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ON THE CANONICAL HOLOMORPHIC MAP FROM

THE MODULI SPACE OF STABLE CURVES TO

THE IGUSA MONOIDAL TRANSFORM*

YUKIHIKO NAMIKAWA

Introduction.

Let Jίg be the coarse moduli space of complete non-singular curves
of genus g and ©* the coarse moduli space of principally polarized
abelian varieties of dimension g. There is a canonical map:

defined by sending the isomorphism class of a curve C to the isomorphism
class of the Jacobian variety of C. The famous theorem of Torelli as-
serts that this map i is injective (e.g. [28]). Moreover the map i is
holomorphic (and even algebraic). It can be seen by rewriting the map
i. That is, ©* is defined analytically as the quotient space of the Siegel
upper-half plane &g of degree g by the integral symplectic group Sp(g,Z).
It can be considered as the moduli space by letting Ω mod. Sp(g, Z) cor-
respond to the isomorphism class of C°/(lg,Ω)Z2g. Then the map i can
be defined as the map which sends the isomorphism class of C to the
residue class of the period matrix of C, and by this definition ί is known
to be holomorphic (cf. (4.1)).

However the spaces Jίg and ©* are not compact if g > 0, which
gives rise to the problem of their compactification. Several kinds of
compactifications with geometrical meaning are known. In case of Jίg

the moduli space Sfg of stable curves of genus g due to Deligne
and Mumford gives a good compactification ([4)]. In case of ©* the
Satake compactification @* is a natural one ([19], [20]). As a set @*
is a union of ©*,, 0 < g' < g. However this compactification has too
small boundary (of codimension g), so @* is very singular at the
boundary though normal. Igusa studied the desingularization problem

This article was presented to Nagoya University for the author's doctorate.

197



198 YUKIHIKO NAMIKAWA

of the Satake compactiίication by blowing-up along the boundary ([8]).
Unfortunately this procedure does not give the desingularization if
g > 3. The author was informed that now in this direction Mumford
and Satake began to study in more general situation (i.e. the desingulari-
zation of the Satake compactiίication of the quotient spaces of bounded
symmetric domains). It should be also remarked that the very interesting
study on the degeneration of abelian varieties by my colleague, Nakamura
([13]) has a close relation to this problem. It is expected that in the
near future we have a nice compactiίication of ©* other than Satake
compactiίication. Anyway in this article we shall consider the Satake
compactification @* and the normalization @* of the blowing-up of @*
along the boundary which we call the Igusa monoidal transform. Denote
by p the canonical bimeromorphic map from ©* to ©*.

Then the problem arises naturally whether the map i: Jίg -> ©* can
be extended to a holomorphic map j : Sfg-> ©*. Our Theorem 4 in §6
gives the affirmative answer to this problem. The composite map j =
poj;yg-*(5* sends the isomorphism class of a stable curve C to the
isomorphism class of the Jacobian variety of the normalization of C
(Theorem 3 in § 5). In fact we show the existence of j first and we
show that j can be lifted to j . In the proof we use the methods in-
troduced by Igusa in [8] in its full extent. Especially we use the notions
of Fourier-Jacobi series and central cones. For the proof of Theorem
4 we must use the fact that a cone in the vector space of real symmetric
matrices generated by a finite number of non-negative integral matrices
is covered with a finite number of central cones, which is proved in
Theorem 1 in § 1.

After this we shall study the properties of j precisely.

First of all with a stable curve C we associated a (dual) graph whose
vertices are the irreducible components of C and whose edges are the
double points of C (4.4). We call C planar if the graph associated with
C can be embedded in the plane. Those points in yg corresponding to
planar stable curves are mapped by j into "good" points in ©* especially
the singularity in <§* of each image point is at most quotient singularity
(Theorem 5 in §7).

Secondly denoting by <%g those points in Sfg which correspond to
irreducible stable curves, we shall study j on °U g. Let C be an irreduci-
ble stable curve. Then the generalized Jacobian variety J(C) of C is a
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group extension of the Jacobian variety J(C) of the normalization C of
C by a product of some copies of the multiplicative group C*. We
note that the extension class of J(C) is explicitly determined by C
(Theorem 6 in § 8). With the help of this theorem we prove that j is
injective on <%g (Theorem 7), which gives a natural extension of Torelli's
theorem.

Finally we prove that in case of g — 2 the canonical map j is an
isomorphism (Theorem 8 in § 9). This fact plays an essential role in
the study of degenerated fibres in families of curves of genus two by
Ueno and the author ([15]).

This article is divided into 9 sections. The first three sections are
preliminary. In Section 1 we recall the notions of fundamental cones
and central cones in the theory of positive symmetric matrices due to
Igusa [8] and we prove Theorem 1. In Section 2 we recall Satake com-
pactifications and introduce the Igusa monoidal transforms with Igusa's
fundamental results in [8]. In Section 3 we make a brief summary on
the theory of stable curves due to Deligne and Mumford ([4]).

There is a universal family w : &g -^ £?Q of stable curves which is
smooth outside a divisor & in 2%\ with only normal crossings (3.3). By
corresponding x in 3fg — Θ to the period matrices of ®~\%) in ©g, we
obtain a multiple-valued holomorphic function T = Tm : 3tfg — 2 -• ©p,
which is called the period map (of &). In Section 4 we introduce this
period map and after making a precise study on the homology group
of stable curves we study the behaviour of the period map T near the
discriminant @ (Proposition 5 and Theorem 2). This result is the founda-
tion of the main theorems in this article.

The rest of this article is devoted to the proof of the main theorems
mentioned before.

The author would like to express his hearty thanks to his best friend
Dr. Kenji Ueno, whose incessant encouragement and advices were in-
dispensable to this work.
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List of Notations

®g(n) = @*(n) - ©*(n), (2.2).

C: the field of complex numbers.

C* — C — {0}: the multiplicative group.

Cσ = Cσ Π ψg ((1.4) Def. 2).

Cσ: the central cone associated with a ((1.4) Def. 2).

Co = Cβo: the principal cone (1.7).

, α n ): the cone generated by al9 , αn (1.6).

\ the discriminant of ΌS (4.1).

, an): the simplex generated by alt , an (1.6).

e( ) = exp (2πy/~^l{ )), (2.4).

F\ = FσΠ g)J, (1.2).

F σ : the fundamental cone associated with σ ((1.2) Def. 1).

F o = jf̂ σo where σo is defined in (1.3.1).

GL(g, R): the general linear group of degree g with coefficients in R.

^°g =jeg-®, (4.1).

Hσ(τf,ζ,τ")\ Fourier-Jacobi series (2.4.2).

j\sr9 -»<§*, (6.1).

^ — p o j : ^ g —> ©*, (Introduction).

/(C): the (generalized) Jabobian variety of C (8.3).

M(»), (1.4).

^ # g : the coarse moduli space of non-singular curves of genus g (Intro-

duction, (6.1)).

p: β* ~* ®* : t h e canonical surjection (Introduction).

P. : <S*(n) - @*(n), (2.5).

i?: the field of real numbers.

R+: the set of non-negative real numbers.
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Sfq — jfg/PGL(5g — 6): the coarse moduli space of stable curves of

genus g (3.3).

&g: the Siegel upper-half plane of degree g (2.1).

@* — Sp(g, Z)\<&g: the coarse moduli space of principally polarized abelian

varieties of dimension g (2.1).

©*(w) = Γβ(n)\©0, (2.1).

@*: the Satake compactification of ©* (2.2).

©*(w): the Satake compactification of ©*(n) ((2.2) Def. 4).

@*(w): the monoidal transform of @*(n) along Ϊ8g(ri), (2.5).

S*: the Igusa monoidal transform of ©*, (2.6).

©*(n): the Igusa monoidal transform of ©*(w), ((2.6) Def. 5).

@°(w): the set of those points in ©*(w) which are conjugate to limits

of points in ©*(n) with normal coordinates bounded above (2.5).

Sp(g,R): the symplectic group of degree g with coefficients in R (2.1).

T = Ta: 2tf°Q -* &g: the period map associated with & (4.2).

Tπ: S -*&g: the period map associated with a family π:X->S ((4.2)

Def. 8).

t r ( ) : the trace function (1.1).

%g: the open set of points in if\ corresponding to irreducible stable

curves (8.0).

Y+, Y+: the set of positive integral matrices (1.1).

Y+, Y+: the set of non-negative integral matrices (1.1).

Y*: the set of positive half-integer matrices (1.1).

Y°: the set of positive half-integer matrices σ with C° Φ φ (1.5).

g)+,g)+: the set of positive real matrices (1.1).

f}+,f)+: the set of non-negative real matrices (1.1).

Z : the ring of integers.

Z + : the set of positive integers.

Γg(ri) = Ker (Sp(g, Z) —> Sp(g, Z/nZ)): the principal congruence subgroup

(2.1).

μ(y), (1.4).
Q̂  : ^ —• 3tfq: the universal family of tricanonical embedded stable curves

(3.3).

Φ: ©*,(n) -> ©*(n): the Siegel operator (2.2).

ωx/s,ωc: the dualizing sheaves (3.2).

(α,j8): the intersection number of α and /3 (4.1).

lg: the identity matrix of degree g.
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§ 1. Fundamental cones and central cones.

(1.1) Let $)g denote the set of real symmetric matrices of degree g,

which is a vector space of dimension N — g(g + l)/2. Let $)+ (or simply

D+ if no confusion occurs) denote the set of positive symmetric matrices of

degree g. Then g)+ is an open convex cone in $)g and its closure fj+ is

the set of non-negative symmetric matrices of degree g. We write

y > 0 if y is an element of g)+ we write y > 0 if y is an element of f)+.

On % there is a non-degenerate bilinear form defined by

9, x % > R
(1.1.1) ω ω

(y*,y) tτ(y*y)

where tr ( ) denotes the trace function. With this bilinear form g+ is

the dual cone of itself.

In $)g the set Yg of all integral matrices forms a lattice. Denote

Yg Π $* by Y; (or simply Y+), and Yg Π ψg by F+ (or simply F+)

respectively. Note that we can choose a system of generators of Yg in

Y+. Then the dual lattice Y** i.e. the set of matrices with tr(σy)eZ

for all y in Yg is nothing but the set of half-integer symmetric matrices,

i.e. σ = (σtj) with σ^ e Z and 2aia eZ for 1 < i, j < g. The set Γ* =

Y** ίi f)?

+ of positive half-integer matrices <7 is the set of matrices σ

with tr (σy)eZ+ for all yϊnY+.

(1.2) The group GL(g,R) acts continuously on g)g as

(1.2.1) Φ Φ
(%,2/) >u-y ~uyιu

and this action keeps D+ stable and is transitive on g)+.

The discontinuous subgroup GL(g,Z) of GL(g,R) acts on D+. The

reduction theory asserts that the action of GL{g, Z) on g)+ is properly

discontinuous and there is a normal fundamental domain with respect to

this action.

Following Igusa [8] we shall not consider the fundamental domain

itself but a fundamental set F such that GL(g,Z)-F — g)+ and the set

{ueGL(g,Z);u-F Π F Φ φ} is a finite set, or equivalently to say, F is

covered with a finite number of fundamental domains.

DEFINITION 1. Choose an element σ of ψ and fix it. Let Fσ be the

set of elements y of ?) satisfying
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(1.2.2) tr (σuy ιu) - tr (σy) > 0

for all u in GL(g,Z). We call this Fσ the fundamental cone associated

with σ.*}

Also denote Fσ Π g)+ by Fσ. The Fa and Fσ have the following

properties:

i) Fσ is a closed convex cone in f)+

ii) GL(flr,Z).F, = g)+;

iii) {̂  G GL(#, Z) % F°a Π F, ^ φ] = {̂  e GL(#, Z) 'wra = *} where

F° denotes the set of interior points of F. We denote the above sub-

group of GL(g, Z) by I(σ)

iv) ([12]) if moreover α is a half-integer matrix, then for only a

finite number of u in GL{g,Z) we have u>Fσ Π Fσ Φ φ. The boundary

of Fσ consists of a finite number of "thin" convex cones. Hence Fσ is

covered with a finite number of fundamental domains.

(1.3) In the following we shall consider a special fundamental cone.

Let σo be the half-integer matrix

1 1/2 ... 1/2

1/2 1 ... 1/2
(1.3.1) σ

o
 =

11/2 1/2

We denote Fσo (resp. Fσ) simply by Fo (resp. Fo).

Denote by Vg the real vector space of column vectors with g coeffi-

cients. Take a column vector x with coefficients xl9 -««, xg. If we introduce

a column vector x with coefficients x19 9Xg9Xg+ι = — (#i + + xg)9

then we have an imbedding ig: Vg-> Vg+1 whose image is the subspace

Vg defined by the equation

Xi + X2 + + Xg+ι = 0 .

Let y = (yid) be a point of g^. Introduce a new matrix y in g)g+1

with coefficients /̂̂  , 1 < i, / < ^ + 1 where additional ^ + 1 coefficients

are determined by the equations

(1.3.2)

The correspondence y —> y can be extended to a linear map $}g —> g)fl+1.

*) This F σ was introduced by Venkov [26], Koecher [12] and independently by Igusa [8].
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With (1.3.2) y is uniquely determined by its N — g(g + l)/2 coefficients

yίό for I < ΐ < y < ^ + 1. It is clear that by these N coefficients y is

also determined. Arranging these coordinates lexicographically we call

them normal coordinates of y. Also we call y the matrix associated

with y.

Let πn be the symmetric group of permutations of the set {1, 9n).

There is a canonical representation πg+1 —> GL(g + 1,Z) defined by send-

ing p = (£ —> 2?(i)) to ΰ(p) = (ΰ(p)ij) with ϊ£(p)^ = 1 if (i, /) = (i, p(i)) and

0 otherwise. Clearly this matrix ΰ(p) preserves Vg above, hence it

induces a matrix u(p) in GL(g,Z) through ig. Then we have a representa-

tion

π9 + l
Φ

p —

This representation being injective, we identify πg+1 with its image in

GL(g,Z). Then we have

LEMMA 1 ([8]). I(σo) = πg+1 U ( - ^ + 1 ) .

(1.4) Next we shall introduce another type of closed cone. To define

this cone and investigate it we must introduce a few more notations.

Let y be an element of f)+ = D+ and put

μ(y) = inf tr (σy) ,
σ£Y*g

and

M(y) = {σe Y* tr (σy) = μ(y)} .

LEMMA 2. i) For a positive real number λ we have

μ(Xy) = Xμ(y) and M(λy) — M(y) .

iii) For every element u of GL(g,Z) we have

μ(uy ιu) = μ(y) and M(uy ιu) — ιuM(y)u .

iii) For y>yf e D ^β have

Π M(τ/0 c MUi/ + μyf)

where λ and μ are positive real numbers,

iv) μ(y) is upper-semicontinuous.
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The proof is clear.

LEMMA 3. Suppose y is contained in g)+. Then we have
i) the set of values tr (σy) with σeY* is a discrete set in R+,

especially we have μ(y) > 0;
ii) M(y) Φ φ and it is a finite set
iii) there is a neighbourhood U of y such that for any element of

x of U we have M(x) c M(y).

Proof, i) It is sufficient to prove that for any number N only a
finite number of σ's in Y* satisfy the inequality

(1.4.1) tr(σy) < N .

On the other hand for a sufficiently small positive number ε we have
y > slg where lg denotes the identity matrix in $)g (for example, ε = the
least eigenvalue of y). Then if σ satisfies (1.4.1), we have

N > tr (σy) > tr (σ(εlg)) = ε tr σ .

Since σ is positive definite, there are only a finite number of such σ's.
ii) This is clear from the proof of i).
iii) In the same way as in the proof of i) we see that for any

compact set K in g)+ a n ( i a n y r e a l number N, only a finite number of
σ's in Y* satisfy the inequality

tr (σx) < N

for an x in K.
Let μ(y) + ε be the smallest value of tr (σy) but μ(y). Take a neigh-

bourhood V of y whose closure V is compact and contained in g)+. Then
by the remark above for only a finite number of σ/s, i = 1, ,r, in
Yf there is an element x in V with tr (σtx) < μ(y) + ε. Especially M(y)
is contained in {σ19 , σr}, so assume for example M(y) — {σ19 , σk}.
Hence for j > k + 1 we have

tr (σjy) > μ(y) + ε .

By continuity of the function tr (σό ) there is a neighbourhood W of y
contained in V such that for all x in W and for all j > k + 1,

tr (ffjx) > μ(y) + \ε .
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By the uppersemicontmuity of μ(y) also there is a neighbourhood W of
y such that for all x in W we have

μ(x) < μ(y) + \ε .

Hence if we put U = W ΓΊ W, then for any point x in U we have

tr (σjX) > μ(y) + \ε > μ(x)

for j > k + 1 and

tr (σx) > μ{y) + ε > μ(x)

for any σ Φ σό (j = 1, , r). That is,

M{x) c M(i/) . q.e.d.

LEMMA 4.

and

έ/g — w έ/g^'
g'^Q

Then for each point y = (Q ,J o/ φ+ we

i) the set of values t r (σy) with σ eY* is a discrete set in R+

ϋ) μ{y) = μ(y')>Q if yφO;

iii) M(y) = {*=

iv) there is a neighbourhood U of y such that M(x) c M(y) for all
x in U with x > y.

Proof. The claims i), ii) and iii) are clear from the fact that for

each V=(ί yl) with yf e Yp and * = (* */) with σf e Y*, we have

tr {σy) = tr Wyf) .

iv) Let μ(y) + ε be the smallest value of tr(σy) but μ{y). Since
μ(y) is uppersemicontinuous, there is a neighbourhood U of y for any
element # of which

μ(x) < μ(y) + ε .
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Hence if moreover x > y, for any σ e M(x)

tr (σ T/) < tr (σy) + tr (σ(x — y))

= tr (σx)

= μ(x)

< μ(y) + e .

which implies

tr (σy) = μ(y) .

That is,

σeM(y) . q.e.d.

DEFINITION 2. Let <x be an element of Y*. We call the closed convex

cone defined as Cσ = {y eϊ)+ σ e M(y)} the central cone of σ. Also denote

Cσ Π r by C,.

By Lemma 3 ii) g)+ is covered with central cones. There arises

naturally the problem whether the fundamental domain is covered with

a finite number of central cones. It is the main object in this section

to answer this question affirmatively.

Remark, In general μ(y) = 0 and M(y) = φ for y in the boundary

W — ?)+ For example you can see easily that for y = ί /— ~ \

it holds that μ(y) = 0. It seems to me that if the set of values tr (σy)

is discrete (hence μ(y) > 0 and M(y) Φ φ), then y is conjugate to a point

in?)+. This subject also seems to have a relation to "rational boundary

components" in the sense of Baily and Borel ([2]).

(1.5) First of all we shall note some elementary properties of the

central cones.

LEMMA 5. i) Let Y° be the subset of σ's with C° Φ φ where C°a

denotes the set of interior points of Cσ in g)+. Then$)+ is covered with

CJs with σeY°. We call such Cσ a non-degenerate central cone.

ii) Let σ be an element of Y°. For a point y in Cσ, M(y) = {σ} if

and only if y e C°.

iii) Let σ be an element of Y° and put Nσ = {τ e Y° Cσ Π Cr Φ φ}.

Then we have

Cσ = {ye ψ tr (τy) > tr (σy) for all τ e Na} .
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Proof, i) The claim is clear by Baire's theorem.

ii) By Lemma 3 iii) the set Wa of elements y with M(y) = {σ} is

open, hence ®/σ c C°σ.

Conversely suppose that y is contained in C°. Note that μ(x) =

tr (σx) on Cσ, which is a linear function. Hence if σ' satisfies the equality

μ(y) = tr (σ'y)9 we have tr {σfx) = tr (σαO = μ(#) on a neighbourhood U of

?/, since tr (σ'x) > t r (σ#) on U. Therefore σ1 = σ.

iii) It is evident that

Cσ c {y e ψ tr (τy) > tr (σy) for all τ e Nσ} .

We shall prove the converse by reductio ad absurdum. Let y be an

element of g)+ with tr (τy) > t r Ô /) for all τeNσ which is not contained

in Cσ. Take an element x of C°. Then we have two inequalities:

tr (σy) < tr (τ]/)

tr (σx) < tr (τ#) .

Since the segment xy is not contained in Cσ by assumption, on it there

is a point z in the boundary of Cβ> hence at least an element τ of Nσ is

contained in M(z). This implies tr (σz) = tr (τz), but this is impossible

by the above inequalities q.e.d.

(1.6) Let aί9 ,an be n elements in D+. We call D(a19 , α j =

{Σi ^^i ^ e R+ and 2 ^ = 1} the simplex generated by a19 , an we

call C(α1? , an) = {̂ ^ ^ ^ <̂ e i?+} = UΛ6Λ+ ^ ( ^ 1 , , αB) the cone

If all α/s are in y+, we say C(a19 -,an) to be integral.

Our main theorem in § 1 is the following.

THEOREM 1. Let au •• ,α n δβ n integral non-negative matrices of

degree g, and let C(a19 , an) be the integral cone generated by them.

Then C(al9 , an) is covered with a finite number of non-degenerate

central cones.

Clearly we have only to prove that C(a19 , an) Π $ + is covered with

a finite number of central cones.

The reduction theory asserts that the fundamental domain "in g)+

with respect to GL(g9Z) is a finite union of integral cones (e.g. cf. [11]).

Hence we have:
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COROLLARY 1. A finite union of fundamental domains in $)+ tvith
respect to GL(g,Z) is covered with a finite number of non-degenerate
central cones. Especially the fundamental cone associated with a half-
integer matrix is covered with them.

COROLLARY 2. For a half-integer positive matrix σ the central cone
Cσ is a finite union of integral cones and has only a finite number of
neighbouring non-degenerate central cones.

Proof. If we prove the ίiniteness of the number of neighbouring
non-degenerate central cones, then the other statements are clear from
the definition and Lemma 5 iii). On the other hand let S be the set of
non-degenerate central cones which cover the union of Fσ and its
neighbouring fundamental cones. Then S is a finite set by Corollary 1.
Since Cσ is contained Fσ> every neighbouring central cone of Cσ belongs
to S, which proves the assertion. q.e.d.

To state the next corollary we shall introduce a stratification of g)+.
For a finite subset M in Y* we define the stratum <3fM associated with
M as the set of points y in $+ with M(y) = M. By virtue of Lemma 3
ii) and iii) these strata cover g)+ and are locally finite.

It is also easy to see that each stratum is locally an integral cone
and on it μ(y) is a linear function. Hence as the similar way as the
proof of Lemma 5 ii) we have

LEMMA 6. // we consider the stratification each stratum of which
is the set of points y in ψ with M(y) ίi Y° = 1 ° for a finite subset M°
in Y°y then this stratification coincides with the one defined above. That
is, for each point y in g)+ the set M(y) is determined by M(y) (Ί Y°.

Hence together with Theorem 1 and Corollary 2 we have

COROLLARY 3. i) Every integral cone is covered with a finite strata.
(Note that every integral cone is contained in the interior of a larger
integral cone in g)+.)

ii) Each stratum is a finite union of integral cones.
iii) // WM D &N9 then M czN.

iv) ^ * =

(1.7) Now let us prove Theorem 1.
First of all we shall reduce the theorem to the case of a special type

of cones.
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DEFINITION 3. A cone C(a19 , an) is called regular if

aλ > 0 , ax > a2 > > an > 0 .

For any cone C(aί9 , an) using the barycentric subdivision of

D(alf ,α n), we have

LEMMA 7 ([11] § 4). Pt^ί S = {ah + . + aίr r > 0}. Then C(a19

an) is a union of a finite number of regular cones whose generators are in S.

LEMMA 8 ([11] §11). Let C(aly « ,αn) be a regular integral cone.

Then there is a matrix u in GL(g,Z) with uC(alf , an)
ιu c $+, or

equivalently, ua/uetyg for all i, where ?)+ is defined in (1.4).

Proof. We shall prove this lemma by induction on g. In case of

g — 1 there is nothing to prove. Suppose that the claim is true for any

gf < g. Let k be the minimum of i with det at = 0. Then for any ί < k

we have at > 0. Now take an element uγ of GL(g, Z) such that

(~ (o fo
\aiu\ ^ u^/^ for any

it follows that ^ α ^ = ^ ^ with &̂  e Fg

+, and b'k > b'k+1 > - . > b'n.

Hence by assumption there is an element u2 of GL(gf, Z) with u2b\ ιu2 —

(o b r ^ι ^ ^' ^ w e p u ^ ^ ~ ( π~g ) U l 9 ̂  satisfies the desired con-

dition, q.e.d.

Secondly we note the following.

LEMMA 9. Let C(alf « , α j be a cone in $+. For any point y in

D(alf , an) there is a neighbourhood U of y with M(x) c M(y) for all

x in U Γl iXαj, ,an).

Proof. We may assume that α1? •• ,α7l are irredundant, i.e. D(a19

• , άi9 , an) c: D(a19 , αn) for any i where D(alf , άu . , αn) is the

cone generated by {αx, , an] — {α }̂. Assume that

y = Σ λiai

with î > 0. We may further assume that λt > 0 for i < k and λt = 0

i> k. Then we have

l

Hence we may assume y — ax.
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The set DQ = {x = 2] ^c^ ^ > 1/2} is a neighbourhood of αx in

•.., αn). Put A = DCttx, αx + α2, , ax + αn). Then the map

V: A ^ A
Φ Φ

^ = λ^ + 2 ^̂ (<Xj + ad > z/(2 — Λj)

is a homeomorphism. Further we have

M(z) = M(p(z))

and

z > aγ for all z in A .

By Lemma 4 iv) there is a neighbourhood V of aγ in A for any element

z of which M(JS) C Mίe^). Hence Z7 = p(V) is a neighbourhood of ax in

• ,αn) for any element x of which M(ίc) c M(ax). q.e.d.

Proof of theorem 1.

By virtue of Lemmas 7 and 8 we have only to prove the theorem

for regular integral cones contained in $+. (See also Lemma 2 ii).) More-

over since M(y) is invariant under scalar multiplication (Lemma 2 i)),

it is sufficient to prove that the simplex D(a19 , an) is covered with a

finite number of nondegenerate central cones.

We shall prove it by induction on g. In case of g = 1 the theorem

holds trivially. Hence we suppose that g > 1 and that the theorem is true

for all gf < g.

Let C(a19 , an) be the regular integral cone considered. Let k be

the maximum of i with det at > 0. Then we shall prove the theorem by

descending induction on k. It is easily seen that we may assume that n is

equal to g(g + l)/2 and the generators a19 -,an are linearly independent

(i.e. the cone is non-degenerate and its generators are irredundant).

Suppose that k — n. Then D(a19 , an) is compact and contained in

D+. Hence the claim is true for k = n by virtue of Lemma 3 ii) and iii).

Now suppose the claim is true for any kf > k. By assumption we

have

and for j > k
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hence

D(bk+1, ,bn)c:% .

By the assumption of induction D(bk+1, ••-,&„) is covered with a finite

number of non-degenerate central cones. Further by Corollary 3,

D(bk+1, . . . , 5 f t ) c U Γ - i f l ( e , •••,<«) such that for each Z)(c<% . , c«>)

an open dense subset of it is contained in a stratum &$.

By this remark we may assume that an open dense subset of D(bk+1,

••-,&„) is contained in a stratum <&M in $)p.

Put Do = D(ak+1, . , αn) and A =

Take a point a? in Do Π ̂  ί w e identify y' in f) r with (® ®λ in D

and fix it. By Lemma 9 there is a neighbourhood Z7 of x in ?)+ Π D(alf

• ,αn) such that for any z in U we have MGz) c M(#).

Therefore for a sufficiently small positive real number λ the simplex

D1>a. = (1 — X)χ + ΛDj is contained in [7. As it is contained in g)+, it is

covered with a finite number of non-degenerate central cones Cσi, , CCr.

By the assumption and by Lemmas 2 iii) and 4 iii) we have

^ U U C ^ f l ^ U μDι%x + (1 - /£)Z?o
0<μ<>l

On the other hand the intersection of %, and the closure D" of D(a19

- - ',an) — D' is nothing but the boundary of DQ. Hence D" is covered

with a finite number of simplexes with k' > k, so the claim is true for

D" by the assumption of induction on k.

Hence D = Ώr U D" is covered with a finite number of central cones.

Thus the theorem was proved.

(1.7) We shall close this section with a few remarks and problems.

Igusa proved that Cσo — Fσo if g = 2, and 3. This Cffo was also in-

troduced by Voronoi ([27]) with the name "principal cone". It can be

expressed explicitly as the set of matrices whose normal coordinates

(1.3) are all non-positive. We shall denote Cσo simply by Co. In case of

g — 4 when one uses Igusa's result ([81 Lemma 5) he can prove that

c (λ U ( u
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where atj is defined as

tr (συy) = tr (σoy) - yυ

for every y in g)4

+. (Here yυ is the (i, ̂ -component of the normal coordi-
nates of y (1.3).)

Now what is the most interesting is that the non-degenerate central
cones seem to coincide with the type I cones due to Voronoi ([27]) and
Koecher ([11]). The latter is defined as follows. Let v be an element
of $)g such that the minimum of values *QVQ for g e Z9 is equal to 1 and
that g *g with such integral vectors g as 1QVQ = 1 generate non-degenerate
cone Cυ in f)+. Such Cv is called the type I cone associated with v.
Koecher proved that all coefficients of v are rational numbers ([11] p. 405).
If one can show that v is in fact a half-integer matrix, the conjecture above
is true. By the observation above the conjecture is true for g < 4.

§ 2. Satake compactifications and Igusa monoidal transforms

In this section we make a review on Satake compactifications and their
monoidal transforms along the boundary which were introduced by Igusa
[8]. For details that we omitted to prove here, we refer the reader to [8].

(2.1) Denote by ©g the set of symmetric matrices of degree g with
complex coefficients whose imaginary parts are positive definite. This <5g

is called the Siegel upper-half plane of degree g. On it acts the sym-

plectic group Sp{g,Z) as τ -> M τ = (AT + B)(Cτ + D)~ι for M = (Λ ζ\

in Sp(g,Z). Let Γg(ri) be the kernel of the natural homomorphism

Sp(g,Z) —> Sp(g,Z/nZ), which is called the principal congruence subgroup

of level n. This group Γg(n) acts on ©g properly discontinuously ([25]).

Further if n is greater than 2, the action is free. Hence the quotient

space ©*(n) = Γg(ri)\<5g admits a canonical structure of a normal analytic

space and if n > 3 it is even non-singular. We write simply ©* for

©*d).

(2.2) Let A(Γg(n))k be the vector space of Siegel modular forms of
weight k, that is, holomorphic functions ψ on ©̂  such that ψ(M τ) —
det(Cτ + D)kψ(τ) for every M in Γg(ri). Then the projective variety
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contains <&f(ri) as a Zariski open subset.

DEFINITION 4. The protective algebraic variety <&*(ri) is called the

Satake compactification of ©*(%) (cf. [19], [20]).

The boundary S8g(n) = &*(ri) — <3f(ri) is a disjoint union of a finite

number of copies of ©*/(%) with #' < #. This inclusion is defined by the

so-called Siegel operator Φ. Put g" — g — gf and write an element τ of

where ζ is a #' x g" matrix. For every ψ in A(Γg(n))k we define

as

(2.2.2) Φ(ψ)(rO= lim
Irατ//-*o

and then Φ(ψ) belongs to A(Γg,(ri))k. Hence Φ gives a homomorphism:

ACΓgO)) -> A(Γα/(^)) of graded rings, which is surjective up to a finite

number of weights. This homomorphism Φ defines, therefore, an embedd-

ing Φ*: ©*O) —> @*,(n) and the image of ©*,(n) by Φ* is a locally closed

algebraic subset in §*,(%). On ®*(w) the group Sp(g,Z/nZ) acts and

this group transforms the image of ©*/(w) by Φ to its conjugates, and

these conjugates with g' < g forms the boundary 83α(tι). In particular if

n = 1, @* — @ (̂1) is a union of ©*, with gf < g.

(2.3) A system of fundamental neighbourhoods of the image Φ*(f)

of a point V in ©*/(?0 is given as follows.

Fix a fundamental domain Fg(ri) of /yw) in &g such that for all

gf < g those elements τ' in @ff/ with τ = (tZ ^Λ eFg(n) form a funda-

mental domain Fg,(ri) of Γα,(w) in ©α,. (For example take the Siegel funda-

mental domain.) Take a neighbourhood £7 of ί' and a positive number

K. We define Ba)(U,K) with ^ < k < g as

(2.3.1) F ( C 7 > χ ) c

T e Ffc(n), τ7 mod. Γg,(ri) e U and Im τ" > Klk_g\ ,

and V(U,K) as U g ' ^ ^ f C ^ ' ί ^ X ) ) - Then these sets V(U,K) form a

system of fundamental neighbourhoods of Φ*(f) in <S*(ri) when [7 runs
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over a system of fundamental neighbourhoods of V in ©*/(n) and K runs

over the positive integers ([19] Th. 1).

(2.4) Take a point τ'o in <3g, and consider its image in ϋ>*(w) by Φ*

which we denote by t'. Then the analytic local ring Φt, of ©*(%) at i'

consists of the so-called Fourier-Jacobi series. More precisely Igusa

proved the following theorem ([8], Th. 1 and Supplement).

Before the statement of the theorem we shall introduce some prelimi-

nary notations. Let Yf be the set of non-negative half-integer matrices

and GL(g, Z)(n) be the kernel of the canonical homomorphism: GL(g, Z) -*

GL(g, Z/nZ). Then GL(g, Z)(ri) acts on Yf as σ -> ιuσu for u e GL(g, Z)(n).

Denote exp (2^V : rI( )) by e( ).

THEOREM, i) The analytic local ring Θt, of <&f(ri) at V consists of

convergent power series of the form

(2.4.1)

where

(2.4.2) ζ,

Λ

t")

X

, ζ ^)e((l/n) tr ('uσuτ")) .

Here the summation in (2.4.1) is taken over a set of representatives of

Y*,,/GL(g"9Z)(ri) and the summation in (2.4.2) is taken over all distinct
ιuσu for u in GL(g",Z)(ri). And every θσ(τ',ζ) is holomorphic in U x 8

for an open neighbourhood U of τf

o in ©g, and the vector space g of

gf x g" matrices. Further θσ(τ\ ζ) satisfies the following functional

equations:

(2.4.3) θσ{τf, ζ + r'm + n) - θσ(τ, C)e(-(l/n) tr (σ(2 *mζ + 'tn/n)))

where m and n are gf x g" integral matrices

(2.4.4) ΘXW τ\ \Cfτf + DTK)

where W = (£, ζ\ e Sp(g',Z)(n) and M' τ' = τ'.

ii) The ideal Jt, in 0t. which defines the boundary S3*(w) consists of

such series Y^σΉσ{τ\ζ,τff) that σ is {strictly) positive definite.

(2.5) In [8] Igusa introduced the monoidal transform β*(n) of @*(n)
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along the boundary Ϊ8g(ri) and studied its singularity. We shall use the

notations in Section 1 freely.

Denote by p (or pn more precicely) the canonical morphism from

&*(n) to ®f(n). Then the singular locus of %*(ri) is given as follows.

THEOREM ([8] Section 3). Here we suppose that n > 3.

i) Let I be a point in &*(ri) and t = p(t) in &*(ri). Then t is a

simple point if t is contained in (Bfiri) or I is a conjugate of a limit of

( τ'Uc) rue) \
trao //(*)) mod. Γg{n) such that Imτ/ / ( f c ) —> oo and the normal

coordinates (1.3) of Imτ / / ( f c ) are bounded above, i.e. the distance of Imτ/ / ( f c )

and the principal cone Co is bounded (cf. (1.7)).

ii) Let t be a limit of points τik) = lt~ik) ^,nkΛ mod. Γg(ri) with

Im τ/nk) —»oo and the normal coordinates of Im τfnk) bounded above.

Further taking a subsequence if necessary, we may assume that there

exist the limits

τf = lim τ'(k), ζ = lim ζ(fc) and | « = lim

l < i < j < g" + l ,

(where τ^ (fe) is the (i,j)-component of the normal coordinates of τ/nk)).

Put ξij = e((l/ή)(—τ'/j)). Then a system of local coordinates of ®*(ri) at

t is given by

( τ ' - τ ' , ζ - ζ , ? - f ) .

iii) The projection of the singular locus of &f(ri) to <&f(ri) is pre-

cisely the union of all conjugates of the image of @*_4(w) by the Siegel

operator. In particular &*(ri) is non-singular if g < 3.

We shall denote by ©°(n) the set of points in ©*(w) satisfying the

assumption in the above theorem i).

(2.6) We do not know even whether @*(w) is normal. (It is affirma-

tive if the equality (J(n)r: e/(^) r + s) — J(n)8 does hold.) Hence we shall

consider the normalization @*(w) of ©α(n).

DEFINITION 5. We call €>*(%) the Igusa monoidal transform of &f(ri)

or the Igusa compactifίcation of ©*(%).

In case of n = 1 we write simply @* for ©*(1).

(2.7) In the following we study the relation between @*(n) and
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to show that @*0Ό is isomorphic to (Γ(n)/Γ(mri))\&*(mri). We

shall begin with a study of Satake compactifications.

We took a note before that the finite group Sp(g, Z/nZ) — Sp(g, Z)/Γ(ri)

acts on &*(ri) complex-analytically (and even algebraically). Further we

have:

PROPOSITION 1. i) For each n,m>l, there is a canonical morphism

<Pn,mn '- ® g * W ~> ©*(w).

ii) There is an isomorphism ψUί7ϊln: (Γ(ri)/Γ(mn))\(5*(mn)-+(&*(n)

which satisfies the following commutative diagram

In particular φn,mnis a finite morphism.

Proof. The existence of these morphisms is clear and it is easy to

show that ψn^n is a finite morphism. To see ψn,mn to be isomorphic

we have only to use the Zariski main theorem since all varieties are

normal. q.e.d.

Note that the sheaf J>(mri) of ideals of cusp forms on @*(mri) is stable

under the action by Γ(ri)/Γ(mri). Moreover through ψn,mn we obtain an

isomorphism:

Then we have:

PROPOSITION 2. i) For each m,n>l, there is a canonical morphism

ψn,mn ' &f(mn) -> @*O) which satisfies the following commutative diagram:

(2.7.2)

ii) The group Sp(g,Z/nZ) acts on &*(ri) and the action is compatible

with pn : @*(w) —> <&f(ri).

iii) There is an isomorphism ψn,mn: (Γ(n)/Γ(mn))\®f(mn) —> (§*(w)

which satisfies the following commutative diagrams:



218 YUKIHIKO NAMIKAWA

(2-7.3) <§*( w n )

(Γ(n)/Γ(mn))\®*(mn)-2^®*(.ή)

(2.7.4) Vmn Vn

Proof, i) By the remark above we obtain a φ*tmn-homomorphism of
sheaves of algebras:

(2.7.5) ψ%mn: 0 S{n)* > 0 /W

where < M : % B ) ^ % m ) l ) is induced from φn%mn.
This homomorphism induces canonically a rational map

>n,mrι: Proj ( e J{mn)Λ > Proj

and further ^w>mw is a morphism in fact by the remark just before
Proposition 2. (We have only to use the fact that the support of
φt^mni^in)) is the same as that of Jϊ(mri).) Then it can be lifted canoni-
cally to a morphism:

ψnt mn

ii) Clear from the remark above.
iii) Since φnt7nn is induced from ^*ww-homomorphism (2.7.5), it is

an affine map ([6] II. 3.5.1). Moreover clearly it is also proper, hence
finite by virtue of Chevalley's theorem (ibid. III. 4.4.2). Therefore ψn^n

is also a finite morphism. Since €>*(%) and @*(w) are birational, the
rational function field of &*(mri) is a Galois extension of that of @*(n)
by Proposition 1. Hence the conclusion follows. q.e.d.

§ 3. Stable curves and their moduli spaces.

In this section we recall the definition and fundamental properties
of stable curves due to Deligne and Mumford [41. For the proof not
given here we refer the reader to their article above. Although their
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method is algebraic, it is the same in the analytic category by virtue
of the representability of the Hubert functor ([21] Exp. 16).

(3.1) DEFINITION 6. Let S be an analytic space. Let g > 2. We
call a morphism π: X —> S a family of stable curves of genus g over S
if it satisfies the following conditions:

i) π is a proper and flat epimorphism whose fibres are reduced,
connected curves;

ii) for each s e S the fibre Xs — π~Ks) has only ordinary double
points as singularities;

iii) if Γ is a non-singular rational component of Xs, then Γ meets
the other components of Xs in more than two points;

iv) άimcH\Xs,ΘΣ) = g.
If S is one point, X is called a stable curve,

(3.2) Since π is flat and its fibres are locally complete intersections,
π is locally a complete intersection. Hence by the theory of duality of
coherent sheaves in the analytic category ([17]), we have the following
proposition and from it we infer the following theorem in the same
way as in [4].

PROPOSITION 3. Let π: X -> S be a family of stable curves of genus
g over S. Then there is a canonical ίnvertible sheaf ωx/s on X such
that:

i) for all morphism f:T^S,ωXxT/τ is canonicaΐly isomorphic to

ii) if S is one point, let p:X->X be the normalization of X,
X\9 ,%n>Vi> ''' yVny the points of X such that the Zi = f(Xi) = /(yd,
1 < i < n, are the double points of X. Then ωΣ/s is the sheaf of mero-
morphic 1-forms η on X regular on X except for simple poles at the
x's and y's and with Res x.{η) + Res Vi(jj) = 0

iii) if S is one point, and ^ is a coherent sheaf on X, then

X, &), C) ^ Hom.x OF, ωx/s) .

// S is one point, we denote ωx/s simply by ωx. Note that if X is
a smooth curve, ωx is nothing but the usual sheaf of holomorphίc one
forms on X.

COROLLARY. π*ωx/s is a locally free Θs-Module of rank g, where Θs
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denotes the sheaf of holomorphic functions on S. For each s e S there

are a neighbourhood U of S and g sections ωlf -',ωg in Γ(π~ι(U),ωx/s)

such that for each t in U the restrictions (a)i)t,i = 1, , g, of ω's to

the fibre Xt — π~\t) form a basis of Γ(Xt9ωχt).

Proof. By the conditions i) and iii) of Proposition 3 we have

IPίXsf coχ/s I x) = H°(XS, ωx) ^ Hom,Λ (ΦXs, ωx)

^ Komc (HKXs, ®xs) C) .

Hence dimc H°(XS, ωx/s | Xs) = g always. By the theorems of Grauert ([5])

the conclusion follows. q.e.d.

(3.3) To construct the moduli space of stable curves we shall make

use of Hubert moduli space. The starting point is the following theorem.

THEOREM. Let π:X-*S be a family of stable curves of genus g.

Then ωfjs is relatively very ample if n > 3 and π*(ωfjs) is a locally free

sheaf on S of rank (2n — l)(g — 1).

Taking n — 3, we can realize any family of stable curves as a family

of curves in p5^-6 with Hubert polynomial:

Pg(n) = (2rc -

Further there is an analytic subspace

of all tricanonically embedded stable curves where Hilbp^-β is the Hubert

moduli space in P5g~β with Hubert polynomial Pg. Over Jf\ there is a

family ΌS : ^Q -+ Jfg of stable curves of genus g with a tricanonical em-

bedding &g -» 3^g X P59'6 which has the following universal properties:

(3.3.1) let π: X ~+ S be a family of stable curves of genus g with

the relative projective embedding i: X -> P5g~6 x S over S such that the

inverse by i of the line bundle determined by the hyperplane of Pδg~6 is

ωψ/s. Then there exists a canonical holomorphic map f\S-+2Pg such

that X is isomorphic to S x *a&g over S and the embeddings into p5^-6

X S are compatible with / . This / is uniquely determined by this

property.

Note that by virtue of GAGA [22] Hilbp?ff_6 is the analytic space

associated with the algebraic Hubert scheme.
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On tfQ acts the reductive group PGL(5# — 6). We see that the

quotient space Sfq = J^g/FGh(5g — 6) exists and it is quasi-projective [9],

[16]. In fact it is protective and it is a coarse moduli space of stable

curves of genus g.

(3.4) On the structure of 2tfq and &g, with the approximation

theorem of Artin [1], we infer the following theorem after Deligne and

Mumford ([4] Th. 1.6).

THEOREM. $fQ is smooth and the discriminant of w is reduced with

only normal crossings.

More precisely, let x be a point in J^g and C be the stable curve

in 2'g lying over x with the double points zu >,zd. Then there are a

neighbourhood U of x in J^g which is isomorphic to an open set in CN

with local coordinates (t19 •••,£#), and a neighbourhood Vt of zt in 3?g

which is isomorphic to an analytic subset defined by the equation:

UiVi — ti — 0

in an open set in CN+2 with local coordinates (ui9 vi9 t19 , tN) such that

the structure morphίsm w: F* —> U is induced from the projection:

sjN + 2 ^ £»2V

(U<i, Vi9 t19 , tN) > \tl9 , tN)

through these isomorphisms.

§ 4. Periods of stable curves.

In this section we study the period map of the family w : ̂ g -> ̂ f g,

especially its behaviour near the points corresponding to singular stable

curves. For this purpose we shall study the homology group of stable

curves and the monodromy of at.

A) Period maps of families of smooth curves.

(4.1) Let J4?° be the biggest open subset of Jfg over which & is

smooth, i.e. the complement of the discriminant 2 of ®. Denote the

inverse image ta-\^°g) by %g. For simplicity we write J T ° and 2°

instead of ^f°g and &g in this section. As we have remarked before

in (3.2), the sheaf ωSΊ3e. is the sheaf of germs of holomorphic relative

one forms on &°.

Then Φ : ^ 0 — > ^ f ° is a topological fibre bundle whose fibre is a
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compact surface of genus g. Hence we have the following lemma.

DEFINITION 7. Let C be a compact topological surface. A free
b a s i s {al9 -—9ag9β19 ---,βg} o f HX(C9Z) i s c a l l e d a canonical basis i f t h e

intersection numbers of the a's and the β's are the following:

if i Φ j ,

(or*, α^ ) = (βi9 βj) = 0 for i, i = 1, , g .

LEMMA 10. For each point x in Jf° there exist a neighbourhood
U of J^° and 2g cycles a19 , ag9 β19 , βg on w~\U) such that for
each y in U the restrictions {a^yy (βj)y of at and βj to the fibre Cy —
®~Ky) form a canonical basis of H^CyyZ).

(4.2) Let π: X —> S be a smooth family of non-singular curves of
genus g and ©g the Siegel upper-half plane of degree g.

For each s e S, choose a neighbourhood U of s,g linearly independent
sect ions ω19 -,ωg of Γ{π~\U)9ωz/s)9 a n d 2g cycles a19 , aQ9 βl9 , βg

whose restrictions (α*)^ (βj)t to Z f = π~\t) for every t in U form a ca-
nonical basis of H^XtyZ). (This is possible by the corollary of Prop-
osition 3 and Lemma 10.)

Then we shall define Tπ on U by

Tπ:U—>(Bg

t (ί (α*)t)(f

where ( (ω^ί) and ( (ω^t) are considered as square matrices of
\J(«<)ί / \J(i5ft)t /

degree ^.
Since Xt is non-singular and the (ω<ys form a basis of the vector

space of holomorphic 1-forms on Xt9 Tπ(s) belongs to ©̂  by virtue of
Riemann's equality and inequality.

DEFINITION 8. We call this multiple-valued map Tπ: S-* &g the
period map of the family π.

The matrix Ωt = (lg9 Tπ(t)) is usually called the period matrix of Xt

where lg is the identity matrix of degree g. Also the matrix Tπ(t) itself
is often called the period matrix of Xt. In this article we use mainly
the latter terminology.
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The multiple-valuedness of Tz comes from the freedom of choice of

canonical bases. In fact let (<x,β) and (a',ft) be two canonical bases.

If we express (a',βf) with (a,β) in the form:

< = Σ Wtjβj +

then M = (Q jΛ is contained in Sp(g,Z) where A — (Aυ)yB = (Bi3),C

•=• (Cυ) and D = (Di3) are matrices of degree g, and the value T of

Tπ(t) defined with (a',β') is expressed with the value T of Tπ(t) defined

with (a, β) as

T = M Γ = (AT + B)(CΓ + D)-1 .

Hence values of Tπ differ only by the action of Sp(g,Z) on ©ff.

When we are given a family of stable curves π: X -> S which is

smooth over an open dense subset S°, there arises a problem on the

behaviour of the period map of π near S — S°. Since the family w: ^Γg

—> Jfg is universal (3.3), we have only to study the period map T = Tω

of m\%° ->#e°.

B) Homology groups of stable curves.

(4.3) For later use we shall make a precise study on the homology

group of stable curves.

Let C be a stable curve with the double points z19 , zd. Denote

by / : C —• C the normalization of C and by xl9 , xd, ylf #d the points

of C with /(a?4) = /(y t) = zi9l<i<d. Let d , , Cr (resp. Cx, , Cr)

be the irreducible components of C (resp. C) where C3 corresponds to C3

for each 3. The genus gf of C is the sum of the genus g3- of Cj,

l < y < r.

For each C, choose a canonical basis aJ+1, , aj+gj, βJ+1, , βj+gj

G = Σik<j9k) of the first homology group Hx{Cj9Z) of C3. Then

and the whole a's and β's form a canonical basis of Hλ(C,Z)

(4.4) To study H^CZ) we shall associate a graph Γ with C as



224 YUKIHIKO NAMIKAWA

follows (cf. [4]):
i) the set of vertices of Γ is the set Γv of irreducible components

of C;
ii) the set of edges of Γ is the set Γe of the double points of C;
iii) the extremities of an edge zt e Γe are the irreducible components

on which zt lies.
This graph is connected by the condition i) in Definition 6 in (3.1).
Then we have:

LEMMA 11. The first homology group HX(Γ,Z) of Γ is a free abelian
group of rank d — r + 1. Further we can choose a free basis γu , γd_r+i
such that

i) if Zi e Γe has only one extremity, then zt is one of γ's (with
orientation) and no other γ than zt passes through zt

ii) if we assume moreover that the graph Γ can be embedded into
the sphere S2 (or equivalently into the Euclidian plane R2), then for each
zte Γe, a) there is no γ passing through zu or b) there is only one γ pas-
sing through ziy or c) there are only two γ's passing through zt with
opposite directions.

Proof. The first claim is easy to prove.
Let zu , ze be the edges of Γ with only one extremity and put

γi — zu i — 1, ,e, with a fixed orientation. Consider the graph Γo

obtained by deleting these z's. Then we have easily that

H,(r,Z) = HX(ΓO,Z) Θ

Hence if we choose a free basis of H1(ΓO,Z), then together with yi above
they form a free basis of Hλ(Γ,Z) satisfying the condition i).

Now further we assume that Γ can be embedded into S2. This is
equivalent to assume that Γo is embedded into S2. Take a point oo in
S2 outside Γo. Then the embedding of Γo gives a partition of S2 into
cells, Δx, , Δk and zL where Δ^ contains the point oo. These cells are
naturally oriented by the orientation of S2. Let γt be the boundary of
Δι, 1 < i < k. Then it is easy to see that these γt form a basis of
Hλ(Γo,Z) satisfying the condition ii).

DEFINITION 8. A stable curve is called a planar stable curve -if the
graph associated with it can be embedded into the sphere S2 (or equiv-
alently, in the plane).
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(4.5) Now we embed this graph Γ into C so that
i) the image of C< e Γv is a simple point ct in the irreducible com-

ponent Ct;
ii) the image of zt e Γe with extremities C*, Ct is a path with

extremities ck, c£ which lies on Ck and C£ and passes through zt once,
and through no other z'&.

With this embedding and the normalization f:C—>C, we have a
homomorphism:

φ: ffX(C, Z) Θ HX(Γ, Z) -> Hγ{C9 Z) .

PROPOSITION 4. The homomorphism ψ is an isomorphism of groups.
Hereafter we identify them through φ.

Proof. We shall prove the lemma by induction on the number r of
the components of C. In case of r = 1 or in case Γ is a tree, the proof
is clear. In the general case take an irreducible component such that
the curve C" obtained by deleting this component remains connected.
We assume for example that the component Cr is a such one.

Denote by Cr and C' the respective normalizations of Cr and C'.
Note that C is a disjoint union of Cr and C

Denote by Γr and Γ' the intersections of Cr and C" with the embed-
ed Γ respectively. Then Γτ and Γf are respectively homotopic to the
graph of Cr and C, and Γr Π T7' = Cr Π C' is a finite set of points.

Hence by the theorem of Mayer-Vietorius we obtain the following
commutative diagram where the horizontal sequences are exact.

e -> e -+Hΰ(rrnn->H9

n HX{Γ)

I* 1+
{0} = Hx{cr n co -> H^cy e ffiίσo -> HX(P) -> H0(cr n co -> ί ί o(c r) ® HO(CO

Evidently ψ and ψ ' are isomorphic and φf is also by the induction
hypothesis. Hence the isomorphy of φ follows by virtue of the five
lemma. q.e.d.

C) Monodromy of families of stable curves.

(4.6) In this paragraph C) we consider only a family π:X-+D of
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stable curves of genus g over a disc D = {teC; \t\ < ε} which is smooth

on U = D - {0}. We shall denote by Xt the fibre π~\t) over t.

At each double point z of X09 there is a neighbourhood U oί z which

is isomorphic to a closed analytic subset defined by the equation xy — tn

= 0 in an open set in C3 = {(#, #, ί)} containing the origin (cf. (3.4)).

Hence replacing z by a series of (n — 1) projective lines, we obtain a

non-singular model X of X. Denote by ft the canonical map from X to

D. Note that in the preceding discussion in B) we did not use the

condition iii) of Definition 6, hence all results in B) hold also for the

curve Xo = ft-1®).

For the fibre Xo — C we shall use the same notations as in (4.3).

By the remark above, in particular, we can choose a basis {a19 , ag*,

βi, " > iWi> "->ro"} o f Hi(C>Z) such t h a t the aJ+k,βj+k,l < k <gj9

form a canonical basis of Hx{Cj9Z) and the γkyl < k < gh\ form a basis

of HX(Γ,Z) satisfying the conditions in Lemma 11.

Take a point to in D\ For simplicity we assume to = 1. Then

we have:

LEMMA 12. a) There are families of cycles a^t), , ag(t), β^t),

- - 9βg(t),0 < t < l , in Hx(Xt,Z) such that

i) they vary continuously,

ii) for each 0 < t < 1 ίfeβi/ /orm a canonical basis of Hx{Xt9Z)\

iii) aI+k(t) (resp. βJ+k(t)),l < k < gj9 tends to aj+k (resp. βJ+k) if t

tends to 0;

iv) βg'+kit),! < k < g"9 tends to γk if t tends to 0;

v) <v+fc(t), 1 < k < g"\ tends to a cycle homologous to zero if t tends

to 0.

b) For each double point zt in C — Xo there is a small open neigh-

bourhood of Zi which is homeomorphic to a join of two discs meeting

at Zi. Take the boundary δi of one of these discs. Then there is a

family of non-zero cycles δi(t)9 0 < t < 1, (called the vanishing cycles

associated with zt) which tends to δi when t tends to 0.
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For the proof see [3] Lects. 4 and 5 for example.
As an important corollary of Lemma 11 we have:

LEMMA 13. i) Each δi(t) can be expressed as a linear combination
of ag,Ut)Λ<k<g".

ii) Further if C is planar (Note that Xo is planar if and only if
XQ is planar.), then δi(t) is homologous to zero, or ± agt+ύ(t), or ag>+j(t)
— ocgf+k(t) with 1 < /, k < g".

Proof, i) If we express ^(ί) in the form

δi(t) = Σ atjajit) + ± bijβjit)

in Hλ(Xt,Z), then we have

= (δίy βj) = O, 1 < j < g' ,

= (3i,0) = 0, g' <j<g ,

by Lemma 12 and the condition i) of Lemma 11.
ii) Assume moreover that C is planar. Then by Lemma 11, for

each Zi in C only one of the following three cases occurs:
a) there is no γ passing through zt\
b) there is only one γό passing through zt

c) there are two cycles γj9 γk passing through zt once with different
orientations. Since a^gf+j = (δi9 γj), the conclusion follows.

(4.7) Take a circle Γ rounding the origin once counterclockwise
with base point 1. For a cycle c in H^X^Z) we denote by cΓ the trans-
form of c along Γ. This operation induces an automorphism of Hλ(X19 Z)
called the monodromy or the Picard-Lefschetz transformation of π. Then
by the theorem of Picard-Lefschetz we have

cΓ = c + Σ («D, c)δt(X)
ί = l

Let A be the d x g matrix with the (i, j)-th coefficient (3<(1
Then by the above formula we obtain

(4.7.1) cΓ = c + α(l) ΆACαd), c) .

PROPOSITION 5. The monodromy of π is expressed in the form
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* ^ \9B = ΆA, 1̂  = the identity matrix of degree g,

by using the basis {^(1), ,βg(l),^(1), ,α,(l)}. ίίβrβ ^ = (Q jg

where Bo is a positive definite symmetric matrix of degree g".

Moreover if Xo — C is planar, then Bo is contained in the principal
cone Co (1.7).

Proof. The first part is clear from the argument above except for
the claim that detBo=£0. Since the 5t(iys generate the subgroup
generated by ag,+1(X)9 -9ag(X)9 rank A = g". The formula: rank ιAA =
rank A shows that det Bo Φ 0.

Denoting by α< the ΐ-th row vector of A, we have

B = Σ
i

If C is planar, then Lemma 13 ii) shows that ^α* = (A),) is a matrix
of one of the following types:

a) A;, = 0, 1 < ^ , Λ : < g;

b) there is a j with g' < j < g such that

ri if . = « = /
\θ otherwise

c) there are j , k with gf < j,k < g such that

II if i = A: = y or fc ,

- 1 if 0,ic) = 0',fc) or (fc,fl,

0 otherwise.

Therefore each minor matrix A4 = (Aiκ)g,<t^g is contained in C o, hence

#o = Σ -A* also.

D) Behaviour of the period map near the discriminant.

(4.8) Now we go back to study the period map T of w: ^° -> Jf °.
Take a point a in f̂7^ and let C — tΰ"ι(x) be the stable curve in 2£g

over x with the double points z19 >- - zd. Then by Theorem (3.4) there
is a coordinate neighbourhood U = {(t19 - -9tN); \U\ < ε} with the centre
x such that each zt has a neighbourhood biholomorphic to an analytic
subset defined by the equation: xiyi — tt — 0 of an open set in CN+2 —
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Vi> ti>— > **)}• Hence the discriminant 2 is the union IJ?=i {(0 e 17 ί<

= 0} in U. Its complement U — Q) Π U is isomorphic to (DO* x Z F " d

where D = {t e C; \t\ < ε} and Ώf = D — {0}, and the fundamental group

of ?7 — ̂  Π U is Z/\ φ Θ ZΓd where Γ% is the homotopy class of a

circle rounding the divisor {U = 0} once counterclockwise.

Choose a basis of HxiC,Z) as in (4.6). Take a point â  = (ίjυ, ,

ί#0 with ίi ^ 0 in C7 sufficiently near to x such that there is a canonical

basis of the first homology group Hx{Cl9Z) of the non-singular curve

d = Qf^fai) such as in Lemma 12. Then the monodromy of Hλ(Cl9Z)

along Γi is

M4 \0 lJ

where β^ = (6<, „) is a non-negative symmetric integral matrix of rank

at most 1 with bi9 eκ — 0 for c < gf or K < gf (Proposition 5). Hence the

analytic continuation T(/\ί) of T(t) along Γt is subject to

(4.8.1) Γ(Γ4t) - Λf* Γ(t) - Γ(t) + B f .

Hence the matrix-valued function:

(4.8.2) S{t) = Tit) - ^°Ϋ\^Ϋ\ Bj
27ΓV—1

is a single-valued function on Z7 — 2 Π C7. Our main result in this

section is:

THEOREM 2. T&e function Sit) (4.8.2) is bounded on U — & Γi U.

Hence it can be extended to a holomorphic function on U by virtue of

Rίemann's removable singularity theorem.

Proof. Since a holomorphic function defined except on an analytic

subset of codimension two can be extended, we have only to prove the

case that C has only one double point by virtue of Theorem (3.4).

Even if C has a double point, the monodromy can be trivial. In

this case Tit) is already single-valued and is a map into a bounded do-

main ©p, hence the conclusion follows.

Now we suppose that the monodromy is non-trivial. Then by Pro-

position 5 we may assume B = ί^ j , n > 0 (in fact n = ΐ). Let Sυit)

(resp. Tυit)) denote the (i, ̂ -coefficient of Sit) (resp. Tit)). Then by the
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same argument as above, for all (i, j) but (g, g), S^f) = Ttj{t) is bounded.

So we must prove that Sgg(t) = Tgg(t) — (n\ogt1)/(2πV^Λ) is holo-

morphic on tλ — 0 also. This method of proof is due to Mayer ([3]).

Since Im Tgg{t) > 0, e(t) = exp (2KV:Z1 Tgg(t)) is bounded on U, hence

can be extended to a holomorphic function on U. As e(t) does not vanish

except on tx = 0, we have e(t) = tΓeo(*) where eo(O) Φ 0, so S'(t) = Γ^(t)

— {m\2π\l — 1) log ίx is single-valued and holomorphic on a neighbourhood

of x. If m Φ n, then S'(t) cannot be single-valued. This shows that

m — n and S'(t) — Sgg(t) is holomorphic at tλ — 0. q.e.d.

§ 5. The canonical map from the moduli space of stable curves to the

Satake compactification.

In this section we shall prove the following theorem.

THEOREM 3. Let π: X —> S be a family of stable curves of genus g.

Denote Sp(g,Z)\(&g by ©*. Then there is a canonical holomorphic map

T*:S-+ ©* = U ®ϊ> (cf. (2.2))
g'<Q

sending s e S to the period matrix of the non-singular model of Xs = π~Ks).

Proof. By (3.3.1) there is a functorial map f:S-^J^g such that

X is isomorphic to S χ 5 r Hence we have only to prove the map

T*g:3fg—»@* is holomorphic. On the points in Jf g — 3> whose fibres

are smooth curves, this map is nothing but the composition of the

canonical surjection <Bg —> ©* and the period map T we have defined in

(4.2). Hence it is holomorphic.

The question being local, we consider a point x e 3) c tfg and a

neighbourhood U of x in Theorem (3.4). Let C = ®~l(x) be the stable

curve lying over x whose normalization C has a genus g' = g — g". By

virtue of Hartog's theorem we have only to prove that T*g is holomorphic

on a neighbourhood of x in a generic line through #,i.e., a line which

cuts 3 transversally.

Denote by τ a local parameter of a neighbourhood L of x in a line

• , aNτ) | r | < e}. By assumption.

is holomorphic except at τ = 0. Hence it is sufficient to show that T*

is continuous at r = 0.
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First of all we shall consider the period map T — TlL_{0]: L — {0} -> <S>g.

By Theorem 2, T(τ) can be expressed in the form

Γ ( r ) =
2 W - 1 \0

where Bo is a positive definite symmetric matrix of degree g" and S(τ)

is holomorphic on the whole L. Let T' be the #' principal matrix

(Tij^ijζg, of Γ which is hence holomorphic on the whole L. Then by

the definition of the topology of Satake compactification (2.3), we have

lim^o Γ*(τ) = T'(O) mod Sp {gf, Z) .

Hence we have only to prove the following.

PROPOSITION 6. T'(0) is the period matrix of the non-singular model

C of C.

Proof. Let Cu , Cr be the irreducible components of C. Then

C is a disjoint union of the normalizations Cd of Cd, 1 < j < r, with

genus gd. Take such a basis {a19 , ag*> β19 , βg,, γ19 , γg,,} of Hλ(C, Z)

as in (4.6).

On the other hand let us consider the dualizing sheaf ωc on C (3.2).

Then we can choose a basis of Γ(C,ωc) including holomorphic forms

<0j+k91 < J < r> 1 < Λ < gd9 j = Σ^<i Λ> s u c h that for each y, the restric-

tions on C^ of ωj+k91 < fc < flf^, form a basis of Γ(Cjyωc) and they vanish

identically on the other Ck'$. Further by a suitable change of basis we

may assume that

i — k
J aj + i 10 ,

Since t0^ωgg/^g is a locally free sheaf of rank g, we can extend these

sections to ωk(t),l < k < g, in Γ{tϋ~ι{U),ω^g/^) where U is a neighbour-

hood of x in ^ .

By Lemma 12 there is a path Γ from ^ in U Π Jf ° to x such that

there is a family of canonical bases of Hλ(Ct,Z) with C, = ®~\t)9teΓ

satisfying the conditions in Lemma 12. In particular for each 1 < ΐ < g'\

1 < k < g; we have

^ a ί ωΛ(t) = ί ωk = 0
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since δt is homologous to zero.

Hence we have

= f ωjyl<i,j < gf

J βj

that is,

T'(0) =

Ω, 0
Ω2

LO Ωr

where Ωά, = ( ωJ+k )1 < i, k < gό is the period matrix of

with only normal

* follows also
Remark. Since ^ is a closed analytic subset in

crossings, the extendability of T* :^° -> ©* to Γ* :

directly from the theorem of Kobayashi-Ochiai ([10]) in the theory of

hyperbolic analysis.

§ 6. The canonical map from the moduli space of stable curves to the

Igusa monoidal transform.

(6.1) Now we are ready to prove the first main theorem of this

article.

THEOREM 4. Let π: X -+ S be a family of stable curves of genus g.

Denote by @* the Igusa monoίdal transform of the Satake compactificatίon

@* (Definition 5 in (2.6)). Then the canonical map T*:S->&* can be

lifted to a holomorphίc map ff : S —• ©*.

From this theorem we obtain the following important corollary.

COROLLARY. Let JίQ and &*g be the coarse moduli space of non-

singular curves and stable curves of genus g respectively. Then there

is a holomorphic map j : £Pg —> @* which is an extension of the injection
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Proof. Clear since &>g = tf\\PGL (5g - 6) and T* is PGL (5g - 6)-

invariant.

(6.2) Proof of Theorem 4. By the same reason as in the proof of

Theorem 3, we have only to prove the theorem for the family wg: 2£\

> Jtf7g.

On ©* the morphism p is isomorphic, hence T* can be defined and

holomorphic on J f f f - ^ = ^ ° .

Since the question is local, we shall consider a point x in 3) and

take a neighbourhood U satisfying the condition in (3.4). We shall use

the same notations in (3.4).

By Theorem 2 the period map Γ on U — & ΓΊ U is subject to

" TA 2TΓΛ/-1 *

where At is a non-negative matrix of degree g whose (i, ̂ -coefficient is

zero if ί < g' or j < gf and S(t) is a holomorphic function on the whole U.

Take a ramified covering c: V = {(s1? , s^)} —> Z7 defined by sending

s ί to ί< = s?, 1 < i < cZ, and to ^ = s*, eZ < i < iV. The ramification locus

of c is ί7 — c r 1 ^ ) . Then the composite map T1 = Toe is subject to

(6.2.1) T^s) = Σ }°g/ % nAi + si( s)

where S^s) — Soc is holomorphic on V. Denote nAi by B^ Then the

composite map:

satisfies the commutative diagram:

V — E —ί-> QHri) c ©*(n)

[ / - ^ n C 7 - ^ > © * c ( § *

Since these analytic spaces are normal, it suffices to prove that Tf can

be extended to a holomorphic map from V to ©*(n) for an n. More-

over since ©*(n) is the normalization of the monoidal transform <&f(ri),

we have only to prove that Γf can be extended to a map from V to
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Let f*: U -> @* be the extension of T* in Theorem 3. Then it is

easy to see that there is a holomorphic map Tf: V —» @*(w) satisfying the

commutative diagram:

f* _V _L^ @*(n)

C Ui.n

where φun is defined in (2.7).

Put y = 3Γf(a?), and let /0, • ,/, be a system of generators of the

ideal Jy{n) of cusp forms at y. We may assume that they are holomor-

phic in a neighbourhood W of y. Then the monoidal transform @*(w)

over W is a strict transform of the image by the map defined by

W Π ©*(w) > W x Ps

Φ Φ

Taking a smaller neighbourhood of x if necessary, we may assume that

Ίf(V) c W. Hence in order to prove the existence of an extension ff : V

-> &f(ri) of Tf, it is sufficient to prove that the image of V — E by the

map t : V — E —> Ps defined by sending z to (fo(z): : /,(«)) is bounded.

In fact we shall prove the following claim:

(*) V — E is covered by a finite union of subsets Vt such that for

each i there is a unique point y in Ps with lim^ J, j 0 6 F i f(z) = y.

(6.3) The proof of the claim (*) is done in a few steps.

Write the period map 2\: V — E -> @g as

T(s) Ti'is)

where Ti/7(s) is a g' x ^ r/ matrix, or simply as (ΓJ, Γ^7, ΓίO

Then by (6.2.1) T[(s) and Tϊ'(s) is holomorphic on the whole V and

(6.3.1) Tfts) - Σ I o ^ g? + ^
2V 1

where g^ is non-negative, B" = 2]f-i -B*7 is (strictly) positive and S"(s)

is holomorphic on V. The imaginary part of T"(s) is hence
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(6.3.2) Im Tΐ(έ) = Σ "~ l o g | 8 <lgy + Im S[\έ) .
*=i 2τr

/ v c •
= VC τ".

Write also r e ® n as

where ζ is a #' x #" matrix, or simply as r = (r',ζ, τ"). Then r' = Γί(s)

(resp. ζ = T"'O)) moves a bounded set Kx in <Sr (resp. K12 in the vector

space 3 of g/ X #" matrices) when s moves in 7.

(6.4) Now we shall use Theorem (2.8) in the full extent. Moreover

as you will see soon, our method of proof depends heavily on the method

developped by Igusa in [8]. We shall use the same notations as in (2.4).

LEMMA 14 (cf. [8] Lemma 9). Let σ be a half-integer positive matrix

in Y* and consider a holomorphic function θσ(τ', ζ) on Kx x 3 satisfying

the functional equation (2.4.3). Then there are positive constants μ, C in

R such that for ( τ ' , Q e ^ x K12 and u e GL(g,Z)(n) we have

\θσ(τ', ζtu)\<C exp (μ t r ('uσu)) .

Proof. Let Z be the set of points r'm + n in 3 where τf e Kly and

m and n are real gf x g" matrices with coefficients in [0, ri\. Then Z is

compact. For every ζ e 3> u e GL(g, Z)(n) and τ' e Kλ write ζ ιu in the

form ζo + τ'm + n with ζoeZ and with m, n = 0 mod. n. Put Re (Lτ,(ζ, ζ))

= Ί m ζ Im (τO"1 Im ζ after Igusa [8]. Then by (2.4.3) we have

|0 , ( Γ ' , ζ^) | = |^(r / ,ζ o ) |exp(-(2τr/n)tr(σRe(L τ ,(ζ o ,ζ o ))))

X exp ((2π/n) tr (σu (Re (LT,(ζ, ζ))) %)) .

Since Kλ and JRΓ12 are compact, there are positive constants C, μ with

\Θ.W, Co)| exp (-(2ττ/n) tr (σ Re (Lr,(Co, ζo)))) < C

f o r τ'eK19 ζ o e Z

and with (2π/ri) Re (LΓ,(ζ, ζ)) < μlg for r' e Ki and ζ e K12. Hence we have

|0,(τ', ζ ^ ) I < C exp (// tr (έw^)) . q.e.d.

(6.5) Let Cσk, 1 < k < p, be a finite family of non-degenerate central

cones whose union C is convex and contains C(B", , I?") and which
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contain the C/s with σeM{B") Π Y° (cf. (1.4) and (1.5)). We can choose
such a family by virtue of Theorem 1 in § 1.

For each σk only a finite number of u in GL(g, Z) satisfy Fσjc ΓΊ FtUσkU

Φ φ. Hence for a sufficiently large n no such an element but the identity
is contained in GL(g,Z)(n). That is, tr (^uσu — σ)y) > 0 for yeFσ and
lg ^ ue GL(g,Z)(ri). We may also assume n > 3. We shall fix such an
n from now on.

Take an arbitrary positive number v and let δ be a sufficiently large
positive number with SB" > (n/2π)(μ + v)lg where μ is the number in
Lemma 14.

When s moves in V, Im SΊ'is) moves a bounded set K2 in the vector
space of real matrices of degree g. By the assumption above B" is con-
tained in the interior of C. Hence for a sufficiently large ε, K2 + εB" is
contained in the interior of C.

Then we have:

LEMMA 15. // | ^ | < exp (-2π(δ + ε)), then Im T'/is) - δB" e C.
Further suppose that Im T"(s) — δB" e Cσ for σ = σk. Then the series

£r.(Γ1(8))e(-(l/w)tr(σΓί'(8))

- Σ θa{T[{s), Tϊ'{β)u)*«\ln) tr ((*uσu - a)T{\s)))

can be dominated by a series

where u runs over GL(g, Z)(n) and v > 0.
Moreover fl.(Γ,(β))e(-(l/n) tr (σTί'(s))) converges to ΘO{T'M, Γί"(0)) if

Proof. Put τ' = T[(s), ζ = T["(s), β = Im Sΐ(β) and ««= - (1/2*) log |8«|.

Then we have

Im Tί'(s) - δB" = 2 δiB'S - δB" + β

since δ, - δ - ε > 0 and εB" + βeC.
If we suppose that Im T{'(s) — δB" eC,d Fa> then we have

tr (('ίArtt - σ) (Σ «A" - ^β" + β) > 0 .

Hence we have
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, ζ ^)e((l/n) tr (Qtuiu - σ)Tί'(s))\

= \θσ(τ\ ζ *u)\ exp (-(2π/n) tr (('uσu - σ) ( Σ iβ'l + β)))

< const, exp (μ tr Cuσu)) exp ( — (2π/ri) tr ( ( ^ ^ — σ)δB"))

< const, exp (—ι> t r (f

Hence the first conclusion follows.

On the other hand with the estimation obtained above we have

τ', ζ ^)e((l/w) tr

- |0σ(r', ζ ^ ) | exp (-(2π/n) tr

< const, exp (μ tr (?VΛJU)) exp ( — (2π/ri) tr (Ĉ <m — σ) (Σ ^ f +

< const, exp ( — v tr (ιuσu)) exp ( — (2π/n)

X tr (Cwcm - σ) ( Σ W + i8 -

By the condition on n above this tends to zero for s -> 0 unless w

= lg//. Together with the first claim the conclusion follows. q.e.d.

LEMMA 16. The assumption is the same as Lemma 15. For any

half-integer positive-definite matrix σ' the series

^Ma/) tr

is dominated by a series

The proof is similar to that of the first part of Lemma 15.

(6.6) Now we shall finish the proof of Theorem 4.

Shrinking U if necessary, we may assume that |s*| < exp ( — 2π(δ + ε))

on V. Put

Vί = {seV/; Im Tί'00 - δB" e Cσi} .

Then by assumption V = U Vi and on Yt the estimates in Lemmas 15

and 16 hold.

Since n > 3, by the theorem in the theory of the theta function, for

a function θ°ai(τ\ ζ) defined near (ΓJ(O), 2T(0)) we have 0°(Ti(O), Γί7/(0)) Φ 0.

Let H°.(τ) be the Fourier-Jacobi series with the above θ°.. Then by

Lemmas 15 and 16 for every Hσ,(τ) the function

X ( f l ^ M - d / n ) tr
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converges if s —• 0. This proves the claim (*) in (6.2) together with
Theorem (2.4), hence the proof of Theorem 4 is complete.

§ 7. The image by j of points corresponding to planar stable-curves.

(7.1) Let j:S?g->&f be the canonical extension of i:u^-»@*
obtained in Corollary of Theorem 4.

Recall the set @° of points which are limits of points on <δ* with
representatives in ©α whose imaginary parts of normal coordinates are
bounded above (2.5). We have considered it as a subset of @* but we
can also consider it as a subset of @* since @° is normal by virtue of
Theorem (2.5) and Proposition 2 in (2.7).

Let x be a point in J^g corresponding to a planar stable curve with
virtual genus gf — g — gn'. Then by virtue of Proposition 5 in (4.7) the
period map T near x is subject to

where B" is contained in the principal cone Co, i.e. the normal coordi-
nates of B" are non-positive, and Sit) is holomorphic on a neighbour-
hood of x. Hence the normal coordinates of Im T"(t) are bounded above
near x where

Tit) = ( r ( t ) T'"(tΆ
VΓ7//(t) T"(t)/it)

with T"(t) e ©^,. Together with Theorem (2.5) and Proposition 2 we have
obtained the following theorem.

THEOREM 5. Every point in ^g corresponding to a planar stable

curve is mapped into @° by j . In particular the image point has at

most quotient singularity.

In this case exist limits

τ' = lim T\t) = T'(x) ,

ζ = lim T'"{t) = T'"(x) ,
ί-0

and

if B'lM Φ 0 for a k ,

otherwise
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where T"(t)tj (resp. B"^) denotes the (ί, j) coefficient of the normal coordi-

nates of T"(t) (resp. £"). We call (τ',ζ,f) the generalized period matrix

of the stable curve corresponding to x (cf. (8.2) and (8.4)).

(7.2) Remark. The simplest example of non-planar stable curve is

a union of 6 non-singular rational curves with genus 4 such as Fig. 1.

Fig. 2

This is known to be the simplest

Fig. l

The graph of this curve is Fig. 2.

graph without embedding into plane.

By j the point corresponding to this curve is mapped to the point

4 1 - 2 - 2 Ϊ

1 4 - 2 - 2

- 2 - 2 4 1

-2 - 2 1 4J

lim V - l t
t-»oo

mod. Sp(4,Z)

in <§>?. The integral matrix above is equal to e12>345 + e3M25 in Igusa's

notation [8] which is not conjugate to any points in Co.

§ 8. The case of irreducible stable curves.

In this section we shall study the generalized period matrices of

irreducible stable curves. In the moduli space £?g of stable curves of

genus g those points which correspond to irreducible stable curves form

an open subset <%g. Using the results on the period matrices of irreducible

stable curves, we shall show finally that the canonical map j : £fg —> @*

is injective on <%g.

(8.1) Let C be an irreducible stable curve of genus g with the double

points z19 9zg,,. Let f:C-*C be the normalization of C and xu yi9

i = 1, . . . , g", the points in C with f(xt) = f(yt) = zt. The genus of C

is then g' = g — g".



240 YUKIHIKO NAMIKAWA

C h o o s e a c a n o n i c a l b a s i s {a19 - , a g , , β 1 9 - -,βg>} o f H X ( C 9 Z ) a n d l e t

ag,+i9 ί = 1, 9g"j be small circles in C rounding yt once cunterclockwise

and βg>+i9 i — 1, ,g", paths from xt to yt meeting ar+i once but with-

out meeting any other a's and /3's. Then the homology classes of the

images of a19 ,ag,9 β19 9βg,9 βg,+l9 --,βg by / (which we denote by

the same letters) form a canonical basis of Hλ(C,Z). Hence HX(C,Z) has

rank 2g' + g" = 2g — g".

C

Next we shall choose a special basis of Γ(C,ωc). Let ω[, ,ωj, be

gf independent holomorphic forms in C, that is, they form a basis of

LEMMA 17. Let D be a smooth curve of genus g and {x,y} a pair

of two distinct points in D. Then there is a meromorphic form ω on

D which is holomorphic except on x and y and which has simple poles at

x and y.

Proof. Let ωD(x + y) be the sheaf of meromorphic forms on D except

for simple poles at x and y. Then we claim that

dimc Γ(D9 ω(x + y)) - dimc Γ(D9 ωD) = 1 > 0 .

If a form ω has a simple pole at x, then ω must have a simple pole also

at y by virtue of the equality: Res^ ω + Res^ ω = 0. Hence the lemma

follows from the above claim.
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If g is greater than 1, we have dimc Γ(D, ωD) = g, and deg ωD = 2g

— 2. On the other hand by the theorem of Riemann-Roch we have

dimc Γφ, ωD(x + yj)

= -ά\mcΓ{D,ΘD(-x - y)) + degωD(x + y) + 1 - g

= 0 + 2 0 + 1 - 0 = 5 + 1 .

The other cases are similar. q.e.d.

Hence for each pair {xuyτ) we can choose a meromorphic form ω'g,+i

in Γ(C,ωδ(Xi + yτ)) with Έ,e8ytωg,+i = 1. Then ω'19 ,α>^, ω'g,+1, '-,ω'g
defined above are clearly linearly independent, hence form a basis of

Γ(C,ωc).

(8.2) Let A',B',Cr and U be the matrices defined by

Since A1 is non-degenerate, we put A'~ι — (a"j). Put

^ // / i ^ ^ /

and

ωg' + j = ωg' + j Z_ι ^ki^ijωk f ± < J <L 9

Then ω̂  , 1 < j < g', form a basis of Γ(C,ωc) and <*v+J- is holomorphic

except for simple poles at xt and yt and has its residue 1 at ^ . Hence

we can replace the basis {ω[, , ω'g) of Γ(C, ωc) by {α)1? , ωg). If we

denote by B and D the matrices

( f ί Λ )<,>=! , . . . ,•, and ( J ί Λ . + , ) j = l ; : : : ; ? -
respectively, then we have β = β ^ 7 " 1 and D ~ Df — BfAf~ιCr. Hence we

have obtained

LEMMA 18. We can choose a basis {ω19 , ωg} of Γ(C, ωc) such that

i) ω19 - - -, ωg> are everywhere holomorphic on C and form a basis of

Γ(C, ωc)
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ii) for each ί, 1 < i < g" > ωg,+i is holomorphic except for simple poles
at Xι and yt and has residue 1 at yt

1 if i = j

For later use we put E(n) = (Elf)lii<j£g,,+1 with

E\f = e((l/w) f ωr+3) , 1 < i < j < g" ,
\ Jβg, + i J

and

Elf = 0, j = g" + 1.

Remark, i) This basis is determined uniquely,
ii) We have an extension of Riemann's equality:

except for i = j = gf + 1, , g.
In case of i, j < gf this is the usual Riemann's equality on C. The

other cases are known to be the law of interchange of argument and
parameter (cf. [29] §16).

(8.3) Let βi (resp. e^ be the unit vector in Cg (resp. in Cg') whose
i-th coefficient is 1 and the others are 0. Let eg+ί (resp. eg,+i) be the ΐ-th

column vector of the matrix ( t^ J (resp. S). Then the generalized Jacobian

variety of C is defined to be the group variety

(8.3.1) J(O = c y g Zei9

and the Jacobian variety of C to be the torus

(8.3.2) J{C) = Cg/ /Σ Ze, .
/ ί = l

There is a canonical holomorphic group epimorphism J(C) —> /(C), whose
kernel is a product of g" copies of the multiplicative group C*.

(8.3.3) 0 > {C*y > J(C) > J(C) > 0 (exact) .

That is J(C) is a group extension of J(C) by (C*)g". Hence J(C) defines
an extension class e in Ext (/(C), (C*)*") = Ext (/(C), (C*))9".

On the other hand it is known (e.g. [23]) that there is a canonical
isomorphism:
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(8.3.4) Ext (J(C), C*) - ^ > Pic0 (J(C)) -^-> J(C) .

PROPOSITION 7. Lei [cZJ denote the points in J(C) corresponding to
the column vectors dί9 i — 1, , g"> of D in C9' respectively. Then through
the isomorphism (8.3.4) the extension class e of (8.3.3) in Ext (/(C), (C*)g//)
corresponds to ([dj, -- ,[dg,,]) in J(C)g".

Proof. First of all we shall express the (inverse) isomorphism (8.3.4)
explicitely. Denote by Z the additive group 2] Zet in Cg'.

Take a vector d = (di) in C°\ Then we can define a homomorphism
fd : Z -> C* by sending e« to 1 for 1 < i < g' and to e(^_ r) for g' < i < 2g''.
By this homomorphism, define the action of Z on C* x CX by

z: C* x CX > C* x Cg/

CD Φ

(α,0 >(

for ^ e 2 . Hence we obtain a principal C*-bundle:

0 > C* > C* x CX/£ > O'jZ = J(C) > 0 (exact) .

By corresponding d to the extension class of this C*-bundle, we get a
homomorphism: Cg/ -> Ext (/(C),C*). (Clearly this correspondence is
additive.) Moreover if c£ is contained in Z, i.e. d = 2 WΛ with % e Z,
then by the isomorphism:

C* x CX -^-> C* X C^

(α, ̂ ) > (e(Σ?=9'+i rc^α, «i)

transforms the G-action above into the trivial one on C*. (We use the
fact the period matrix ($g,+1, ,e2 r) is symmetric.) Hence the extension
class corresponding to d in Z is trivial, i.e. the homomorphism above
factors through i: J(C) = Cΰ'/Z-± Ext (/(C),C*). This map i gives the
inverse of (8.3.4).

Now we are ready to prove the Proposition 7. If we take a quotient of
Cg by the subgroup Zx = Σ?lΊZe^+ ί, then this is isomorphic to CX X (C*)9"
by corresponding (ζ1? . , ζg) mod Zx to (d, , ζ r , e(ζ,,+1), , e(ζ,)).
Through the canonical isomorphism J^g^g/f Zeί/Z1 ~> Z, an action of Z
on Cg/ x (C*)*" is induced canonically as

z: Cg/ X (C*)9" > C9/ X (C*)9//

Φ Φ

(ζ, al9 , α^O > (ζ + z,fdl(z)a19 -9fd9,.(z)ag,.)
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for zeZ, and with the action we have J(C) ^ Cgf x (C*)°"/Z, hence the

conclusion follows. q.e.d.

We can define a canonical embedding of C into J(C). Fix a point

q in C. Then the embedding i: C -> J(C) is defined by

p > ( ωly - - , αv I mod Z .
\J q Jq /

Since the cycle βg,+i is the image of a path from xt to 2/< where #*

and yt correspond to a double point zt in C, and since the i-th column

vector ĉ  of D is equal to ( ωλ , we have
\Jβg' + t /j=l,'",9'

[di] = i(j/i) — i(aj«) .

Together with Proposition 7 we have obtained the following theorem.

THEOREM 6. Let C be an irreducible stable curve of genus g with

the double points zi9 ί = 1, -,g". Let C be the normalization of C with

genus gf = g — g", and xi9 yt the points in C corresponding to zt Denote

by i the canonical embedding of C into the Jacobian variety (8.3.5). Then

the generalized Jacobian variety of C is an extension of J(C) by (C*)9"

whose extension class correspond to (Hy^ — i(^), , i(yg,,) — i(xg>,)) in

J(C)9" through the isomorphism (8.3.4).

Remark. The extension class above in J(C)g" is determined up to

changing factors and the isomorphisms of J(C) as a principally polarized

abelian variety.

(8.4) Now we are ready to prove the main result in this section.

THEOREM 7. The canonical map j\Sfg-* @* is injective on the open

set °UQ of points corresponding to irreducible stable curves.

The rest of this section is devoted to the proof of this theorem.

Take a point x in j>Pg corresponding to an irreducible stable curve

C. Choose a coordinate neighbourhood U of x with centre x satisfying

(3.4). In the same way as (6.2) take a ramified covering V of U. Here

we may assume n = 3. If we define the period map T = (T', T/f/, T/;) of

the canonical family of stable curves on V by using the canonical basis

of H^CyZ) and that of Γ(C,ωc) introduced in (8.2) and (8.3), then T is

subject to
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(8.4.1) T(s) =
2τrv—

SEg,+ίS(s)

where E3 is the matrix with the (j,j) coefficient 1 and 0 otherwise,

and S(s) is holomorphic on the whole V (cf. Proof of Proposition 5.).

Moreover by Lemma 12 in (4.6) we have T'(0) = A, T""(0) = D and

lim5_oe((l/3)(>-Γ//(s))) = Ew. We denote E™ simply by £\

Then as we have seen in the proof of Theorem 4, this period map

T induces a holomorphic map

f* V > ©*(3) .

Moreover by Theorem (2.5) the image p = T*(0) is a simple point in ©*(3)

and a system of local coordinates with centre p is given by

With this system of coordinates, f* is expressed in the form

f * : γ
Φ

(8) - A,

The point p being simple, we can identify @*(3) with @*(3) near p.

Now let xx and x2 be two points in ^fg corresponding to irreducible

stable curves with j(xλ) = j(x2) where j = jop jfg —> ^ _> @*. For each

ί = 1,2 we can make the argument above and we shall use the same

notations but with subscript or superscript i. Then we have pλ = M>p2

for an element M in Sp(g,Z) by Proposition 2. We shall give an ex-

plicit form of M and its action.

Since jip^ — j(p2) is contained in the image of the Siegel operator

Φ: ©*, -> @* where j = p-j: 2/fg -> @* -+ ©*, M can be expressed in the

form

fA' 0 B' Bx

A TT Z? ~D

1 ^ *-^2 - ^ 3

σ o z)' z?ι

lo o o ιu-

( A' Br\
rv τ\λ e Sp(^7, Z), C7 G GL{gn\ Z) and these matrices satisfy

the equalities: AΐΌ' - 5/C" + U tD1 = 0, A^β' - β/A' + [7 ί β 1 = 0 and
/ ' / l ί ϊ ? i TT tT? \ (T? t A i ~D tTl\ (\
v** i *^2 i ^ -*-^3/ — V- '̂2 -"-I ~ι ^ 3 U) ==: v/.

The action of M on ©- is written explicitly as r = (τ',ζ,τ") -* M-τ
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= (M' τ'Λ-(M' τ'XC% + Dλ) + (A'ζ + Bx)) *E7, (M r)" - ( - ( A ^ + U % +

B2)(C'ζ + A) + (Aλζ + TJτ" + £3)) 'CO. Note that (M r)" - ί/τ" <C7 +

a function of (τ',ζ).

Then the assumption: px — M-p2 implies that the imaginary part of

the diagonal elements of (M τ)" tends to infinity when the diagonal

elements of I m r tends to infinity by (8.4.1). Hence observing that (M r)"

= Uτf/tU + a function of O',ζ), we have 17*17 = V , i.e. U = (±e π ( 1 ) , ,

±eπ(g,Ί) for a permutation π of #" elements where et is the unit vector

with i-th coefficient 1 and 0 otherwise.

Hence if we replace the canonical basis of Hx{G2iZ) by M'{α(2),/3(2)},

change the index of zf> to ^ ^ and for every i with i-th column vector

of C7, —eπ(i), change x%} and 2/? ,̂ then we may assume that Mf = l g, and

C7 - V .

Let us sum up our results obtained up to now.

(8.4.2) For an appropriate choice of the canonical basis of HX(C2, Z)

we may assume that p1 = M p2 where M is subjects to

( * )

where m and n are integral gf x g" matrices and § is an integral g" x g"

matrix with 'mn + % = £nm + 3. The action on @g by M is written as

τ = (r;, ζ, τ") - M τ = (τ', ζ + rm + n, (M-τ)" = τr/ + W m + ('mζ + *ζm)

+ Cmn + ^)). Hence from the condition Pi = M-p2 we have

r 1

0

.0

0
1

0

0

0
«n

1

0

n *

— m

1 j

(**)
t = Aa = A ,

>2 = D 2 + Am + n ,

Cmn)

If we define J{Cτ) and J(Ct) with a basis of ΈLX{CUZ) above as (8.3.1)

and (8.3.2), then from the above equality we can identify /(Q) and J(C2),

and the extension classes of J(CΊ) and J(C2) are the same through this

identification. (End of (8.4.2.)).

Hence the following is the claim which should be proved.

(8.4.3) Let C be a non-singular curve of genus gr and (xf,yf), i —

1,2, ;/ = !,•• -,g",2g" pairs of distinct elements in C such that (xψ,yψ)
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Φ (tt^yV*?) for J Φ &• Denote by Cλ (resp. C2) the curve obtained by

identifying xψ with yψ (resp. xψ with yψ), which is an irreducible stable

curve of genus g = g' + g" with the double points zψ (resp. zψ), j = 1,

••-,g;/, each of which corresponds to xf\yψ (resp. xf\yψ) respectively.

For each i = 1,2 choose a canonical families of 1-cycles in Ct and a basis

of Γ(Ci,ωCι) such as (8.1) and (8.2) and define the matrices Ai9Di9 and

Et. If for an element M of Sp (g,Z) of the form (*) in (8.4.2) the above

matrices are subject to (**) in (8.4.2), then Cϊ and C2 are isomorphic.

(8.5) We shall prove (8.4.3) by dividing it into the following four

cases according to the properties of C. In every case if C itself is

non-singular, then Theorem 7 is the usual theorem of Torelli. Hence we

assume that C has at least one double point, i.e. g" > 0.

A) The case that C is a non-hyper elliptic curve with g' > 2.

The theorem follows from the following proposition and the last claim

of (8.4.2).

PROPOSITION 9. Let C be an irreducible stable curve of genus g whose

normalization is a non-hyper elliptic curve with genus gf > 2. Then C is

uniquely determined by its generalized Jacobian variety J(C).

Proof. By Torelli's theorem the non-singular model C is uniquely

determind. Let i:C->J(C) be the canonical embedding (8.3.5). Denote

by zί9 1 < i < g", the double points of C and by xi9 yt the corresponding

points in C. Then by Theorem 6 the set of elements i(yt) — i(xt), ί = 1,

• , g", is uniquely determined by J(C) up to isomorphisms of J(C). Hence

the proposition follows from the following lemma.

LEMMA 19. Let C be a non-hyper elliptic curve and J(C) the Jacobian

variety of C. Define a canonical embedding i: C—> J(C) as (8.3.5) Then

the morphism C x C —> J(C) defined by sending (x,y) to i(x) — i(y) is in-

jectίve outside the diagonal of C X C.

Proof. Let (xλ,y^ and (#2,2/2) be two pairs of distinct points in C

with i(xx) — i(y^ = ί(x2) — i(y2). Then we have

i(xλ) + ί(y2) = ί(x2) + i(yλ) .

Hence by virtue of Abel's theorem the divisor xι + y2 is linearly equivalent

to x2 + yλ. Assume that xλ + y2 Φ x2 + yλ. Then the above claim im-
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plies that dimc H°(C, O(xx + y2)) > 0. Hence C has a non-empty linear

system of degree 2, i.e. C is hyperelliptic. This contradicts with the as-

sumption, q.e.d.

B) The case that C is a hyperelliptic curve with gf > 1.

The proof of Lemma 19 shows in fact the following.

LEMMA 19bis. Let C be a non-singular curve and J(C) the Jacobίan

variety of C. Define a canonical embedding i: C —• JiC) as (8.3.5). For

two distinct pairs of distinct elements (xu yj and (x2, y2) in C, the equality:

i(x^) — %{yx) — i(x2) — i(y2) does hold if and only if the curve C is hyper-

elliptic and c(x^ = y2 and t(x2) = y1 by the involution c of C.

(We have proved only the "only if" part but the "if" part is clear.)

Now we shall prove (8.4.3) in case of a hyperelliptic curve C by the

induction on g".

In case of g" = 1, we have i{y™) - i(x™) = i(y[2)) - i(x[2)) in J(C) by

(8.4.2). If {xPyVP} = {x?\yί% then there is nothing to prove. If they

are different, then Lemma 19bis shows that by the involution c of C the

set {xί^fVί^} is mapped to {x[2),yϊ2)}. Hence this involution induces an

isomorphism between CΊ and C2.

In case of g" = 2, we have

W ) - W) = i(yί2)) - ί(xί2)) , < = 1,2 .

If {xf\yT} = {xf\y?} for ί = 1,2 or {x?\y?} - K{xP,yP}) for i = 1,2
with the involution c of C, then clearly CΊ and C2 are isomorphic. Hence

we shall assume that ι({x?,y?>}) = {x?\yP} and {x?\y?>} = {xP,yi*>}. In

order to prove the assertion, we must strengthen the assumption (8.4.3).

We add two more assumptions:

— ω{

(8.4.3)bis in the family of 1-cycles on C,aP = af\β^ = β{2) and

for 1 < i < g' in the form of M we assume moreover m = 0.{2)

Let us show that these assumptions can be satisfied. First of all

note that if we take the same α£> = of>, βψ = $ 2 ) and ω? = ωf\ l<i<g',

then we have Ax = A2. When we consider the form M, Mr must be

subject to M' A2 = A1# Since there is an automorphism of C which

induces M', we may assume W = l g, by identifying ^ = C and C2 = C

through this isomorphism (Here we used the condition that C is hyper-

elliptic. In general cases we can reduce Mf — ± lg, in the same way.).
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The other reduction of the form of M in (8.4.2) does not concern with
and β/s for 1 < ί < g'. Hence we may assume the af — af, f

= βf] and ωf = ωf for 1 < ί < g\
Moreover if a column vector vcij of m is not zero, i.e. df = df +

Aitij Φ df where df is the y-th column vector of Dί9 then yf Φ yf. In
fact if yf = yf and [df] = [df], then we have ί(xf) = i(xf), hence

f =xf = and = dj2). Hence we can move at — af = af] to a\ so
that αj is homologous to at in ίί^C — {yf}, Z) and homologous to at +
mijag'+j i n Hλ(C — {yf}9Z). Then replacing α̂  by αj, we can assume
that xtij = 0. Repeating this process for y = 1, , g", we can assume
that m = 0. Hence we can add the assumption (8.4.3)bis to (8.4.3).

Now we shall go back to the proof of (8.4.3). Define multiple valued
holomorphic functions Vι(z) on C as

i = 1,2 .

This function is a so-called multiplicative function, i.e. there is a char-
acter χi: πλ{C) —> C* of the fundamental group of C such that, for every
closed path Γ with base point z, the analytic continuation v^Γz) of vjiz)
along Γ is subject to

where [Γ] is the homotopy class of Γ.
Note that the character χ1 is determined by the values Xi([aj]) and

Xidβj]), 1 < < ^ Since χ<([^]) = e(jα ί ωJ9+1) - 1, and χ,([/3,]) - e(J^<>+1)

= eid?*)^) = ettdί1^), together with the assumption that df = df mod. Zgf

(cf. (8.4.2)(**) and (8.4.3)bis), these characters coincide. Hence the ratio

f(z) = vι(z)/v2(z) is a (single-valued) meromorphic function on C. More-

over by the very definition vt(z) has a simple pole at xf and a simple
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zero at y[l) and it has neither poles nor zeros outside. Hence f(z) has

simple poles at x? and y{2) and simple zeros at y? and x{2) and it has

neither poles nor zeros outside. Considering / to be a holomorphic map

from C to P\ we see that this map is of degree 2 by the above obser-

vation, hence the non-trivial covering transformation of this covering /

gives the involution c of C.

On the other hand we have ((2?i)12)
3 = Viiy^/Viix^) by definition and

Y = ((E2)12γ by (8.4.2) (**) and (8.4.3)bis. Hence we have

Since x^ = x^ and yψ = y^ by assumption, we have

i.e. c(yi1}) = x£K Hence the involution c induces an isomorphism between

Cλ and C2.

In case of g" > 2 the proof is similar, hence we shall omit it.

C) The case that C is an elliptic curve, i.e. gf = 1.

The proof is similar to the case B). In this case we may also as-

sume (8.4.3)bis by the same reason as before.

In this case J{C) is isomorphic to C by the canonical embedding i

(8.3.5), hence we identify them. The proof is done by induction on g".

In case of g" = 1, by Theorem 6 we have y^ — x[λ) = y[2) — x[2).

Hence the translation by x[2) — x? maps xί1] to xί2) and y? to y?\ which

induces an isomorphism between CΊ and C2.

In case of gn — 2, we also have the equalities: y[υ — x^ — y{2) — x\2)

for i — 1,2. By translation we may assume that xψ = x{2) = 0 and

02 02 0*

Put vi(z) = eί ω^)j,ΐ = l, 2. Then they are multiple-valued holo-

morphic functions with characters χ4: π^C) —> C* such that for any closed

path Γ with base point z the analytic continuation Vi(Γz) of ^(2) along

Γ is subject to

where [Γ] is the homotopy class of Γ in πx(C). The only pole of vt(z)

is a simple pole at x[€) and the only zero of vt(z) is a simple zero at y^K
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If the assumptions in (8.4.3) and (8.4.3)bis are satisfied, by the same

argument as the case B), f(z) = v1(z)/v2(z) is a meromorphic function

on Cj and considered as a holomorphic map from C to P\ it gives a

two-fold covering with f(xίυ) — f(yί2)) — oo, /(y^) = f(xί2)) = 0 and more-

over f(y) = /(0) since ((£\)12)
3 = ((E^12y. Hence the non-trivial covering

transformation induces the isomorphism between CΊ and C2.

To prove the case g" = 3 we note first of all that the above cover-

ing transformation c is given explicitly as

c:C >C

™ + y™
-z +

(Note that x™ + y{2) = x™ + y™.) That is, if (E$γ =

then

or

Therefore if (Ef]f = (ίJ^)3 for 1 < i,y < 3,i ^ j (we put £7^ = Eυ

\ί i < j for the sake of convenience), then for each (i,f) we have one

of the following equalities:

(Aί3) xf - χ?> = xf - x™ ,

(Bυ) xf - x? = -{yf - yp) .

Clearly if (Aυ) and (Ajk) hold, then (Aik) holds, and if (Bi3) and (Bjfc)

hold, then (Bίk) holds. Hence for all (i, /) either (A o ) or ( S o ) does hold.

If the equalities (Atj) hold for all (ί, j), then the translation of C2 by

x[τ) — α;ί2) induces an isomorphism between C2 and d if the equalities

(Bij) hold for all (i,j), then the involution above of C2 induces an iso-

morphism between C2 and Cx.

In case of g" > 3 the proof is the same as the case of g" = 3.

Remark (Ueno). We can also give these functions appeared above

explicitly.

First of all we shall give the form of ω's explicitly. For simplicity

we assume that gn — 1 and write x and y instead of xx and y1. The

curve C is given as an elliptic curve C/Z + Zτ with Im τ > 0. We shall
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denote by z a uniformizing parameter of C, i.e. a coordinate of C above.

Put ω[ = dz and ω'2 — (l/2πV—l)(ζ(z — y) — ζ(z — x))dz where ζ(z) is

the so-called zeta function of an elliptic curve defined as

1_
z Z ( ! —

)Φ(O,O) \ z — mτ —

Σ
n {mτ + n)2 mτ + n+ n)

Then it is easy to see that ω'2 is a meromorphic form on C with simple

poles at x and y and with Resyα>5 = l . Define alf a2, βu β2 as in (8.1).

Then we have

αί = 1 ,
L

ωί = τ

A

and by using the equality ζ(s) = σ'(z)/σ(z) where σ(z) is the σ-function

defined as

Π ( +(
,n)*(0,0) \ mr + n / \ m r + n 2\ mτ + n

and using the quasi-periodicity of σθ), i.e. the formula

mr ) = (~ l ) m n + m + w ί exp

where ηx — ζ(l/2) and ^2 = ζ(τ/2), we have

—

f α / 2 = l ,
J «2
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I ωj = rt

 V,2—_ ( x - 2/) .
Jj9i 27ΓV—1

Hence if we put ωx = ωί, α>2 = cog — Gfr( — y)\π\l—l)ω[, then with the

Legendre relation: ηxτ — η2 = W—1/2 we can see that they form the

basis introduced in Lemma 18, and we have ω2 = y — x.
J βl

Then the multiplicative function we have introduced above is written
explicitly as

viz) = eM ωΛ

= exp (W=Tj(α/2 - ft^ (a; -

expσ(z — a;)

Hence E\ό is given explicitly as

= ^ ^ a,) e χ p ( M _ χί)( __

About the formulae used above we refer the reader to [7] 2.
Abschnitt, 1. Kapital for example.

D) The case that C is rational, i.e. gf = 0.

Then clearly g" = g > 1. The form of M in (8.4.2) (*) is very simply

= (lg *)VO 17
M

with an integral symmetric matrix § of degree g and only the matrix
E appears.

First of all we shall give ω% and E explicitly. Let C be a stable
curve obtained by identifying xt and yi91 < ί < g, in a protective line
C = P1. Denote by zt the double point corresponding to Xι and yt. Let
z be an inhomogeneous coordinate of C. Then the meromorphic forms:

ωt = (l/2;ιV—l)((l/(s — 2/i)) — (1/(2 — %i)))dz, 1 <i < g, form a basis of
Γ(C9ωc) in Lemma 18, and by integrating them we have

,logi!ίL=.

hence
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By (8.4.2) we have (#<}>)3- = (Eft)* for all 1 < i < j < g. Hence it
is sufficient to prove that

(*) the family of values (E\j)ι^ί<j^g determines the isomorphism
class of C uniquely.

We use the induction on g.

In case of g = 2. we may assume that xγ — 0, yx — oo and 2/2 = 1
by changing 2 with a protective linear transformation. Then with the
equality above we have

( o o - l X O - s . )
(0 _ i)(oo - α;2)

Hence the claim (*) is true for g = 2.
In case of # = 3, we may also assume that xx — 0, ̂  — 00 and j/2 =

1 as above. Then we have

E3

12 - x2 ,

Solving these equations, we have the unique solution for x2 and two
pairs of solutions (x^,y^),i = 1,2, for (x3, y3). However a linear trans-
formation p:z-+x2/z preserves the sets {x^y^ and {x2,y2}. If we put
x'z = p(yz) = x2/y3 and y'z = ρ(x3) = #2/#3, then it is easy to see that the
transformation (x3, y3) —> (x3, y'3) sends a set of solution for (x3, y3) to
another. By an elementary calculation we can see that x3 — x3 if and
only if the above pairs of solutions coincide. Hence the isomorphism
class of C is uniquely determined by the data, El, El and 23!,.

In case of g > 3 the proof is similar, hence we omit it.
Thus we have proved (8.4.2) in every case A), B), C) and D), hence

the proof of Theorem 7 is now complete.

(8.6) Remark. Assume that g > 2. Let Jί be the union of divisors
Jfiy 1 < i < [g/2] whose general points correspond to stable curves with
two non-singular irreducible components Cj9j= 1,2, with genus i and
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g — i meeting at one point. Then j is not injectίve on Jr. In fact by
the upper semicontinuity of the dimension of fibres, we have only to
prove it for general points ξ on Jί^ Hence the image by j is contained
in ©*, so it is sufficient to show that j is not injective. Let C be the
corresponding stable curve with the irreducible components CΊ and C2.
Let x, y be the points on d and C2 respectively which coincide on C.
Since g > 2, we have g — i > 1, i.e. the automorphism group of C2 is
finite. On the other hand if two such curves C(1) and C(2) are isomorphic,
then it induces an isomorphism between C^ and Ci2) which maps y{1) to
2/(2). (In case of i = g/2 we may need to change factors.) Hence the
curves C with different y's are not isomorphic in general. However,
their generalized Jacobians are both J(C) = /(CΊ) x J(C2), hence the
images by j coincide. This proves the assertion.

It is naturally expected that j is injective outside of Jfy but we
have no proof.

§ 9. The case of g = 2.

(9.1) In this section we shall prove the following theorem.

THEOREM 8. In case of g = 2 the canonical morphism j : ^ 2 —> &f

(Corollary of Theorem 4) is an isomorphism.
Since these two varieties are normal and complete, and since j is

birational, we have only to prove that j has no fibres with positive
dimension by virtue of Zariski's main theorem.

(9.2) The explicit structure of @2* (or ©f(n)) is known ([8], [18]).
In fact this was the first compactification of ©2* constructed by Satake
(ibid.).

So we must study the structure of the moduli space ^2 of stable
curves of genus 2.

PROPOSITION 10. Every stable curve of genus two is of one of the
following types. Any curves of the same type are homeomorphic to each
other. Those points in £f2 which correspond to each type of stable
curves form a locally closed algebraic subset in £f2, hence making them
strata, we can define a stratification in Sf2

Type The corresponding stable curve rank fl^C, Z) Stratum
I a non-singular curve of genus 2 4 Jί
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II a join of two non-singlar elliptic 4 Jί

curves meeting at one point trans-

versally.

IΠα ) an elliptic curve with an ordinary 3 &a)

double point.

I Π δ ) a join of a non-singular elliptic 3 J*δ)

curve and a rational curve with an

ordinary double point meeting at

one point transversally.

IVα ) a rational curve with two ordinary 2 Ήa)

double points.

IVδ ) a join of two rational curves with 2 # 6 )

an ordinary double point meeting

at one point transver sally.

V a join of two non-singular rational 2 2

curves meeting at three points

transver sally.

The proof is straightforward, and we omit it (cf. [14] or [15]).

I t is also easy to see t h a t the holomorphic map j = poj: £f2-+ <&f

_> @* = <g* u ©? U So* maps Jί and Jί to @2*, @a) and J*δ) to ©*, and

# α ) , Vb) and 2 to @0*.

(9.3) Now we shall prove Theorem 8 by reductio ad absurdum.

Assume t h a t for a point η in ©J the fibre F = j " 1 ^ ) has a positive

dimension.

The open set °tt2 in Theorem 7 is a union of s t r a t a Jl>0Sa) and # α ) .

Hence by virtue of Theorem 7 no generic points in F correspond to

stable curves of types I , I I I α ) , and IVα ).

I t is easy to see t h a t the isomorphism classes of curves of types

IVδ ) and V a re unique, i.e. <&b) and 2 consist of only one point respec-

tively. Hence the generic point of F is contained in Jί or J*δ ).

F i r s t assume t h a t the generic point ζ is in Jί. Let C be a stable

curve corresponding to ξ. Then C is a union of two elliptic curves Cx

and C2. By translat ion on each component we may assume t h a t the

origins of C1 and C2 meet together. Hence C is determined uniquely by

Cγ and C2. On the other hand since η is in ©J, we can identify j and

j near η. Therefore η corresponds to the isomorphism class of J(C) =
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j) x J(C2). Clearly it determines CΊ and C2, hence C. Hence the as-

sumption is impossible.

Now assume that the generic point ζ of F is in J*δ). Let C be a

stable curve corresponding to ξ. Then C is a union of an elliptic curve

CΊ and a rational curve C2 with one double point. Since only one point

in CΊ is specified and only three points in the normalization of C2 are

specified, the isomorphism class of C is determined only by that of Cx.

On the other hand since J(C) = Clf 37 corresponds to the isomorphism class

of d in ©?, hence £ is uniquely determined by η, which again con-

tradicts the assumption. q.e.d. of Theorem 8.

(9.4) We shall also give the explicit correspondence of j in case of

g = 2 with the generalized period matrices (7.1). The proof is already

done or easy, so we omit it. We shall use the notations in (8.2).

A) The case of type I. gf = 2, g" = 0. In this case j maps the iso-

morphism class of C to the residue class of the period matrix Ωc of C

in ©2*.

B) The case of type II. gf = 2, #" = 0. Let C be a stable curve

with the irreducible components CΊ and C2. Let r2 and r2 be the respec-

tive periods of CΊ and C2. Then j maps the point in 6?2 corresponding

to C to (l1

 τ°)mod. Sp(2,Z) in ©*.

C) Tfte case 0/ type III a ). #' = 1, g" = 1. Let C be a stable curve

of type IΠα ) with normalization C which is an elliptic curve with period

τ. Let x, y be the points in C corresponding to the unique double point

of C. Then j maps the point in ίf2 corresponding to C to the point

(A, D, E) = (r, 1/ - x, 0) mod. Sp(2, Z).

D) The case of type III b ). g' — 1, #" = 1. Let C be a stable curve
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of type IΠ b ) . It is a union of an elliptic curve CΊ with period τ and

a rational curve with a double point. Then j maps the point in ^2 cor-

responding to C to the point (A,D,E) = 0,0,0) mod. Sp(2,Z).

E) The case of type IVa). gf — 0, g" — 2. Let C be a stable curve

of type IVa) with double points z1 and z2. Denote by xi9 yt the points in

the normalization C of C corresponding to zt. With a uniformizing

parameter z in C, we may assume zCâ ) = 0, z(yλ) = oo and z(y2) — 1. Then

y maps the point in £fz corresponding to C to the point E = (2£12,2?13, 2£2S)

= (z(#2), 0,0) mod. Sp(2, Z).

F) Γfeβ case o/ ί̂ /pe IVb). gι = 0, ^ / ; = 2. As we have remarked

in the proof of Theorem 8, the isomorphism class of type IVb) is unique.

The point in ^ 2 corresponding to it is mapped by j to the point E —

(El2, En, E2Z) - (1,0,0) mod. Sp(2, Z).

G) The case of type V. gr = 0, g" — 2. The isomorphism class of

curves of type V is also unique, and the point in ^ 2 corresponding to it

is mapped by j to the point E = (Eί2,EU9E23) = (0,0,0) mod. Sp(2,Z).

Addendum

The proof of Theorem 4 is not complete. We need the following claim:

(*) for every point s e S, when we express the period map of π

near s as (4.8.2), there is a central cone Cσ in tyQ,. containing "all" Bi>0

where Bi>0 = (bitlt)g,<ttl[<*g,, (cf. (6.5)).

In case of g < 6 this claim holds for all families of stable curves.

(It can be seen by direct calculation.) It seems true that it does hold

in general.

The above claim being local, Theorem 4 is true for families of planar

stable curves, for example. Hence the incompleteness of the proof of

Theorem 4 gives no effect to the other theorems.

The author wishes to thank Professor P. Deligne who kindly pointed

out my mistake of proof.
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