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CLASSIFICATION OF HOMOGENEOUS BOUNDED DOMAINS
OF LOWER DIMENSION

SOJI KANEYUKI AND TADASHI TSUJI*'

Introduction

The theory of classification of homogeneous bounded domains in the
complex number space Cn has been developed mainly in the recent papers
[10], [6], [3] and [7]. As a result, the classification is reduced to that of
S-algebras due to Takeuchi [7] which correspond to irreducible Siegel
domains of type I or type II (For the definition of irreducibility see § 1).
On the other hand Pjateckii-Sapiro [5] found large classes of homogeneous
Siegel domains obtained from classical self-dual cones. Even in lower-
dimensional cases, however, there are still homogeneous Siegel domains
which do not appear in his results.

In this article, we give a method of classification of S-algebras which
correspond to irreducible Siegel domains; applying this, we classify all
irreducible Siegel domains of type I and of type II up to dimension 10
and 8, respectively.

After reviewing results of [3] and [8] in § 1, we define in § 2 N-
algebras of type II and establish a relation between 2V-algebras and S-
algebras. In §3 we define skeletons of type I or type II and isomor-
phisms among them. It turns out that to each isomorphism class of
iV-algebras there corresponds an isomorphism class of certain skeletons
(Lemma 3.1 and Lemma 3.2). We classify all skeletons which are neces-
sary to find all the iV-algebras corresponding to the above-mentioned
Siegel domains (Prop. 3.5 and Prop. 3.6). In §4 we will first restrict
our attention to 3-skeletons of type I and 2-skeletons of type II. We
study how to construct iV-algebras from such a skeleton (Lemma 4.1 and
4.6) and study under what conditions these 2V-algebras are isomorphic
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(Lemma 4.2, 4.4, 4.5 and 4.8). In §5 and §6, applying results in §4,
we will obtain all the iV-algebras which correspond to each of skeletons
classified in Proposition 3.5 and 3.6.

In § 7, summing up results in § 5 and § 6 we get the main theorem
(Theorem 7.1). We give also the numbers of irreducible Siegel domains
in the respective dimensions (Theorem 7.2). Furthermore we give the
explicit forms of all irreducible Siegel domains of type I (resp. type II)
up to dimension 7 (resp. 8). Some of them are already known in
Pjateckii-Sapiro [5]; but others are new and most of them are Siegel
domains obtained from non-self dual cones. It should be noted that there
exists a unique one-parameter family of non-isomorphic irreducible Siegel
domains of type II in C or in C8 (cf. §6 and §7).

Throughout this paper, we will employ notations and terminologies
in the previous article [3]. We denote by En the unit matrix of degree
n and by O(ri) the real orthogonal group of degree n.

§ 1. Basic theorems and iV-algebras of type I

1.1. Vinberg, Gindikin and Pjateckii-Sapiro [10] proved that every
homogeneous bounded domain D is realized as a (aίϊine) homogeneous
Siegel domain of type I or type II. If D is realized as that of type I,
it is called of tube type. A homogeneous bounded domain is called
irreducible, if it is not (holomorphically) isomorphic to a direct product
of any two homogeneous bounded domains of lower dimension. Then the
following theorems are known:

THEOREM A ([3]). Every homogeneous bounded domain D is isomor-
phic to a direct product of irreducible domains; the decomposition is
unique up to an order. Furthermore D is of tube type if and only if
each irreducible factor of D is of tube type.

THEOREM B ([3], [4]). Let D(V,F) and D(V',F') be homogeneous
Siegel domains of type I or type II. Then D(V,F) is (holomorphically)
isomorphic to D(V, F') if and only if they are mutually linearly equiva-
lent. In particular homogeneous Siegel domains D(V) and D(V') of type
I are mutually isomorphic if and only if the homogeneous convex cones
V and V are linearly equivalent to each other.

A homogeneous convex cone V is called irreducible if it is not linearly



HOMOGENEOUS BOUNDED DOMAINS o

equivalent to a direct sum of any two homogeneous convex cones.

THEOREM C*} ([3]). A homogeneous Sίegel domain D(V,F) of type I

or type II is irreducible as a homogeneous bounded domain if and only

if the homogeneous cone V is irreducible.

It is known in [3] that a homogeneous Siegel domain of type II can

not be realized as a homogeneous Siegel domain of type I. Therefore,

in view of the above theorems, what we need to do, in order to classify

homogeneous bounded domains up to holomorphic equivalence, is

A) to classify irreducible homogeneous convex cones V up to linear

equivalence, and

B) to classify homogeneous Siegel domains D(V, F) of type II with

V irreducible, up to linear equivalence.

1.2. We recall iV-algebras of type I due to Vinberg [8].

DEFINITION ([8]). Let J V b e a finite dimensional associative algebra

over the real number field R, and m ( > 2) be a positive integer. Suppose

that N is the direct sum of bigraded subspaces Λ7̂  (1 < i < j < m) and

that N is equipped with a positive definite inner product < , >. Then N

is called an N-algebra of type I of rank m, if the following conditions

are satisfied;

(Nl) NtjNjtCNn,

(N2) NijNik = (0) if j φ ί,

(N3) < # „ , Nki> = 0 if i φ k or jφ £,

(N4) for every atj e Ntj and bjkeNJk,

(aijbjK, aijbjjc} = — < a i j y a€jy(bjk9 bjk),

where nά = 1 + J 2,<y dim Nsj + \ Σs>j dim Njs,

(N5) if aίk e Nik, bjk e Njk (ί < j) and

<aik,NbJk> = 0, then (Naίk,Nbjk> = 0.

An N-algebra of type I of rank one is defined to be an empty set.

(N4) is equivalent to the following (N40 or (N4//).

*> Taking this opportunity we correct a small error in the proof of this theorem;
that is, in the line 6ff, page 126 [3], (ΔM - ΔW + ΔM)/2 and (J0«> - ΔM + J(«))/2 are
not roots only for a Φ β or μΦv. But, since we have [jra, W2] = [jrμ, Wi] = 0, the
equality {jRlf W2] = IJR2, Wύ = 0 in the line 7 if is still valid.
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(N40 For every α{<7 , α^ e Λ/̂  and bjk,b^jkeNjki

2

(N4") For orthonormal bases {β|y} of Nij9

a b c d \ d 2

Let 2V = 2]i<^ N* j be an JV-algebra of type I of rank m. A permu-
tation σ of the index set {1,2, , m} is called admissible to 2V if N^ =
(0) as long as i < j and σ(ΐ) > σ(j). Let σ be a permutation admissible
to IV. If we replace each index i by σ(i) in JV, then we get a new N-
algebra Nσ of type I different from JV only in bigrading. Let N and N'
be two iV-algebras of type I of rank m. Then N is said to be isomorphic
to N' if there exist a permutation σ admissible to N and an algebra
isomorphism / of Nσ onto N' which is not only bigrade-preserving but
isometric relative to the respective inner products. It is known in
Vinberg [8] that there exists a natural bisection between the set of all
linear equivalence classes of homogeneous convex cones and the set of
all isomorphism classes of IV-algebras of type I. To the JV-algebra of
type I of rank one there corresponds the cone of the positive real half-
line.

Thus, to solve the problem A) we have only to consider IV-algebras
of type I.

§ 2. iV-algebras of type II

We shall begin with some definitions due to Vinberg [8]. Let m be
a positive integer and 21 be a finite dimensional algebra over R. Then
21 is called a matrix algebra of rank m + 1 if it is bigraded with sub-
spaces «4i (1 < i, j<m + ΐ) such that 2T 2̂ί̂  c ««, «„ Φ (0) (1 < i < m
+ 1) and that %βu = (0) for j Φ k. Let 2ί = Σi*u*m+1 %ij b e a matrix
algebra of rank m + 1. By an involution of 2t we mean an involutive
anti-automorphism * of 21 such that

(2.1) 2Ϊ* = %„ (1 < i, < m + 1) .

A complex structure j of a matrix algebra 21 = 2^ ( j ^ m + 1 2ϊ^ of rank
m + 1 with an involution * is, by definition, a linear endomorphism of
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the subspace Σi*«<;m (%,m+ι + Stm+i,*) of SI such that

(2.2) M^m+1 - 2ί,,m+1 (1 < i < m) ,

(2.3) jo* = * o ; ,

(2.4) f = - 1 .

We note that (2.1), (2.2) and (2.3) imply that /?ίw + M = StTO+M (1 < £ < m).
From now on we shall use the following notations (cf. [8])

[α, δ] = αδ — δα (α, δ e 20 ,

[α, δ, c] = α(δc) — (αδ)c (α, 6, c e 20 ,

n ί y = dim §I^ (1 < £, / < m + 1) ,

and we will denote by atj the SίίΓcomponent of an element a e SI. In
what follows, we will consider exclusively S-algebras (cf. Takeuchi [7])
with the additional condition (T, 0), which we call T-algebras of type II
in accordance with the usual T-algebras in Vinberg [8].

DEFINITION 2.1 (cf. [7]). Let SI = ΣLI^J^+ΛJ be a matrix algebra
of rank m + 1 with an involution * and a complex structure /. Then
the triple (21, *,/) is called a T-algebra of type II of rank m if the follow-
ing axioms are satisfied;

(T. 0) 8r<tm+1 Φ (0) for some i (1 < i < m),
(T. 1) Each subalgebra SI« (1 < i < m + 1) is isomorphic to the

algebra R; These isomorphisms are denoted by p,
(T. 2) dubij = p(au)bijf a^bjj = p{bjj)aυ (1 < ί, j <m + 1),

(T. 3) Sp [α, 6] = 0 (α, 6 e 80, where Sp is defined by

Sp α = Σκ^m+i nφ(au),
(T. 4) Sp[α,&,c] = 0 (α,&,ceSO,
(T. 5) Sp αα* > 0 if a Φ 0 (α € Si),
(T. 6) [α,&,c] = 0 ( ^ δ ^ e
(T.7) [α,5,5*] = 0 ( α ^ e

(T. 8) Kaφ^m+ι) = dijjibj^) (l<i < j < m),

(T. 9) Sp Oα δ) = Sp αδ (α, δ e Σi^<m («ίfm+i + Sίm+1,,)).

Remark 2.2. (T. 1)-(T. 7) imply that a T-algebra of type II of rank
m is itself a usual T-algebra of rank m + 1 (cf. [8]).
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DEFINITION 2.3. Let N = Σ ^ ί < K w + 1 Nυ be an N-algebra of type I
of rank m + 1 with the inner product < , ) and / be a linear endomor-
phism of the subspace Σi<i^m Nitm+1 of N. Then the triple (iV, < , >,i) is
called an N-algebra of type II of rank m if the following conditions are
satisfied

(2.5) Nitm+1 Φ (0) for some i (1 < i < m) ,

(2.6) JNit1Λ+1 = Λ^m+1 (1 < i < m) ,

(2.7) f = - l ,

(2.8) </α, jby = (fly b} (a,b e Σ Nim

= α;(6) ( f l 6

w5 ¥ 6 J(2.9)

The above is called the complex structure of N. For simplicity
we will often denote (2ί, *,/) by 2ί and (2V,< , >,/) by Nf respectively.

Let 2ί be a Γ-algebra of type II of rank m and N be an N-algebra
of type II of rank m. Then a permutation σ of the index set {1,2, ,
m + 1} is said to be admissible to 21 (resp. N) if σ(m + 1) = m + 1 and
if 21̂  = 0 (resp. iV^ = 0) as long as i < j and σ(i) > σ{j). For a permu-
tation σ admissible to 2Ϊ (resp. N), we have a new T-algebra 2ί* (resp. an
N-algebra Nσ) of type II of rank m by replacing each index i by σ(i) in
2ί (resp. ΛΓ), which is different from 2ί (resp. N) only in bigrading.

DEFINITION 2.4 ([7]). Let (Sί,*,j) and (SI7,*',/) be two Γ-algebras
of type II of rank m. Then 21 is said to be isomorphic to 2F if there
exist a permutation <y admissible to 2ί and a grade-preserving algebra
isomorphism ψ of 21* onto 2f such that

(2.10) po* = * / o f ) ,

(2.11) φoj = foφ on Σ («ί,«+i + 8ti+i,i)

DEFINITION 2.5. Let (iV,< , >,i) and (JV',< , y,/) be two iV-algebras
of type II of rank m. Then N is said to be isomorphic to N' if there
exist a permutation σ admissible to 2V and a grade-preserving algebra
isomorphism ψ of ΛΛ onto Λ/7 such that

(2.12) ψ is an isometry with respect to < , > and < , >' ,
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(2.13) ψoj = jΌf on Σ #ί,»+i
l<i<m

Let (2ί, *,j) be a T-algebra of type II of rank m. We define the

inner product < , > in 21 by putting

(2.14) <α,&> = Spα&*

for α, δe2ί (cf. (T. 5) in Definition 2.1). Then this inner product has

the following relations;

< α * ' & * > = <a> b> > < α δ * > c> = <ba*> c * > = <cb> a> >
<(α*&, c> = <(δ*α, c*> = (ac, by

for α, δ, c G Σ i ^ < ^ « + i «ϋ (cf [8], p. 349, (46), (51), (52)). Let us put N(2ί)

= Σi^kj^m+i ^ir Then, as is known in Vinberg [8], N(Sί) is an iV-algebra

of type I of rank m + 1 with respect to the inner product < , >, since

(2T, *) is a T-algebra of rank m + 1 (cf. Remark 2.2). From (T. 8) and

(T. 9), it follows that the above inner product < , > and the complex

structure j restricted to Σi^sm SI<,m+i satisfy (2.6)-(2.9). Thus 2V(2ϊ) is

an 2V-algebra of type II of rank m. We denote by Φ the mapping which

assigns each Γ-algebra (Sί, *,f) of type II of rank m to the Λf-algebra

(iV(2l),< , >,/) of type II of rank m.

THEOREM 2.6. The mapping Φ induces a natural bijection Φ between

the set of all isomorphism classes of T-algebras of type II of rank m

and the set of all isomorphism classes of N-algebras of type II of rank m.

Proof. We define Φ to be the mapping which carries the isomor-

phism class of (21, *,j) to that of (N(2I),< , >,;?). First we will show that

Φ is well-defined and injective. Let (2ί, *,/) and (2Γ, * 7,/) be two T-

algebras of type II of rank m and suppose that (2ί, *,j) is isomorphic

to (2Γ, *',j'). Then there exist a permutation σ admissible to 2ί and an

isomorphism ψ of 2ίσ onto 2ί7. Since ψ(%i3) = Wβ{i)aU) (1 < i < j < m + 1)

and since n<̂  = 0 as long as ί < j , σ(ϊ) > σ(j), we have nt = < ( ί ) . Hence,

it follows that for aij9 btj e 2I^ 0- <i < j <m + 1)

where ^ is the algebra isomorphism of Sί« onto jf?. Therefore p induces

an isometry of 2V(2I)σ onto N(W). From this and the Definition 2.4 and
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2.5, it can be seen that ψ induces an isomorphism of (iV(2ί)%< , >,/) onto

(iV(2Γ),< , >',/)> which proves that Φ is well-defined.

Suppose that (iV(2ί),< , },j) is isomorphic to (N(Sί7),< , >7,/). Then

there exists a permutation σ admissible to N(SI) and a grade-preserving

isomorphism ψ of 2V(Sί)σ onto 2V(2I7). Let us define the map ψ of Slσ onto

W as follows;

(Ψ on SI?y, i < j ,

-1 o p on Sljt ,

o ψ o * on Sljy, j < i .

Then by using (2.12)-(2.15), we can show that y> is an isomorphism of

(Sί%*,y) onto (Sί7, * 7 , / ) , which implies that Φ is injective.

We want to show that Φ is surjective. Let (N9 < , >, jx) be an Λ̂ -

algebra of type II of rank m. Then by Vinberg [8], there exists a T-

algebra (SI, *) of rank m + 1 such that 2V(2l) =• N as iV-algebras of type

I. We define a complex structure j on SI as follows;

(jx on SI ί jm+1 = Nii7rι+1 ,

1* o j \ o * on STm+li< = Nft1Λ+1 (1 < ί < m) .

It remains for us to show that (Sί, *,;/) satisfies the axioms (T. 8) and

(T. 9). (2.9) implies (T. 8). On the other hand, for αifTO+1 e2l<,m+1,

&m+i,i e 8tm+1,ί (1 < i < m),

which implies (T. 9). So Φ((St,*,j)) = ( # , < , >,λ). q.e.d.

From the above theorem and Theorem A in Takeuchi [7], we get

the following:

COROLLARY 2.7. There exists a bisection between the set of all

isomorphism classes of N-algebras of type II and the set of all linear

equivalence classes of homogeneous Siegel domains of type II.

Thus, to work out the problem B) in § 1, we have only to consider

iV-algebras of type II.

§ 3. Skeletons

3.1. We will define an m-skeletons of type I. Let us put m tiny
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circles on R2 so that they may form the vertices of a regular m-polygon

by a regular 1-polygon (resp. 2-polygon) we mean a point (resp. a line

segment). Let us number these circles counterclockwise, starting from

the vertex at the upper left corner. The ΐ-th circle is called the vertex

ΐ, or simply i. Some of these circles may be joined by line segments.

By the notation i ~ j (resp. i ^j) we mean that the vertices i and j are

joined (resp. not joined) by a line segment. The following assumption

(*) has to be satisfied (*) if i < j < k, i ~ j and j ~ k, then i ~ k. A

figure S satisfying (*) is called an m-skeleton of type I, if a positive

integer ntj is attached to each line segment ϊj (ί < j) in S in such a way

that

51) if i < j < k, ί ~ j and / — Jc, then max (nij9 njk) < nik,

52) if i<j<k<ΰ,i~ j , j - i,i ~k,k~ £, i ~ ί and j </> k9 t h e n

maxiΠij + Πik.Πij + nki9nJ$ + nik9nSi + nu) < nu.

We often denote the skeleton S by the pair OS, (n^ )). An m-skeleton

S of type I is called connected if for any two vertices i and j there

exists a series of vertices i = io,ii, ,is_i,iβ = j such that ik_λ ~ ik for

each 1 < k < s.

DEFINITION 3.1. Let (S,(w^)) and (Sf,{n'i3)) be two m-skeletons of

type I. S is said to be isomorphίc to S'9 if there exists a permutation

σ of the set {1,2, ,m} such that

i) if i < j and σ(ΐ) > σ(j) in S, then i ^ j in S,

ii) σ(ϊ) — σ(i) in S' if and only if ί — ̂  in S9

iii) < ( i ) , ω = w€i.

It can be seen that the above isomorphism is an equivalence relation
in the set of all m-skeletons of type I.

EXAMPLE. The following 5-skeletons of type I are connected and

mutually isomorphic under the permutation σ = I ).
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5 1

3.2. By an m-skeleton of type II we mean an (m + l)-skeleton
(©, (fiij)) of type I satisfying the conditions

i) there exists at least one vertex i, 1 < i < m such that i ~ m + 1
in this case each nitΊn+ί is an even number,

ii) only the last vertex m + 1 is denoted by a black circle φ.
An m-skeleton © of type II is said to be connected if for any two

vertices i and j (ί, j Φ m + 1) there exists a series of vertices i = ί0, ij,
• > i«-i> ^ = j such that 1 < ilf , is^ < m and that ίk_λ ~ ik for each
1 < k< s.

EXAMPLE. Consider the following 3-skeletons of type II.

3 2

The first one is connected, while the second is not connected.

DEFINITION 3.2. Let (©,0^)) and (©',04)) be two m-skeletons of
type II. Then they are said to be ίsomorphic to each other, if there
exists a permutation σ of the set {1,2, ,m,m + 1} leaving m + 1 fixed
and satisfying i)—iii) of Definition 3.1.

The above isomorphism is an equivalence relation in the set of all
m-skeletons of type II.

3.3. Let N = Σ « j Ha be an 2V-algebra of type I of rank m. We
put nυ = dim N^. For the iV-algebra N we define its diagram S(N) in
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the following way*} at first m tiny circles should be put and numbered
in the same way as in 3.1; let us join the vertex i with / (ί < j) by a
line segment if and only if ntj Φ 0, and let us attach the number nis to
each line segment ij. For the case of m = 1, S(N) is defined to be just
a vertex.

LEMMA 3.1. The diagram S(N) of an N-algebra N of type I of rank
m is an m-skeleton of type I. If two N-algebras of type I are ίsomor-
phίc to each other, then so are their diagrams.

Proof. Suppose that three vertices i < j < k in S(N) satisfy ί ~ j
and j ~ k. Let x0 be a non-zero element in Njk. Then, by (N4) the map
of Nid to Nίk defined by xtj e NtJ >-> XijX0 e Nίk is a linear isomorphism
of Nij into Nik. Hence we have nti < nik, and analogously njk < nίk.
S(N) thus satisfies SI). Suppose that four vertices ί < j < k < i in S(N)
satisfy the conditions i ~ j9 j ~ £9 i ~ k, k — £, i ~ £ and j </> k. Then,
for arbitrary elements xje e Nj£ and xu e Nu we have <xH, Nxuy = 0.
Hence, by (N5) we have (NNJi9 NNkί} = 0. Take non-zero elements
eu e Njiy ekί e Nk£. Then the maps

/ : Xij e N€j i—> x^e^

g: xik e Nik i—> xikekί

are linear isomorphisms of NiS into Nu and of Nik into NUy respectively
(cf. (N4)). The condition (NNji9 NNkί} = 0 implies that the subspaces
f(Ntj) and g(Nίk) of Nu are orthogonal to each other. Hence nis + nίk

< nu. Other assertions in S2) are analogously proved. Thus S(N) is an
m-skeleton of type I. The second assertion of the lemma is immediate.

q.e.d.

Let (iV,< , >,/) be an iV-algebra of type II of rank m. Then we can
consider the diagram S(N) of N by regarding N as an N-algebra of type I
of rank ra + 1. By the diagram @(N) of N as an N-algebra of type II
of rank m we mean the figure which is obtained from S(N) by changing
the color of the vertex m + 1 in black. By the quite similar way as in
Lemma 3.1 we get

LEMMA 3.2. The diagram <5(N) of an N-algebra (N,< , },j) of type

*} To define the diagram of an 2V-algebra of type I was motivated by the diagram
of a jΓ-algebra due to Asano [1].
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// 0/ rank m is an m-skeleton of type II. If two N-algebras of type II

are isomorphic, then so are their diagrams.

3.4. Let D(V,F) be a homogeneous Siegel domain of type II. Let

(N, < , >, j) be the corresponding 2V-algebra of type II and (©, (n^)) be

its diagram. Suppose that rank N = m. Then it follows from Takeuchi

[7] that the figure which is obtained from (<S, (ni3)) by removing the

vertex m + 1 and all line segments starting from m + 1 is the diagram

of the iV-algebra of type I corresponding to the cone V. Hence, from

Theorem C and a result of Asano [1] we have

PROPOSITION 3.3. Let D(V,F) be a homogeneous Siegel domain of

type I or type II. Then it is irreducible if and only if the diagram of

the N-algebra corresponding to D(V,F) is connected.

LEMMA 3.4. Let D(V) (resp. D(V9F)) be an irreducible Siegel domain

of type I (resp. type II). Let N(V) (resp. N(V,F)) be the N-algebra

corresponding to D(V) (resp. D(V,F)). If άimD(V) < 10, then rankiV(V)

< 5 if dim D(V, F) < 8, then rank N(V, F) < 4.

Proof. Suppose rank N(V) = n and rank N(V, F) = m. Let (S, (ni3))

and (©, (niij)) be the diagrams of N(V) and N(V,F), respectively. Note

that dim D(V) = n + Σι<i<j<>n ntj and dim D(V, F) = m + Σli<:i<j*m. mij +

Σi<^™ Jmi,m+i (cf. [8], [7]). Since S and © are connected by Proposition

3.3, it follows from a result of Asano [1] that Σli^i<j^n ni3 > n — 2

and Σnzi<tem ma > m - 2. So we get n - 2 < Σn^i<j^n nυ < 10 - n.

On the other hand, at least one m<>TO+1 is not zero and so J^ίi imi,m+ι > l

Hence m — 2 < Σi<ί<j^m mij < 7 — m. Thus we have n < 5 and m < 4.

q.e.d.

Thus, to solve the problem A) for the case of dim V < 10 and B)

for the case of dim D(V,F) < 8 (cf. §1), our task is

I) to classify (up to isomorphism) all connected nskeletons (S, (nί3))

of type I satisfying the condition

(n < 5
( 3 Λ ) Σ UtjKlO-n,

\l<,i<jζn

II) to classify all connected m-skeletons (©, (m^ )) of type II satisfy-

ing the condition
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(3.2)
(m < 4

I Σ mυ + Σ
\l<i<j<m l<ί<

i.m+i < 8 - m ,

III) for each skeleton S or © obtained in I) or II) /md (tφ ίo iso-
morphίsm) all the N-algebras whose diagrams are isomorphic to S or ©.

The answers to the above problems I) and II) are given in the
following two propositions, the proofs of which are quite elementary but
tedious so we may omit them.

PROPOSITION 3.5. All the connected skeletons of type I satisfying
(3.1) are (up to isomorphism) as follows;

Si

s2

1
o
1
o

n12
2

-o 1 < nu < 8

< n12 + n

12 < ^13

Sϊ

(3 < nn + n23 + n13 < 7

[Max (n12, n23) < nn

S\

o

'3 < n12 + w13 + nu

12 < ^13 < ^14
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nu
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4

ΠH

3 < nu + nu + nu < 6

4 < nu < nu

n2i + nu

SI |4 < nn + nu + n23 + nu < 6

lMax(tι 1 3,n 2 3,tι 2 4) < nu

| 4 < n12 + n13 + n24

[Max (nu, n24) < nu

sr

nu

J4 < nn + nu + nu + nu < 6

[Max (nlz, nu) < nu

nu = 1 or 2



Sΐ

si

si

si

si*

HOMOGENEOUS BOUNDED DOMAINS

4

n14 = 1 or 2

15

2 * 3

nu = 1 or 2

nlδ = 1 or 2
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si 2<nι3 + nlb < 3

2 < n35 + fiu < 3

3 < nlt + n15 + n2s < 4

Sf 3 < nu
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sr

sr

sr
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PROPOSITION 3.6. All the connected skeletons of type II satisfying

(3.2) are (up to isomorphism) as follows;

©1

©ϊ

1
o

2-

% 2

1 < \nn < 7 .

2<n12 + %nn < 6

Γ3 < n12 + i(n2Z + nl3) < 6

[Max (n12, n23) < n13 .

Γ3 < n12

Ul2 < ^

(n12,n2t,nu,n13) = (1,2,2,1) ,

(1,2,4,1), (,1,2,2,2), (2,2,2,1)
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<Sί (nn, n2l, nu> nu) = (1,1,2,2) ,

(1,1,2,4), (2,1,2,2).

(nn,nu) = (1,2), (1,4), (2,2)
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©i

§ 4. Some lemmas on iV-algebras

4.1. Let S be the following 3-skeleton of type I

1

and we consider a real square matrix A = (a(ijκU)) of degree n12n23, where

1 < i, k < n129 1 < /, I < n23, (The double indices (ij) should be put in

the lexicographic order) satisfying the following conditions

(4.1)

(4.2)

(4.3)

2
n 2

 %k 3i '
where n2 = 1 +

A is positive semi-definite .

1>12 + n2s) ,

Such a matrix A is not uniquely determined in general and may contain

several parameters tlf ••-,*, which are indeterminate coefficients of A.

So we write At for A, where t = (tlf ,t,). The matrix A, is called

the Grammian of S. Let B be an w12w23 x nn real matrix and consider

the matrix equation with B as its indeterminate

(4.4) At^BιB .

It can be easily seen that the equation (4.4) has a solution if and only if

rank Aί < nιz. Let Bt = (bk

i3) be a solution of (4.4), where 1 < i < n12,
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1 < j < n2%, and 1 < k < nί3. Let N = N12 + N23 + N13 be the orthogonal

direct sum of the euclidean vector spaces Ntj with dim Niό = ni3

(1 < i < j < 3). Then, for fixed orthonormal bases {e\3) of iV^ we define

a multiplication in JV as follows:

(A ~ fβί2β4 Σ 6 êf8 , 1 < i < n1

(4.5) ^

U - 0 for

LEMMA 4.1. With respect to the multiplication (4.5) the euclidean

vector space N is an N-algebra of type I having S as its diagram. Every

N-algebra of type I of rank 3 having S as its diagram can be obtained

in this way, provided that the value of the parameter t is suitably chosen.

Proof. The multiplication (4.5) satisfies (Nl) and (N2). The associ-

ativity and (N5) are also trivially satisfied. Let <( , > be the inner product

of N. Using (4.4) and (4.5) we have

/ % i k £ \ ) / ί £

s s

2
n2

 ιk ie '

which proves (N4") The first assertion of the lemma was thus proved.

Let N = N12 + N2Z + Nιz be an N-algebra of type I of rank 3 with S as

its diagram, and let {ek

ί3} be an orthonormal base of NtJ. We define the

matrix A = (aajκΊci)) by putting a(iJ)iki) = <βj2β|3, e
k

2e
e

23}. Then A satisfies

(4.1)-(4.3) and coincides with the Grammian At of S for a fixed value

of the parameter t. Since ej2β|3 is written in the form Σ?=i c?iβi3> w e

have a(ίjnk£) = Σ s cίjcle> which implies A = BIBQ, where Bo — (cfy). This

means that the matrix Bo of the structure constants of N is a solution

of (4.4). q.e.d.

For an N-algebra N having S as its diagram, the matrix A —

KeueL> 1̂2̂ 23)) is called the Grammian of N with respect to the ortho-

normal bases {ek

i3}. In what follows, an N-algebra N having S as its

diagram is often called an N-algebra corresponding to S.

LEMMA 4.2. Let N = N12 + N23 + N13 and N ; = N(2 + N^ + Nί3 be

two N-algebras of type I corresponding to S. Let {ekj} (resp. {e'fy) be

an orthonormal base of Ni3 (resp. N'i3) (1 < i < j < 3), and let B = (bk

3)
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(resp. Bf = (b'fy) be the matrix of the structure constants of N (resp. N')

with respect to these bases. Then N is isomorphic to Nf if and only if

there exist matrices Tx e O(n12), T2 e O(n2Z) and Tz e O(nn) such that

(4.6) T2)B = B'TZ .

Proof. Suppose that there exist such matrices Tu T2 and Γ3. Put

T, == (aki), T2 = (βtJ) and Γ3 = (γts). By (4.6) we have

$ £,k

We define the linear isometry φ of N onto N' by φ\Nij = p^, where

isomorphism of JV onto N ' ; in fact

= Σ
— V

= Σ «*<&

The "only if" part is analogously proved. q.e.d.

LEMMA 4.3. Let Bx and B2 be n x m real matrices such that B[B1

= B\B2. Then there exists a matrix T2 e O(m) such that B2 = BXT2.

Proof. Let us put A = B\BX. Let {αj, , αj} be the set of all non-

zero different eigenvalues of A. We assume that α 1 > ^ 2 > >as>0.

There exists a matrix UeO(ri) such that A = UDιU, where

(a\Eni

(4.7)

Oj

Noting that rank A<n,m, we define the n X m real matrix Do

Oj

and put Bo = C7Z>0 Then A = B^BQ holds*^ So, in proving the lemma,

*) This method of finding Bo will be used in the proofs of the propositions 5.3, 6.3,
6.4, 6.5, β.6 in order to find a solution B of (4.4). A simpler proof of Lemma 4.3 was
kindly informed us by the referee.
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without loss of generality we can assume that Bι~B(j. Since
B\B2ί there exist the matrices T e Oin) and T e O(m) such that B2 = TBQT',
as is known in the matrix theory. We have TA — AT; in fact TAιT =
T(BIBQYT = TB&TBd = {BlTJiBiT) = A. So, putting Y = ιUTU9 we
have YD — DY (cf. [2]). Since D is the diagonal matrix given by (4.7)
and commutes with Y, it follows from the direct verification that Y is
written in the form

Y =

X,

X.S + l J

where Z< (1 < i < s) is a matrix of degree ni# By the definition of Y
each Xι is an orthogonal matrix. We define the orthogonal matrix T[
of degree m by

X,

Xs

Ek

where k ~ m — (nx + n2 + + na). Then an easy computation shows
that YD, = Z)0Tί. Therefore B2 = Γ^Γ7 = (UY'UXUD^T = C/YAΓ7 =
UD,T[Tf = J50Γ2, where Γ2 = Γ^r. q.e.d.

COROLLARY 4.4. Lei JV and N7 6e ί^o N-algebras of type I corres-
ponding to the skeleton S. Let A (resp. Af) be the Grammίan of N
(resp. NO for some fixed orthonormal bases. If A = A', then N is
isomorphic to N'.

Proof. Let B (resp. B') be the matrix of the structure constants of
N (resp. N') with respect to the given bases. Then, by the assumption,
we have BιB — BnB;. By Lemma 4.3 there exists an orthogonal matrix
T3 such that Br = BT3. Hence the corollary is immediate from Lemma 4.2.

PROPOSITION 4.5. Let At be the Grammίan of the skeleton S with
n12 — 2 or n2% — 2. Let Nt and N2 be the N-algebras of type I, having
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S as their diagrams, which correspond to fixed values sλ and s2 of the
parameter t, respectively. Then Nx and N2 are isomorphίc if and only
if the Grammians ASχ and AS2 have the same eigenvalues.

Proof. Suppose that N1 is isomorphic to N2. Then the assertion is
an immediate consequence of (4.6). To prove the converse, let us first
consider the case of n12 = 2. Then, taking (4.1) and (4.2) into account,
we can see that the Grammian At is written as

i E - -A

where At is a skew-symmetric matrix depending on the parameter t.
Hence we can write At in the form

for each t. Consequently, from the assumption of the proposition it follows
that the skew-symmetric matrices ASl and AS2 have the same eigenvalues.
50 there exists a matrix T e O(n23) such that TA^T = ASt. Let Bs. (ί =
1,2) be the matrix of the structure constants of Nt with respect to some
orthonormal bases. Then BH is a solution of the equation (4.4) for t =
51 (i = 1,2). Putting B' = (E2®T)BSl, we have BnBf = AS2. Hence, by
Lemma 4.3, there exists an orthogonal matrix T such that B' = BHT.
We have thus (E2 ® T)BSl = BS2T', which implies that N, and N2 are
isomorphic (cf. Lemma 4.2).

Next, let us consider the case of n23 = 2. Then, taking (4.1) and
(4.2) into account, the Grammian At is seen to be

o

where At is a skew-symmetric matrix depending on the parameter t.
Hence, by the same way as in the case of nl2 = 2, we can conclude that
Ni is isomorphic to N2. q.e.d.

4.2. Let us consider the following two skeletons
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n12

2 2

and let N — N12 + N23 + N13 be an iV-algebra of type I corresponding to

S let B = (6^) be the matrix of the structure constants of 2V relative

to orthonormal bases {e^ } of ΛT̂  . Then we have

LEMMA 4.6. The N-algebra N of type I is that of type II corres-

ponding to the skeleton © if and only if there exist matrices J13 e O(n13)

and J23 6 O(n2Z) such that

T2

1Z

in this case the complex structure of N is given by the pair (/13,J23).

Proof. Suppose that there exist such matrices J13 and J23. Put J13

= (««*)> Λs = (βij) Then, from (4.8) we have

Σ t. = Σ U = Σ βsjbU

Let ;<3 (i = l,2) be the orthogonal transformation defined by Jiz with

respect to the bases {e^}. Then the above equality implies Jιz(e\φQ =

e\2{j23eQ. And the pair (jwj23) is the desired complex structure on ΛΓ

(cf. Definition 2.3). The converse is immediate. q.e.d.

In view of the above lemma we can regard the complex structure

of the ΛΓ-algebra N of type II as the pair (J1Z,J2Z) of the orthogonal

matrices satisfying (4.8).

DEFINITION 4.7. Let N be an ΛΓ-algebra of type I corresponding

to the skeleton S, and let B be the matrix of the structure constants

with respect to orthonormal bases. Let J — (J13, J2Z) and J' — (J'13, J'23) be

two complex structures on N. Then J is said to be equivalent to Jf (or,

simply denoted by / — JO if there exist three matrices 2\ e O(n12), T2 e

and T3 e O(n13) such that

and
I 2^23 : : : = ^23-^ 2
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== Jl$l 3

This is obviously an equivalence relation. From Lemma 4.2 and
Definition 2.5 we have immediately

LEMMA 4.8. Let (N,J) and (N,J;) be two N-algebra structures of
type II on the N-algebra N of type I in Definition 4.7. Then (N,J) is
isomorphic to (N,J') if and only if J is equivalent to Jr.

LEMMA 4.9. Let (S, (ni3)) (resp. (©, (m^))) be an m-skeleton of type
I (resp. type II) satisfying either the condition (P) or (Pf)

(P) for each triple (£, j9 k) of vertices such that i < j < k, the con-
dition i </> j or j </< k is valid.

(PO m < 2 for (S,(n,,)) (resp. m = 1 for (©,(m^ ))).
Then there exists a unique N-algebra of type I (resp. type II) corres-
ponding to (S,(ni3)) (resp. (©, (mi3)))\ in this case the product of any
two elements is always zero.

Proof. We will prove the lemma only for the case that (@, (mi3))
satisfies (P), since other cases are similar. Let N = Σι^i<j<m+i Ntj be
an euclidean vector space such that the right-hand side is the orthogonal
direct sum of JN^/s, where dim Nis = mtJ. Since N must satisfy (N4)
and (N2), it follows from (P) that the product of two elements of N
should be zero; with this multiplication, N is an 2V-algebra of type I.
Since m<fTO+1 is even, we can find a complex structure ^,m + 1 on JVi>m+1

(1 < i < m) which leaves the given inner product invariant. N is thus
an ΛΓ-algebra of type II corresponding to (©, O%)). If we change the
inner product and the complex structure to another, then the Λf-algebra
structure of type II remains isomorphic, since two hermitian vector
spaces of the same dimension are isomorphic. q.e.d.

Remark 4.10. Suppose that there exists a unique 2V-algebra N cor-
responding to a given skeleton S of type I or type II. Then every JV-
algebra whose diagram is isomorphic to S is isomorphic to N.

§ 5. Classification of iV-algebras of type I

Throughout this section we will call, for brevity, an N-algebra of
type I an iV-algebra. Let {βfy} always denote an orthonormal base of
the euclidean space Ntj and < , > denote the inner product of an N-algebra.
As a corollary to Lemma 4.9 we have
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PROPOSITION 5.1. There exists a unique N-algebra N whose diagram

is one of the skeletons SuS2ySlfSl\SlySl\Sl,SlSlSl\SlSf9SlSf,StfSΐ

in Proposition 3.5; the product of any two elements is zero.

PROPOSITION 5.2. There exists a unique N-algebra whose diagram

is SI with n12 — 1 or n22 = 1; the multiplications are as follows

pi pi _ /
^ 12^23 — V

(5.1)

^12^23

(1 < i < for nl2 = 1 ,

n1

Proof. We consider only the case of nl2 = 1. The Grammian Aj of

the skeleton is given by (2/(n23 + 3))Z<7n23. The n2Z x w13 matrix £ =

V2/(n23 + 3) (^na8,0) is a solution of the equation (4.4), from which we

get the multiplication (5.1). Since the Grammian At is a constant matrix,

the uniqueness follows from Corollary 4.4 and Lemma 4.1. q.e.d.

PROPOSITION 5.3. There exists a unique N-algebra whose diagram is

SI with n12 = %23 = 2 and nn = 3 the multiplication is as follows

(5.2)

1 P1 —
>12#23 T ^

V 3

Proof. Putting α(12)(21) = t, the Grammian At of the given skeleton is

The eigenvalues of At are |- ± t both with multiplicity two. As we

remarked in §4, the equation (4.4) has a solution if and only if rank A; <

nιz = 3, from which we get t — ± £ . We have thus two Grammians A1/3

and A_1/3. Since A1/3 and A_1/3 have the same eigenvalues, the corres-

ponding two N-algebra structures are isomorphic (cf. Proposition 4.5).

The uniqueness in the proposition follows from this and Lemma 4.1. Put

1

V~3

1
0
0

- 1

0
1
1
0

0
0
0
0



28 SOJI KANEYUKI AND TADASHI TSUJI

Then B1/3 is a solution of the equation A1/3 = BιB, from which we get (5.2).

q.e.d.

A result of Vinberg [9] shows that there exists a unique N-algebra

corresponding to S\ with nl2 = n23 = n13 = 2 and that the multiplication

is given by (5.2).

PROPOSITION 5.4. There exists a unique N-algebra whose diagram is

one of the skeletons Si, Sf, St, Sf, Si, Sf and SI in Proposition 3.5.

Proof. Note that for Si n12 or nu is equal to one and that for Sf n13

or nu is equal to one. The proposition is easily seen from the proof of

Proposition 5.2 and Lemma 4.9. q.e.d.

Letting a be an element of an N-algebra N, we denote by La (resp. Ra)

the left (resp. right) multiplication by a in the N-algebra N.

PROPOSITION 5.5. There exists a unique N-algebra corresponding to

the skeleton SI (resp. Sf) the multiplication is as follows

e\A = V"F
(5.4)

1 1 _ /2 1

? 1 2 e 2 4 - V " 5 β π

/ 2" i(resp.
r>l

"r"
O

Proof. We give the proof only for the case of SI. Let 2V = N^ +

N23 + N13 + N2i + Nu be the orthogonal direct sum of the euclidean vector

spaces N^ of dimension nυ, where n12 — n23 — n13 = nu = 1 and nu = 1

or 2. Suppose that N has the algebra structure whose multiplication is

given by (5.4) and (N2). Then it is easy to see that N is an N-algebra

having St as its diagram.

Let Λ77 = 2] N'ij be another N-algebra corresponding to SJ. The sub-

spaces M = N12 + N24 + N14 and M' = N[2 + N24 + Nί4 are subalgebras of

N and N', respectively, whose multiplications satisfy (N4). Hence, as

is seen from the proof of Proposition 5.2 there exists an algebra isomor-

phism φ1 of M onto M'', which is also isometric and grade-preserving.

Let φ2 be a natural isometry of the vector space N23 onto N'2d. The right
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multiplication Reiz is a bisection of N12 onto Nu by virtue of (N4). Let

φ be a linear isomorphism of N onto 2V7 defined by

I M ,

2̂ on iV2
Then £> is an isometry and isomorphism in fact, φ(e\2e\^ =

PROPOSITION 5.6. There exists a unique N-algebra corresponding to

the skeleton S\\ the multiplication is given by

(5.5)
V2 "

Proof. Let N ~ N12 + N2i + Nu + Nί3 + iV34 be the orthogonal direct

sum of the euclidean vector spaces iV^ of dimension nijf where n12 = n24

= nn — nu — l and nu = 2. We can easily see that if the multiplication

(5.5) and (N2) is given to N, then N is an 2V-algebra corresponding to St.

Let iV7 = 2] Nίj be another N-algebra corresponding to SI. Put Mx

- iV13 + iV34 + NUNU, M2 = N12 + Nu + N12NU, M[ = N'13 + NΉ + N'M

and M;

2 = Nί2 + N'M + NiMi Then M, and M2 (resp. Mi and M'2) are

ideals of N (resp. NO. By (N5) we have <NuNu,Nί2Nu} - <iVί3Λ^, N'12N'2i>

= 0. So JV (resp. NO is the direct sum of ideals Mj and M2 (resp. Mi

and MQ. On the other hand, from the proof of Proposition 5.2, it

follows that there exists an algebra isomorphism ψι of M4 onto M' (i =

1,2) which is also isometric and grade-preserving. The map φ of N onto

2V7 defined by φ\Mt = φt (i = 1,2) is an isomorphism of N onto 2V;.

q.e.d.

According to Vinberg [9] there exists a unique iV-algebra correspond-

ing to SI; the multiplication is given by

β
i i / — 1 1 1 / £* Λ••• pi- / pL p*- pL ——. / Λ-1-

o

In view of the results in this section and Remark 4.10 we have
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worked out the classification of N-algebras of type I of the problem III)

in §3.

§ 6. Classification of TV-algebras of type II

Throughout this section, for simplicity, we will call an N-algebra of

type II an N-algebra. /(ε) denotes the matrix ( ~~ε) for e = ± 1 . Let
\ε 0/

A and B be arbitrary two matrices. Then we define the direct sum

A®B by ( ). In following each proposition, complex structures
\0 B)

and multiplications are represented with respect to the same orthonormal
bases {e^}.

As a corollary to Lemma 4.9 we get

PROPOSITION 6.1. There exists a unique N-algebra whose diagram is

one of the skeletons ©i,©2,©8>©8>©s>©4>©4>©4>©4 ^n Proposition 3.6.

PROPOSITION 6.2. There exists a unique N-algebra whose diagram

is ©2 with n12 = 1. Furthermore the multiplication is given by (5.1) and

the complex structure is represented as follows;

Jiz = 1(1) 0 . . . 0 /(I) (Oil - copies) , < = 1,2,

Proof. By Proposition 5.2, there exists a unique N-algebra N of

type I whose diagram is S with n12 = 1 in § 4 and the matrix B of the

structure constants is given by B = \/(2/(n23 + S))(Enn0). Let J13 e O(nlz)

and /2 3 e O(n23) and let us decompose /13 into submatrices as follows

^ 13 ^

Γ(4) 7(2)

^ 1 3 ^ 1 3

where J$ (resp. /g}) is a square matrix of degree nι% (resp. n13 —

Then it is verified that / = (J13,J23) satisfies (4.8) if and only if Jg} —

/23, jg> = 0, /»> - 0, / £ 2 = ~ί7,2 3, Άf2 = - ^ 1 3 - , 2 3 . We define J - (J13,

J23) satisfying (4.8) by

J t s - /(I) Θ θ /(I) ( ^ - copies) , i = 1,2 .

It can be seen that there exist two matrices 2\ e O(w23) and Γ2 e O(n13 —

such that
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= J 2 3Γ 1 , (2\ Θ T2)JU = J12(T, Θ T2) .

Since TλB == B(Tλ®T2), it follows from Lemma 4.8 that (N, J) is isomor-

phic to (2V, J ) . q.e.d.

PROPOSITION 6.3. There exists a unique N-algebra whose diagram

is ©2 with (n12, n23, n13) = (2,2,2). 27&e multiplication is given by (5.2) and

the complex structure is represented by J13 = /23 = 7(1).

Proof. As we remarked before Proposition 5.4, there exists a unique

JV-algebra N of type I whose diagram is SI with (n12, nlz, nlz) = (2,2,2) in

Proposition 3.5 and the matrix B of the structure constants is given by

73

Let / = (J13,/23) be a pair of the orthogonal matrices of degree 2. Then

/ satisfies (4.8) if and only if Ju = J23 = 7(ε). Put Jω = (Jίi\J£), where

Jβ = Jί;> = 7(ε). Then Jω is equivalent to / ( " υ . In fact, Γ = ft °)

satisfies the equalities TJ$ = ^ - ^ Γ (i = 1,2) and (T®T)B = SΓ. ~

q.e.d.

1
0
0

- 1

0
1
1
0.

PROPOSITION 6.4. Γ/̂ β N-algebras whose diagrams are &l with (n12,

n23, n13) — (2,2,4) or (2,2,6) are effectively parametrized by the closed

interval [0, -J ] ίfcβ multiplication and the complex structure of the N-

algebra Nt corresponding to fe[O, J ] are given as follows;

^12^23 = : : ^^13 "T ^^13 9 ^12^23 :==: ^^13 /^^

^12^23 = = ^ e i 3 -f- fiβis , ^12^23 = = ^^13 ~Γ

+ 3ί)/6, μ = V(l - 3t)/6.

j _ ί/(l) Θ 7(1) for nιz = 4
13 " [7(1) Θ 7(1) Θ 7(1) /or w13 - 6'

Proof. First we show that 2V-algebras of type I whose diagrams are

S in § 4 satisfying (w12, w23, n13) = (2,2,4) or (2,2,6) are effectively para-

metrized by [0,-^].*) The Grammians At of these two skeletons are the

*} The existence of a one-parameter family of non-isomorphic iV-algebras of type I
corresponding to S with (ni2, n2sf ni3) = (2, 2, 4) has been stated in Vinberg [8].
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same as in (5.3) and the eigenvalues of At are -J ± t both with multipli-

city 2 (cf. Proposition 5.3). Since At is positive semi-definite, it follows

that —•£•<£< g . Since rank At < nn — 4 or 6, the solutions of the

equation (4.4) always exist and one of the solutions is given by

λ 0 μ ϋ
0 λ 0 μ
0 λ 0 -μ

-λ 0 μ 0)

λ 0 μ 0 0 0"
0 Λ 0 μ 0 0
0 λ 0 - μ 0 0

-λ 0 μ 0 0 OJ

for nu = 4 ,

for n13 = 6 ,

where λ = V(l + 3ί)/6, ^ = V(l - 3ί)/6. For a fixed £ e [-£,£] let Nt

be the iV-algebra of type I with Bt as the matrix of the structure con-

stants. Let t,se [—i,^]- Then it follows from Proposition 4.5 that Nt

is isomorphic to Ns if and only if t = ± s. It remains to determine the

complex structures with respect to which Nt (t e [0, £|) is an iV-algebra

of type II. Let Jt = (J ί l 3, Jm) be a pair of the orthogonal matrices of

degree n13 and 2, respectively.

Case I. Suppose t Φ

written as follows;

Then Jt satisfies (4.8) if and only if it is

W) Θ /(εx) Θ /(ε2)

for niz — 4

for nn = 6'

where εuε2 = ± 1 . We put

,1 0 \ __
l"~V0 εj ' T2~

for n1 3 = 4

for n1 3 = 6

Then, from the direct verification it follows that TxJm = J23TX, T2Jtl3 —

JX3T2 and (Tx®Tx)Bt=zBtT2, which shows that (J t l 3,J ί 2 S) ~ (Λs,/*) (cf.

Definition 4.7).

Case II. Suppose ί = -g . Then Jt satisfies (4.8) if and only if Jt23 =

I(εx) and
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£ l) φ /(ε2) for nn = 4

for n13 = 6 ,

where / ^ e 0(4) and / ^ = —2£4. There exists a matrix T e 0(4) such
that TJ'm = (7(1) Θ 7(1))T. Put

τ,=
for Wj3 = 6 .

f» 2V*u = ^13^ and (Γ t <g> Γ , ) ^ =Then it can be seen that Zyί23 =

B1/3T3, which shows (/£13,/ί23) - (Λŝ Λs).
Thus it follows from Lemma 4.8 that there exists a unique complex

structure / with respect to which Nt is of type II for each te[O,^].
q.e.d.

PROPOSITION 6.5. There exist two non-isomorphic N-algebras (N,Ja))
and (ΛΓ,/(2)) corresponding to &2 with (n12,n2Z,nlz) = (2,4,4). Γfcê / are
isomorphic to each other as N-algebras of type /, but the complex structure
Jω and Jm are not equivalent: the multiplication and the complex
structures Jω and /(2) are given by

(6.1)

^ 1 2 ^

2^23 —

/« = Jg) = 7(1) 0 7(1) , Jg> = /g> = 7(1) θ 7(-l) .

Proof. The Grammian At of the skeleton S in § 4 with (nn, na, n13)

= (2,4,4) is

A - fiEi
1 ~ U

0 - ί , - ί 5 - ί«
ti U Vo t β

*4 «.

0
0

where ί = (ίu , ίβ). The characteristic polynomial of At is given as
follows,

det (xί78 - A,) = (a; - 1/4)4 - (x - 1/4)2 + (ίA + ί3ί4 -
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Considering (4.3) and the fact that rank At < nu = 4, we conclude that
for each value of t the eigenvalues of At are J and 0 both with multipli-
city 4. Furthermore we have

(6.2)
t\

where ε = ±1. So Proposition 4.5 shows that there exists a unique N-
algebra of type I corresponding to S with (n12,n2l,nn) — (2,4,4). To get
the multiplication of N, take a special value of the parameter t satisfy-
ing (6.2), e.g., ί = (i,i,0 0), and put

B = Kf) B =

0 1 0 0
- 1 0 0 0

0 0 0 1
0 0 - 1 Oj

Then B is a solution of the equation (4.4) for t = (\, \, 0 0) and the
matrix B gives the multiplication (6.1). Let / = (/„, J23) be a pair of
the orthogonal matrices of degree 4. Then / satisfies (4.8) if and only
if J13 = J23, Jj3 = -EA, J13B = BJ13. Since B = 7(-l) 0 7(-l), there ex-
ists an orthogonal matrix T of degree 4 such that

TB = BT, = /(e.) Θ I(ε2) (ί = 1,2),

where (ε1;ε2) = (1,1), (1,-1) or ( - 1 , - 1 ) . Since TB = BT implies

(£?2 ® T)B = BT, it follows that / ~ J<εi *2), where J<51 a) = (7(e,) φ 7(ε2),

7(£l) © 7(ε2)) (cf. Definition 4.7). Put

l = (~0 l ) '

Then we have (Γ, ® Γ 2 )β = BΓ 2 , Γ2(7(l) @ 7(1)) = ( / ( - I ) 0 7 ( - l ) ) Γ 2 . Hence,

by Definition 4.7, J α » ~ /<-I -». Suppose J ( 1 -» ~ /«•». Then there exist

three matr ices T3 e 0(2), Γ4 e 0(4) and Γ5 e 0(4) such t h a t

(6.3)

and

(6.4)

0 /(-I)) = (7(1) © I(l)m d = 4, 5)

(Γ3 = BT6 .

Putting Γ3 = (a G), the condition (6.4) is equivalent to
\6 d)
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(6.5) BT5 = aT4B + cT4 , T5 = bT4B + dT4 .

Using (6.3) and (6.5), it follows from the direct calculation that Γ4 is

not invertible, which is a contradiction. So we have two different N-

algebras (iV,J(1)) and (2V,/(2)). q.e.d.

PROPOSITION 6.6. There exists a unique N-algebra whose diagram

with (n12, n23,n13) = (3,2,4). The multiplication and the complex

structure are as follows,

is ©2

(6.6)

2^23 \ / ~7Γ*

AA =

V 7 13

J13 = 1(1) Θ /(I) , /23 = /(I) .

Proof. The Grammian Aέ of the skeleton S in §4 with (n12,n23,n13)

= (3,2,4) contains three parameters £ = (tut2,t3) and is represented as

/0 - 1 \ , 2 /° ""^ ""*2\
A ^ Λ ® ^ oj + y # 6 , Λ - U i 0 -ί 3 .

\ί2 ί3 0/

The eigenvalues of At are f and f ± Vί? + £2 + £3 with multiplicity 2,

respectively. Since rank At < nn — 4, we get t\ + t\ + t\ = (f)2 and so,

for each value of the parameter t the eigenvalues of At are f, f and 0

with multiplicity 2, respectively. So the corresponding iV-algebras of

type I are isomorphic to each other (cf. Proposition 4.5). Put

0
0
0
0
1

0
0
0
0
0

1
0
0
1
0

0
1

- 1

0
0

B = Λ —

10 1 0 0.

Then B is a solution of the equation (4.4) for t = (f, 0,0) and B gives

the multiplication (6.6). Let / = (J13,/23) be a pair of the orthogonal

matrices of degree 4 and 2, respectively. Then J satisfies (4.8) if and

only if / is represented as follows,

u - 7(e) ® 7(ε), J23 = = ± 1
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We write Jω — (Jί WSO instead of J = (Jn,J2d in accordance with ε =

± 1 . Put

Tx = - 1 , T2 = ( L υ ) , Γ3 = T2 Θ Γ2 .

Then we have J[^T, = T,Jg\ J£»Tt = T2Jg\ (Tλ®T2)B = BT3, which

implies / ( 1 ) ~ / (~υ. q.e.d.

The following proposition can be proved by the similar methods as in

Lemma 4.9, Proposition 6.2 and 6.3, since nί2,n2i<2 for ©£. Thus we

omit the proof.

PROPOSITION 6.7. There exists a unique N-algebra whose diagram is

@3

2 (resp. © 3

6).

PROPOSITION 6.8. There exists a unique N-algebra whose diagram is

©3. Furthermore the multiplication and the complex structure are as

follows,

I (h — 1 9Λ

( 6.7) 13 " V3 14' ™ V"3 24

l/14 = J24 = /34 = /(I) .

Proof. Let N = Nn + Nu + Nu + N23 + N24 be an orthogonal direct

sum of the euclidean vector spaces Nid of dimension nί3 with an inner

product < , >, where (nu, nM, nu, n23, nu) = (1,2,2,1,2). We define the

multiplication and the complex structure j in N by (6.7). Then it is

easy to see that with this structure, (N, < , >, j) is an iV-algebra corres-

ponding to ©{. Let (N', < , y, f) be another 2V-algebra whose diagram

is ©|. Then, from Proposition 6.2 it follows that there exists a grade-

preserving linear isometry / of Nu + Nu + Nu onto N'1Z + N'di + N'u such

that f(xy) — f(x)f(y) for x e JV13 and y e iV34 and that foj=zjΌf on N34

+ Nu. We will extend / to an isomorphism of N onto N'. Let Λ be

a linear isometry of 2V23 onto N'm and let Leis and I/Λ(ei8) be the left

multiplication by 623 and h(e\^), respectively. We define a map g oί N

onto IV7 as

on 2V23 ,

g = {Lhi4z)ofoL£ on 2V24 ,

on Nu + NM + Nu .
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Then, by (N4) in § 1 g is a grade-preserving linear isometry. Since

L e \ , ° j = J o L e i t a n d L h i β l z ) o f == j Ό L h ( e l z ) ( c f . D e f i n i t i o n 2 . 3 ) , w e h a v e g o j

— f°g on Nu + 2V24 + 2V34. To show that g is a homomorphism, it is

enough to verify that g(xy) = g(x)g(y) for # e 2V23 and 1/ e iV34. We can

assume that x = 4>. Then 0(4,2/) = (LΛ(ei8) o / o L^X^?/) = h(e\^f(y) ==

We have thus proved that JV is isomorphic to ΛΓ'. q.e.d.

By the analogous way as in the above proposition, we get

PROPOSITION 6.9. There exists a unique N-algebra whose diagram

is ©3. The multiplication and the complex structure are given as follows,

P1 P1 — o1
 P1 Pk — Pk (h — 1 9)

VO V O

We have thus showed that only to the skeleton &2 there correspond

several non-isomorphic 2V-algebras, and a skeleton isomorphic to &2 is &2

itself. Hence, in view of the above propositions and Remark 4.10, we

have solved the problem III (§3) for iV-algebras of type II.

§ 7. Final Results

7.1. Summing up results in § 5 and § 6, we get the following

THEOREM 7.1. (1) There exists a one-to-one correspondence between

the set of (holomorphic) equivalence classes of all irreducible homogeneous

Sίegel domains of type I up to dimension 10 and the set of all the skeletons

in Proposition 3.5.

(2) (i) To each of the skeletons in Proposition 3.6 except ©2 with

(n129 n23> n13) = (2,2,4), (2,2,6) or (2,4,4), there corresponds one and only

one irreducible homogeneous Sίegel domain of type II of dimension < 8

(ii) to the skeleton ©2 with (n12, n^, nlz) = (2,2,4) or (2,2,6) there

corresponds a one-parameter family of non-equivalent irreducible homo-

geneous Sίegel domains of type II of dimension 7 or 8;

(iii) to the skeleton ©2 with (n12, n23, n13) = (2,4,4) there correspond

two non-equivalent irreducible homogeneous Sίegel domains of type II

of dimension 8; the domains in (i)-(iii) exhaust all irreducible homo-

geneous Siegel domains of type II of dimension < 8.

By the above theorem, we can count the numbers of all irreducible
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homogeneous Siegel domains of type I (resp. type II) up to dimension 10

(resp. 8). And we have

THEOREM 7.2. Let Ψτ(n) (resp. Ψn(n)) denote the number of irreducible

homogeneous bounded domains of dimension n which are realized as

Siegel domains of type I (resp. type II). Then Ψτ(ri) and Ψu(ri) are given

as follows;

n

Ψι(n)

Ψn(n)

1

1

0

2

0

1

3

1

1

4

1

2

5

3

4

6

4

8

7

9

15 + oo

8

16

1 34 + oô

9

34

10

66

where oo1 denotes a one-parameter family of the domains.

7.2. We will give here the explicit forms of all irreducible homo-

geneous convex cones up to dimension 7. These forms are obtained by

using the multiplications of iV-algebras described in § 5 and a result of

Vinberg [8]. In what follows we will use the following notations:

V A homogeneous convex cone in a real vector space.

H(n: R) The vector space of all real symmetric matrices of degree n.

R+ The cone of all positive real numbers.

H+(n:R) The cone of all positive definite matrices in H(n:R).

C(ri) The circular cone of dimension n, that is, the set

{(x,.. xn) e Rn xxx2 - x\- -oήι>O9xί> 0}.

5, c, d, aί9 cif di (i — 1,2, •) Real variables.

z,Zi (i = 1,2, * •) Complex variables.

In the following list, the homogeneous convex cones (1.1), (1.2), (1.3),

(1.4) and (1.5) are well known (for the last two, see Vinberg [8]), while

others are new; the only cones (1.1), (1.2), (1.3) are self-dual.

V = R+ , dim V = 1 .

V = C(n + 2) , dim V = n + 2 .

V = H+(3: R) , dim V = 6 .

(1.1)

(1.2)

(1.3)

1
o

1
0

1
Q—

n

1

2

3
—9
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(1.4)

V=Ub a2 0 > 0>, dim 7 = 5 .

[\c 0 aj

(1.8)

V =
/αx 0 b\
0 α2 c\

\b c aj
h bb)>o,(a> c ) > o L

dim V = 5 .

(1.6)
V = Ub a2 0 I > 0} , dim V = 6 .

\z 0 α3/

(1.7) /ct, o z\
0 α2 6 ; >0,

dim V = 6

(1.9)

b a2 0 c

c 0 aj

— a3b
2 — a2{c\ + c\ + c

cu c2, c3), a2 > 0

ct3 > 0

dim 7 = 7
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/α, 0 c \ α3«i - ic\ + cj + cf) > 0)
V = \ 0 α2 b c = (c,, c2, c3),α3α2 — b2 > 0

\c & c j α3 > 0

dim 7 = 7 .

(1.10)

(1.11)

(1.12)

V =

(1.13)

= q z , α2 o
0 aj

0 2Λ

V=\ίθ a2 Δ
lU 22 J

dim F = 7 .

dim V = 7 .

- c2) -

a. > 0

dim F = 7

(1.14)

V =

<x1 b c d
b a2 0 0

c 0 α3 0

d 0 0 « J

> θ
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a, 0 0 d'

0 a2 0 c

0 0 α3 5

d e b α4.

41

\d aj \c aj \b aj

dim V = 7 .

(1.15)

0
b
d

0
α2

0
c

b
0
α3

0

d
c
0
a

7 =

dim 7 = 7 .

7.3. We will give here the explicit forms of all irreducible homo-
geneous Siegel domains D(V,F) of type II up to dimension 8. These
forms are obtained by using the results in § 6 and a result of Takeuchi
[7]. As we mentioned in 3.4, the diagram of the cone V is obtained
from the diagram of D(V, F) by eliminating the black vertex and all line
segments starting from it. And by the assumption for D(V, F) the cone
y is irreducible and dim V < 7. Hence, one can find the explicit form of
the cone V by the list of 7.2. So we will give only the y-hermitian
form F.

In the following list, the domains (2.1), (2.2), (2.3), (2.4), (2.5), (2.7.a),
(2.7.b),(2.17) with n = 1 and (2.18) are found in Pjateckii-Sapiro [5], [6]
(For (2.5), (2.6) see also [7]), while others are new. The domain (2.5) is
different from a domain of Pjateckii-Sapiro (cf. [6] p. 28) in the form,
but it can be seen that they are linearly equivalent. The domains (2.7.a)
and (2.7.b) correspond to the 2V-algebras in Proposition 6.5 with the
complex structures Jω and J(2), respectively. The only domains (2.1),
(2.4), (2.7.a) are symmetric.

(2.1)
1
o

2m 2
-9 1 < m < 7 , F{u,v) -

dim D(V, F) = m + 1 .
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(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

1 2m! 3

2 < n + m < 6 ,

F(u, v) = (Σr=i ^ Λ , 0, •, 0) e

dim D(V, F) = n + m + 2 .

(m1? m2) - (1,1), (2,1), (3,1), (4,1), (2,2), (3,2) ,

dim D ( y , F) = mx + m2 + 3 .

lAj7nι + kυΊc/ / ιk=i (Λ/mi + ku7Πi + k

wΉPΓP ΊJ — (n in Λ 1) — (l) . . . 'ΪJ ^

F(u, v) = Γ 1 ! 1 UιVΊ , dim D(V, F) = 6 .
\u2vι u2υj

ΊJ 0) I 01 01

t*j l/j (̂  (Λ/2 U2

Cosθ-u3v1 + Sinθ'U2vz u3v3

where 0 < θ < τr/4, dim D(V, Fθ) = 7 .

Sinθ-u3v

Cos ^ uflι + Sin ̂  u2vA uAvA

where 0 < θ < τr/4, dimί)(y,F,) = 8
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(2.7.a)

(2.7.b)

(2.8)

F(u, v) =
U{0ι + U2V2 UtV

u2v4 u3v3

dim D(V, F) = 8 .

F(u, v) =

dim D(V, F) = 8 .

uιvι + u2v2 u)vι

M + UtV2 U3V3

F(u, v) — (u1v1 u3v2),

u3v2),

dim D(V,F) = 8 .

(nun2,m) = (1,1,1). (1,1,2), (1,1,3),

(1,2,1), (1,2,2), (1,3,1),

(2,2,1).

F{ιι, v) = \ 0 0 0 ,

\ 0 0 0/

dim D(V, F) — nx + n2 + m + 3 .

» = 1 or 2 ,

JF 1 ^, v) = KM2^i + ϊίiV2) u2v2

\ 0 0

dim Z)(F, F) = TO + 6 .

0\

0

0/

F(U, V) =

0\
0

0

dim D(V, F) = 8 .
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1 2 4
(2.12) <̂  * [Ufa Ufa 0\

F(u, v) = I u2vx ufa 0 , dim D(Y, F) = 8
0 0 0/

(2.13) (nI,M,,m) = (1,1,1), (1,1,2), (1,1,3), (2,1,1),
(2,1,2), (3,1,1), (2,2,1), (1,2,1),
(1,2,2), (1,3,1),

F(M,I>)= 0 0 0 ,

\ 0 0 0/
dim D(V, F) = nx + n2 + m + 3 .

(2.14) n = 1 or 2 ,

(w^! 0 0\

0 u2% 0 ,

0 0 0/

dim D(V,F) = n + 6 .

(2.15) (
0

0

aim D(y,F) = 8

(2.16) F(u,v) =

1 3 dimD(F,F) = 8

u2v3)

u2v3)

u3v3
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(2.17)
1
o

0 •
2

2m

\

1

4

3

F(w,

dim

) (1

j l
v) = \

\

D(V,F)

1), (1,

0

0

= n -

2),

- TO

(2,

0

0

0

+

1),

°\
0 .

o/
5 .

(2.18)

F(U, V) =

0

dim D(F, F) = 8 .

(2.19)

, v) =

ίίίj 0 0 0'

0 0 0 0

0 0 0 0

0 0 0 0

dim D(V,F) = 8 .

(2.20)

F(u,v) =

(uv 0 0 0"

0 0 0 0

0 0 0 0

0 0 0 0

dimί>(y,F) = 8 .
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(2.21)

(2.22)

F(u, v) =

{uv 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

dim D(V,F) - 8 .

F(u, v) =

"0 0 0 01

0 uv 0 0

0 0 0 0

0 0 0 0

dim D(V, F) = 8 .
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