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LIPEOMORPHISMS CLOSE TO AN

ANOSOV DIFFEOMORPHISM

KENTARO TAKAKI

§ 0. Introduction

It is well-known that an Anosov diffeomorphism / on a compact
manifold is structurally stable in the space of all C^-diffeomorphisms,
with the ̂ -topology (Anosov [1]). In this paper we show that / is also
structurally stable in the space of all lipeomorphisms, with a lipschitz
topology. The proof is similar to that of the Crease by J. Moser [4].
If a C^-diffeomorphism g is sufficiently close to / in the C -̂sense g is
also sufficiently close to / in the lipschitz sense by the mean value
theorem. Hence our result is somewhat stronger than that of Anosov.

In the following let M be a compact connected boundaryless C°°-
manifold of dimension n with a Riemannian metric || ||, d the distance
function induced by || ||, and {(Ua,a)} a covering of M by finite charts
M = IJα Uay where each local diffeomorphism a onto an open subset of Rn

is defined on an open subset of M which contains the closure of Ua:
2{ot) z> JJa(β{a) denotes the domain of a.). Let | | be the standard norm
in Rn.

§ 1. Lipschitz maps on M.

Let C°(M) be the set of all continuous maps of M into itself and dQ

the distance function on C°(M) induced by the distance function d on
M: do(f,g) = SuvxeM d(f(x),g(x)) for f,ge C°(M). L(M) denotes the set
of all lipschitz maps of M into itself. It is clear that L(M) is contained
in C\M). We may choose a positive number λ1 such that for any a
f(Uj(Z9(ά) holds for feC\M) with do(f9lM)< λ19 1M denoting the
identity map of M. For any / e C\M) with do(f, 1M) < λ19 f is lipschitz
if and only if for any a the map aofoa'1 of a(UJ into Rn is lipschitz
i.e. the lipschitz constant of aofoa~

ι: a(Ua) -> Rn, which is denoted by
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L(aofoa~ι on a(Ua)) or simply by L(ao f oa'1), is finite. This follows
from the facts that we can choose a positive number px such that for
each x the closed ^-ball B(x: pj — {y eM\d(x,y) <; pλ} around x is con-
tained in some Ua and that for any chart (V,γ) for M9 and for each
compact subset I of I contained in V the map γ: (X, d)-+ (γ(X),\ 1) is
a lipeomorphism. We have the following

PROPOSITION 1-1. There exists a positive number C1 with the follow-
ing property: For each a and each x,y eUa we have Cςι\a{x) — a(y)\ <;
d(x,y)^C1\a(x)-a(y)\.

For each / e L(M) with <20(/, 1*) < λ, we define dt(fy 1M) by djίf, 1M)

af) + Sn^Liaofoa-1 - 1 on a(Ua)).

PROPOSITION 1-2. Let f be any element in L{M) with dJif9lM)<λv

If d£(f, 1M) is sufficiently small f is a lipeomorphism.

Proof. We use the following

LEMMA {Lipschitz Inverse Function Theorem [3]). Let E, F be Banach
space, U c E and V c F non-empty open sets and g: U —> V a homeo-
morphism such that g~ι is lipschitz. Then for each h: U —»F with
L(h- g) L(g-1)<l, h(ϋ) = V is an open set of F,h:U->V is a
homeomorphism and h~ι: V —> U is lipschitz.

Let / be an element of L(M) such that do(f, 1M) < λx and d4(f, 1M)
< Min {1,^/2}. By the above lemma and Prop 1-1 f(Ua) is an open
set of M and / : Ua-+ f(Ua) is a lipeomorphism. In particular f(M) is
open. Since M is compact connected f(M) = M. We can complete the
proof by proving that / is injective. To do this, take x, yeM with
f(x) = f(y). Then, d(f(x),x) ^ UfΛu) £ dJLf,lM) < Pl/2. Similarly
d(f(y),y) <pJ2. Hence y is contained in B(x :ft) which is contained in
some Ua. As / : !7α->/(Z7α) is injective we have x = y. q.e.d.

§ 2. Lipschitz vector fields on M.

Let X\M) denote the set of all continuous vector fields on. M and
|| || be the norm on X\M) induced by the Riemannian metric || ||: \\u\\ =
Supa.6Jf llWa ll for any u = (ux)xeM e X\M). (Z°(M),|| ||) is a Banach space.
For each (Ua,a) put U'a = a{Ua) and let Ta: TM\Ua-+U'a X Rn be the
isomorphism induced by a. Let Da: TM | Ua —> Rn be the composite of
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Ta: TMI Ua -> U'a X Rn and the projection U'a xRn->Rn. Da is considered

as the differential of a. Then for each v e X\M) we define va by va =

Daov:Ua->Rn, and define \v\ by \v\ = S\xpaSuj?xeϋa\va(x)\. T h e n | | :

X\M) -> i?+ = {α e 2? I α :> 0} is a norm on Z°(ikf) and it is equivalent to

|| ||. The equivalence of | | and || || follows from the following.

PROPOSITION 2-1. There exists a positive number C2 such that for

any a and any v e TM\ Ua we have Cςι \\v\\ <; \Da(y)\ <£ C2 \\v\\.

An element v e X\M) is called a lipschitz vector field on M if and

only if for each a, va: Ua—>Rn is lipschitz i.e. vaoa~
1: U'a-+Rn is lipschitz.

Denote the set of all lipschitz vector fields by Z/M). We define a norm

|.|< on X/M) by \v\£ = \v\ + Sup.{L(vβoα-i)} for any veX4(M). Then

(Z/M), I |̂ ) is a Banach space.

Let exp = (expx)XQM be the exponential map induced by the Riemannian

metric || ||. In a normed space (£7, || ||)we denote the closed Λ-ball around

the origin by (£7,11-11); and the open Λ-ball around the origin by (2?, || ||)°.

We can choose a positive number λ2 such that for each xeM expΛ is a

diffeomorphism of (2\p(M),|| ||)°2 onto the open Λ2-ball around x in (M,d).

Hence for this λ2 exp: (Z°(M), || ||)?a s v -> exp v = exp o v e {/ e C°(M) \

do(f, ljtf) < λ2} is a bijective map. And for each v e (X°(M), ]| - ||)j^ we have

do(exp ^, 1 )̂ = ||t;||. For the convenience assume λ2 ^ λλ. By the equiv-

alence of I I and || || we can choose a positive number ε1 such that

(Z°(M), 1-1)° is contained in (X°(M), II ||)?t.

PROPOSITION 2-2. l̂ Fβ can choose a positive number ε2: 0 < ε2 ^ ε1 such

that

(i) /or each ve(M,\-\)fΛ expv is contained in L(M) if and only if v is

contained in X£(M) and that

(ii) for each sequence {va)}^t c Z/M) Π (Z°(M),|. |)e°2

d/exp va\ 1M) -+ 0 as i —> oo ,

|t;(ί)|^ -^ 0 as i —* oo .

Proo/. We take any (Ua,a) and fix it. For each (x'9ξ)e U'a X Rn

with | f | < e ! we define e(x',ξ) by β(^,f) = ^oexpo Γ^- 1 ^,?) . By the

choice of εx this is well-defined and e is of class C°°. Since e(^, 0) = xr
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and (De)2ix,>0) = lRn, if we represent e(x', ξ) by e(x', ξ) = xr + ξ + r(x'ξ),

then r is of class C°° and (Dr)(Λ?,)0) = 0 as (Dr)ux,}0) = (Dr)2(^,0) — 0 for

any #' e U'a. Recalling that 3)(ά) z> C7α, by the mean value theorem, we

have the following

(A): There exist a positive number ε(

2

a): 0 < ε£α) <g εx and a function

L ( α ): (0, ε|α)) -> [0,1) satisfying the following properties.

(iii) For each x', yf e Ϊ7«, 0 < ε < ε ^ } and f, 27 eRn with |f|, | ^ | ^ ε we have

\r(x',ξ) - r(y',ψ\ £ U«\ε){\x' - y'\ + \ξ - ,|}.

(iv) L(α)(ε) 0 as ε-> 0

Now, take ε: 0 < ε < ε̂ α) and v e (Z°(M), | . |) t and put va = Da o v: Ua -* Rn

and h = exp 1; e C°(M). We have Λ(Uβ) c ^(α) since do(fc, 1 )̂ = ||v | | <

For each ^ e Z7« put a? = a~Ktf). Then, we have

= Ta(vx) =

which implies

from which we get

(a oho a'1 — l)O0 = ^ o α " 1 ^ ) + r(af 9 v a

Hence for each x',yfe U'a we have

oft oar1 - D(aj') -(aohoa'1 - l)(yf)

+

By this equality we have the followings:

(v) If v is lipschitz then we have

\iaohoa~1 - DOS') - (aohoa-1

- y'\ .

(vi) If h = exp'y is lipschitz then we have

1 - D(^) - (aohoa-1 - 1)(/)|

— va°a~ι(y')\
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- U«\ε){\xf - yf\ + \va

As 0 ^ L(α)(ε) < 1 we have by this inequality

\vaoa~\x) — vaoa

^ l{d,(h9lM)

The proof is complete by using (iv), (v) and (v). q.e.d.

§ 3. Lipeomorphisms close to an Anosov dϋfeomorphism on M.

LEMMA 3-1. There exist positive numbers ε3: 0 < ε3 <^ ε1 and C3 with

the following property. For any xeUa and ξ,ηeRn with |f|, \η\ < ε3

we have

where yr — aoexpxo(Da)~\ξ) and z' — α

Proof. Take a and fix it. In the proof of Prop. 2-2 we defined e

and r. By (A) we can choose a positive number eia): 0 < ε[a) <̂  ει such

that for any x', yr e t/'α and any ξ,ηeRn with \ξ|, \η\ < ε(

Ά

a) we have

\r(x',ξ) - r(y',v)\ ^ l/2(\txf - y'\ + \ξ - η\)

For any xeUa and f, 27 e Rn with | ί | , |^| < ε(

3

a) putting %j = ao exp^ o (Dα)-1^),

^ = αoexp^oίZ)^);1^) and 05' = α(x), we have yf = e(af,ξ) and 2' =

Hence

)| ^ |f - 9 | + 1/2 |f -

and

W - z'\ ̂  if - η\ ~ |r(^,f) - r(^,^)| ^ |f - 9 | - 1/2 |f - 7 |
^ C3-1 |f - , |

Hence we can take C3 = 2 and ε3 = Infα{ε£α)} q.e.d.

COROLLARY. We can take positive numbers λ and C such that for

any xβM and u,ve TXM with \\u\\, \\v\\ < λ we have

C"1 \\u — v\\ <̂  d(exiβxu,expxv) <; C\\u — v\\ .
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Proof. This follows from Lemma 3-1, Prop. 1-1 and Prop. 2-1.

q.e.d.

LEMMA 3-2. There exist positive numbers δ19 ε4: 0 < ε4 ίg ε3, a function

L,: (0, δx) X (0, ε4) -+R+ and a continuous map r: {Xe{M), | . |,)° x (X°(M), \ . |),°

—> X°(M) with the following properties:

( i ) It holds that exp woexp v — exp iw + v + r(w, v)) for each

w e (Z/M), I \tfx and v e (Z°(M), | |)ε°4

(ii) For eachδ:O<δ<δlfε: 0<ε<ε 4, w e (Xt(M), \ - |Λ and v9 v'e(X%M), | . |),

we have \r(w,v) — r(w,v')\ ^ L^δ,ε)\v — v'\ and r(w,0) = r(Q,v) = 0.

(iii) Lj(3, ε) -> 0 as δ, ε -> 0.

Proof. Choose open subsets F a of M for each α such that Va c F α

c C7β and | J β 7 β = Jlί. We define a norm | \' on X\M) with respect to

the covering by finite charts, {(Va,a)}a, in the same way as we defined

I I: For each v e X\M) we define \v\' by \v\' = Supα Sup^ 6 F a |vβ(a;)|, where

^α = Daov. As I I' and || || are equivalent | f and | | are equivalent.

We can choose a positive number ε4: 0 < ε4 ^ ε3 such that for any w,

veX°(M) with \w\, \v\ < ε4 we have exp v(Va) c Ua for any a and

do(exp woexp^, !^) < Λ2. Then for each w, veX°(M) with \w\, \v\' < ε[

there exists a unique r(?/;, v) e X\M) such that exp w o exp v = exp (w +

v + r(w, v)) and rfo(exp w o exp v, 1 )̂ = || w + v + r(w, v)\\. It is clear that

r is continuous and r(w,0) — (0,^) = 0. Take any a and fix it. Put

V'a = α(7β). For each (x7,?,^) e V'a X Rn X Rn with |f|, |^| < ej we define

Λ(^,f ,7) by Pβ(a/,f,η) = Daoexp;1 oexp^o{Da)~Kξ)y where a? = a~Kx')

and 1/ = expxo(D^);1(^). By the choice of ε4 this is well-defined and Pa is

of class C~. It is clear that Pa(x', 0,0) = 0, Pa(χf, ξ, 0) = ξ and Pa(x', 0, η)

= 37. Hence if we express Pa{tf9ξ,η) by Pβ(rt,ξ,τj) = ξ + η + r{a)(tf,ξ,ή)

then r(α) is of class C°°, (Dr ί f l ) ) 1 ( x , M ) - φr(α))i(*',o,,) = 0, φr ( β ) ) 2 ( a ; / # e f 0 ) = 0,

φr(α))3(x',o,?) — 0 a n d so in particular (I)r U ) ) ( r > 0 ) 0 ) = 0. Noting that

S(a) ZD UaZ) UaZ) VaΊ) Va, we can conclude the following by the mean

value theorem.

(B) There exist two positive numbers δ[: 0 < δ{ <; ε4 and ε'l: 0 < ε4

7 ^ ε4

and a function L[a): (0,30 X (0, ε4θ —> i?+ with the following properties:

(iv) For each δ: 0 < δ < δ'lf ε: 0 < ε < ε'l, x', y' e V'a and ξ, 7 , ζ, 0 e JΓ with

|f I, Id ^ 3 and | 7 | , |0| ^ ε we have

|r ( β W,f,9) - ^W)O/,C,0)| ̂  Lί Kδ,e) {\tf - y'\ + \ξ - ζ\ + \η - 0|} ,

(v) Lία)(^,ε)->0 as 3,e-*0.



LIPEOMORPHISMS 77

Take any positive numbers δ, ε with 0 < δ < δ[ and 0 < ε < ε'l and fix
them. For each w, v, v' eX°(M) with \w\ <, δ and \v\, \v'\' ̂  ε we define
wa> va > v'a> r(w,v)a and r(w9v')a as before. Then for each xf e V'a we have

r(w,v)aoa-ι(%') = PXx'iWeoa-Ky^tVaoa-Kx')) - {^oα

and

where

and

Hence we get

\r(w,v)aoa~ι(x') — r(w>v')aoa~ι(xf)\

^ \waooc-\y') — waoa~1(z/)\

^ {1 + Lla\δ,e)}-\waoa-\yf) - waoa-\z')\

If we assume that w is contained in L(M), then we have by Lemma 3-1

\r(w>v)aoa~ι(xf) — r(w,v')aoorι(jxf)\

^ {1 + L[*Kd,e)Y\w\rW - z'\ + U«\δ,ε)\v

^ {Lίβ)(ί,e) + Cz\w\r(X + Ll \δ,ε))}.\vaoa

From this inequality, the equivalence of | | and | \f and (v) the proof
of Lemma 3-2 is complete. q.e.d.

In the followings we assume that /:M->M is a C^diffeomorphism.
For this / we define a linear automorphism /* of X°(M) by

f^(v) = df o v o f-1 for any v e X\M) ,

where df is the differential of /.

LEMMA 3-3. There exist a positive number ε5, a bounded function
L2: (0, ε5) —> R+ and a continuous map s: (X°(M), \ |)° —> X°(M) with the
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following properties.

( i ) / o e x p ^ o / - ^ exp (/*(*) + s(v)) for any v e (
(ii) s(0) — 0 and for each ε: 0 < ε < ε5 and v, vr e (Z°(M), | |)β we have

(iii) L2(ε) -> 0 as ε -> 0.

Proof, (cf. [4]) We can define a map F of a neighborhood of the

origin in X°(M) into X\M) such that exp(F(ι;)) = / o e x p ^ o / - 1 for each

i; e Γ ( M ) with \v\ sufficiently small. It is clear that F(Q) = 0. Since /

is of class C1, F is so and in fact, the differential of F at the origin is

/ # . Hence the proof is easy by using the mean value theorem for s =

For the convenience we may assume ε5 ̂  ε4.

Let Xb(M) be the set of all bounded vector fields on M. A complete

norm || ||5 on Xb(M) is defined by

\\v\\b = Sup \\vx|| for any veXb(M) .

Lemma 3-3 is also true for (Xb(M),\\ \\b). We make use of the same

notations as those in Lemma 3-3 for (Xδ,|| | |δ), /^, ε5, L29s. If / is an

Anosov deίfeomorphism 1 — /* is a linear automorphism of X°(M) and

also of Xb(M), where 1 is the identity map (cf. [4]).

We will prove the following well known fact.

LEMMA 3-4. // / is an Anosov diffeomorphism then f is expansive

i.e. there exists a positive number λ0 such that Su.TpnQZ d(fn(x), fn(y)) > λ0

for any x,yeM with x ψ y.

Proof, (cf. [5]) By the above remark there exists a positive number

λ0:0 <2λ0 < λ2 such that for each v, vf e (Zδ(M),|| ||δ)2^0 we have

||s(v) — sfr Ollδ ^ 1/2 ||(1 — /*)"1 | |ϊ'1 | |^ — ̂ Ίlδ

We assert the following.

(C) Let u be a map of M into itself such that fou = uof and uΦlM.

Then do(u,lM) = &\xpxeMd(u(x),x) > 2-λ0.

Choose any map u:M->M with fou = uof and dQ(u, 1M) ̂  2-λQ. For

this u there exists a unique element v e Xb(M) such that u = exp v and
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do(u,lM) = \\v\\b .

Then we have

/ o expt> o /- 1 = / ou o f'1 =z u = exp Ί; ,

and hence f#(v) + s(v) — v, or v = (1 — Z*)
By the choice of /l0, (1 —/#)~ l os is a lipschitz map of (Xδ(M),|| ||δ)Wo into
itself with the lipschitz constant L((l — f^os) <£ 1/2. Hence by the
contraction principle v must be 0 i.e. u must be the identity map of
M. Now, take any x> y eM with x ψ y. Put Per (/) = {x e M | x is a
periodic point of /}.
Case 1: the case of £§Per(/) or y$Fer(f). Suppose a$Per(/) .

We can define a map u: M -> M as following:
For any zeM

fn(y) if % with z = /w(x)

otherwise.

Then it is clear that fou — uof and that u ±? 1M. By (c) we have
do(u, 1M) > 2-λ0. Hence there exists an integer n with d(fn(x),fn(y)) > λQ.
The case of y 6 Per (/) is similar.

Case I I : the case of # e P e r ( / ) and yePer(f). Let r and s be the

smallest periods of x and y respectively. Suppose r = s. We can define

a map u: M -> M as following:

For any zeM

fn(y) if 3 n with z = /w(a;)

otherwise.

It is clear that fou = uof and u ^ 1^. By (c) we have dQ(u,lM) > 2λ0.

By the definition of u we conclude that there exists an integer n with

d(fn(x), fn(y)) = doC l̂jίf) > 2 Λ > Λ. Suppose r > s. We can define a

map u: M-+ M as follows:

For any ^ e M

(fs+n(x) if aw with J2; = fn(x)
u(z) = {

[« otherwise.

It is clear that fou = uof. Since a ^F / 5 W, U ^ 1^. Hence we have

do(u,lM)>2'λo. By the definition of u there exists an integer n with
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d(fn(x),fs+n(x)) >2 λQ. As fn(y) = fs+n(y) we have

d(fn{x)yf
n{y)) + d(fs+n(y),fs+n(x)) ^ d(fn{x),fs+n{x)) > 2λ0 .

Hence d(fn(x),fn(y)) > λ0 or d(fn+s(x),fn+s(y)) > λ0.
The case of r < s is similar. q.e.d.

For each geL(M) with dQ(gof~ι

91M) < χγ we define d£(g,f) by
d/#, /) = d£(gof~\ 1M). (Note that C^-diffeomorphism on M is a lipeomor-
phism on I , )

THEOREM. Assume that f is an Anosov diffeomorphism. Then
there exists a positive number ε0 satisfying the foΐlowihg condition. For
any ε: 0 < ε < ε0 there exists a positive number δ — δ(ε) with the property
that for each g e L(M) with d£(g, f)<δ there exists a unique homeomor-
phίsm u: M —> M such that g o u = u o / and do(u> 1M) < ε.

Proof. Put K = \f*\ + Sup0<fi<ε5L2(ε). K is finite by Lemma 3-3.
For each v e (X\M), \ |)ε°5 we have

IΛ(v) + s(v)\ ̂  | Λ | |ι;| + L2(|i;|) \v\ £K\v\.

Choose a positive number ε6 with ε6 ^ Min{ε5, εJK}. From Lemma 3-2
and 3-3 we have

exp w o / o exp v o f~ι = exp {w + f#(y) + s(v) + r(w: f*(v) + s(v))}

for any w e (X,(M),\ IΛ0, and ve(X°(M),\ 0n We may assume that
II w + ΛW + 5(v) + r(w:f*(v) + s(v))|| < λ2 by making ^ and ε6 suffi-
ciently small. From the above expression we see that

exp wo f oexp vo/-1 = exp v

holds if and only if

f*(v) + s(v)) = v .

As / is Anosov, 1 — /* is a linear automorphism. Hence the above equality
is equivalent to

(1 - f*)-\w + s(v) + r(w: f*(v) + s(v))) = v .

Put F(v) = f*(v) + s(v) and Gw(v) = (1 -f*)-\w + s(v)
By (ii) in Lemma 3-2 and by (ii) in Lemma 3-3 we have

\r{w:F{v))\^Lx{\w\eyK\v\)K\v\
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and \s(v)\ <; L2(\v\)\v\. Hence by (iii) in Lemma 3-2 and by (iii) in
Lemma 3-3 we can choose positive numbers δ2: 0 < δ2 <̂  δί and ε7: 0 < ε7 ̂  ε6

with the property that for each w e (Z/M), | |,)°a and v e (X°(M), | |l7 we
have

: F(v)))\ ^

and

Id — y*)-1^^))! ^ 1/3 |t;

On the other hand for each w e (Z/M), | 1,),°, and v, v' e (X0(M), | |)°,

putting δ = \w\e and ε = Max{|̂ |,|ΐ/|}> we have

\Gw(v) - Gw{v')\ ̂  |(1 - Λ)"1! {\s(v) - sMI + \r(w: F(v))

-r(w:F(v'))\}

^ |(1 - Λ)-1! {L2(ε) + KLfaKεϊWv - vf\ .

Hence by (ii) in Lemma 3-2 and by (iii) in Lemma 3-3 we can choose
positive numbers 33: 0 < <53 ̂  δx and ε8: 0 < ε8 ^ ε6 such that for each
w e (Z/M), I |Λ°3 and vrf e (X°(M), | . |)6°8 we have

\Gw(y) -Gw(v')\^ l / 2 | i ; - i / | .

For the convenience we may assume that d3 ^ 2̂ and ε8 ̂  ε7. Now, take
any positive number ε with 0 < ε < ε8. For this ε we can choose a posi-
tive number S> such that for each w e (Z/M), | \t)f, we have

Hence, putting δ — Min{̂ ,<53}, we have the following
( i ) \Gw(v)\ < ε for any w e (X£(M), \ |,)3° and v e (Z°(M), | |).
(ii) I G ^ ^ - G ^ O I ^ l ^ l ^ - ^ Ί

for any w e (X£M), \ |,),° and v, vf e (Z°(M), |. |).
And so by the contraction principle
(iii) for any w e (Z/M), | \£)δ there exists a unique v e X°(M) such that
\v\ < ε and Gw(v) = v i.e.

exp wo f oexp vo f~ι = exp v .

Note that exp'y is onto since expv is homotopic to the identity. Hence



82 KENTARO TAKAKI

the proof of theorem is complete except for proving the injectivity of
u = exp v, remarking several facts that for any g e L(M) and u e C°(M)
goU = uof if and only if (gof-^ofouof-^u, that if d,(g,f) is
sufficiently small there exists a unique weX£(M) with \w\t sufficiently
small such that gof~ι = expw (see Prop. 2-2), that if do(u,lM) is suffi-
ciently small there exists a unique veX\M) with \v\ sufficiently small
such that u — expv and that | | and || || are equivalent. To prove the
injectivity let g be a lipeomorphism of M and u be in C°(M) with
do(u, 1M) < λ o / 2 a n d a s s u m e gou — uof. C h o o s e x,yeM w i t h u(x) =

^(7/). lί x Φ y there exists an integer ?ι0 such that d(fno(x)9 fno(y)) ^ Λ

by Lemma 3-4. A s ^ o ί ί ^ ^ o / W o we have ^o fno(x) = ^rWoo^(ίc) = #noo^(7/)

= uofn°(y). On the other hand as dQ(u,lM) < λΌ/2 and d(fn°(x), fno(y))

^ 20 we have uofn»(χ) ^ uo fn»(y). This is a contradiction. Hence x = y.

q.e.d.
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