \varepsilon_6$ such that for each $w \in (X_{\ell}(M), |\cdot|_{\ell})_{\delta_8}^{\circ}$ and $v, v' \in (X^0(M), |\cdot|)_{\epsilon_8}^{\circ}$ we have

$$|G_w(v) - G_w(v')| \le 1/2 |v - v'|$$

For the convenience we may assume that $\delta_3 \leq \delta_2$ and $\varepsilon_8 \leq \varepsilon_7$. Now, take any positive number ε with $0 < \varepsilon < \varepsilon_8$. For this ε we can choose a positive number δ' such that for each $w \in (X_{\ell}(M), |\cdot|_{\ell})^{\circ}_{\delta'}$ we have

$$|(1-f_*)^{-1}(w)| < 1/3\varepsilon$$
 .

Hence, putting $\delta = Min \{\delta', \delta_3\}$, we have the following

(i) $|G_w(v)| < \varepsilon$ for any $w \in (X_{\ell}(M), |\cdot|_{\ell})^{\circ}_{\delta}$ and $v \in (X^{\circ}(M), |\cdot|)_{\varepsilon}$

(ii) $|G_w(v) - G_w(v')| \leq 1/2 |v - v'|$

for any $w \in (X_{\ell}(M), |\cdot|_{\ell})^{\circ}_{\delta}$ and $v, v' \in (X^{0}(M), |\cdot|)_{\epsilon}$

And so by the contraction principle

(iii) for any $w \in (X_{\ell}(M), |\cdot|_{\ell})_{\delta}$ there exists a unique $v \in X^{0}(M)$ such that $|v| < \varepsilon$ and $G_{w}(v) = v$ i.e.

$$\exp w \circ f \circ \exp v \circ f^{-1} = \exp v \, .$$

Note that $\exp v$ is onto since $\exp v$ is homotopic to the identity. Hence

the proof of theorem is complete except for proving the injectivity of $u = \exp v$, remarking several facts that for any $g \in L(M)$ and $u \in C^{0}(M)$ $g \circ u = u \circ f$ if and only if $(g \circ f^{-1}) \circ f \circ u \circ f^{-1} = u$, that if $d_{\ell}(g, f)$ is sufficiently small there exists a unique $w \in X_{\ell}(M)$ with $|w|_{\ell}$ sufficiently small such that $g \circ f^{-1} = \exp w$ (see Prop. 2-2), that if $d_{0}(u, 1_{M})$ is sufficiently small there exists a unique $v \in X^{0}(M)$ with |v| sufficiently small such that $u = \exp v$ and that $|\cdot|$ and $||\cdot||$ are equivalent. To prove the injectivity let g be a lipeomorphism of M and u be in $C^{0}(M)$ with $d_{0}(u, 1_{M}) < \lambda_{0}/2$ and assume $g \circ u = u \circ f$. Choose $x, y \in M$ with u(x) = u(y). If $x \neq y$ there exists an integer n_{0} such that $d(f^{n_{0}}(x), f^{n_{0}}(y)) \geq \lambda_{0}$ by Lemma 3-4. As $g^{n_{0}} \circ u = u \circ f^{n_{0}}$ we have $u \circ f^{n_{0}}(x) = g^{n_{0}} \circ u(x) = g^{n_{0}} \circ u(y) = u \circ f^{n_{0}}(y)$. On the other hand as $d_{0}(u, 1_{M}) < \lambda_{0}/2$ and $d(f^{n_{0}}(x), f^{n_{0}}(y)) \geq \lambda_{0}$ we have $u \circ f^{n_{0}}(x) \neq u \circ f^{n_{0}}(y)$. This is a contradiction. Hence x = y. q.e.d.

REFERENCES

- Anosov, Geodesic flow on a Riemannian manifold with negative curvature, Trudy Math. Just. Stekholv, Moscow, 1967.
- [2] Dieudonné, Foundations of modern analysis, Academic Press, New York, 1960.
- [3] Hirsch and Pugh, Stable manifolds and hyperbolic sets, Proc. of Symposia in Pure Math. (Global Analysis) XIX, AMS (1970), 133-163.
- [4] Moser, On a theorem of Anosov, J. of differential equations 5 (1969), 411-440.
- [5] Nitecki, Differentiable dynamics, Cambridge, M.I.T. Press, 1971.

Department of Mathematics Nagoya University