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QUATERNARY EVEN POSITIVE DEFINITE QUADRATIC

FORMS OF PRIME DISCRIMINANT

YOSHIYUKI KITAOKA

In this note we study quaternary even positive definite quadratic
forms of prime discriminant. In § 1 we classify quaternary even posi-
tive definite quadratic forms of prime discriminant p = 1 mod 4 (called
simply nice quaternary lattices in this note) which represent two. We
note that the class number of such forms is closely related to the dimen-
sion of the space of certain automorphic forms. (Remark 4 in the
text). By using the classification in § 1 and the theory of integral
representations of cyclic groups we show that the orthogonal group of
a nice quaternary lattice is generated by ±1 and symmetries (of the
lattice). In § 3, we calculate the class number of nice quaternary lattices.
Notations and terminologies will generally be those of O'Meara [5]. Any
exceptions to this convention will be stated explicitly. Through this
note Q(x) and B(x, y) denote quadratic forms and corresponding bilinear
forms (i.e., 2B(x,y) = Q(x + y) — Q(x) — Q(y)), and p denotes a fixed
prime number Ξlmod4.

§ 1. We say that a quadratic lattice N over the ring of rational
integers Z is even if and only if Q(x) = 0 mod 2 for any element in N.
For brevity, a quadratic lattice N is called nice in this note if and only
if N is an even positive definite quadratic lattice over Z, its discriminant
d(N) is p, 2p or 4p according as N is quarternary, ternary or binary
respectively, and moreover the Hasse invariant S2(N) at the prime two
of N is — (— i when N is binary.

1.1. Let L be a nice quaternary lattice and have an element eλ with
Q(ex) — 2. Then we can take a basis {e19 e2, e3, eA} of L satisfying B(e19 e2)
= 1 and B(e19 e3) = B(e19 β4) = 0 so t h a t ZίeJ1 = Z[eλ — 2e2, e39 e4] and

[L; Z[βJ _[_ ZleJ1] = 2. This implies that Z[e^L is a nice ternary lattice.
Received July 9, 1973.
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1.2. LEMMA. Let K be a nice ternary lattice. Then a maximal

even quadratic lattice L containing Z[eJ _[_ K, (QieJ = 2), is uniquely

determined and nice, and Z[eJL in L is equal to K.

Proof. Since K ^ <A(2α, 2α)> J_ (2up} over Z2, where a = 0 or 1,

and tt = — 1 or 3 respectively, we have Z[eJ _[_ K ^ <2> J_ (2up} _L

<A(2α, 2α)> over Z2. On the other hand <2> J_ <2up} has norm 2, but

it is not maximal over Z2. This means that Z[eJ J_ K is not maximal

and [L Z[eJ J_ K] = 2, and L is nice. Put L = Z[eJ ±K + Z[u], where

^ = i(Σ!Ui^iei) a n ( i 3t = 0 or 1 and K = Z[e2, ez, e j . Then, since Z[βJ

and 1£ are maximal, δ1 = 1 holds and d2 = ^3 — ̂ 4 = 0 does not hold. By

changing the basis of K, we may assume u = \{eλ + e2). From the

evenness of L follow Q(u) = 0 mod 2 and S(^, β3) = B(u, β4) = 0 mod 1.

Hence we have Q(e2) = 6 mod 8, B(e2, e3) = B(e2, e4) = 0 mod 2. Let U be

any maximal even quadratic lattice containing Z[eJ J_ K; then as above

we have U = Z[eJ ±K + Z[v], where v = K^i + Σί-2^βt) and 3* = 0

or 1. From the evenness of U follows δβ(ez, e4) = δJB(ez, e4) = 0 mod 2.

Since B(e3, β4) is odd, δ3 = 54 — 0. This implies L = Z/. ZleJ1 is obviously

In the following, L(ίΓ) denotes a nice quaternary lattice constructed

as above.

1.3. LEMMA. Let K be a nice ternary lattice. Then any element

x in L{K) with Q(x) = 2 is mapped on ± eί by some symmetry of L(K),

or x is already in K.

Proof. Using notation in 1.2, put x = aeλ + b/2(eί + e2) + cβ3 +

de4eL(K). Then we have

= 2(a + A ) 2 + Q( |-β 2 + cβ3 + de)j = 2 .

If 6 is odd, then α + δ/2 = ± | . Take 3 = ± 1 satisfying 3 ~ (α + δ/2)

= ± J. Then 3ex — a? is in L(iC), Q(δeί — a?) = 2 and riei_a.(a0 = 3ex. If

b is even, then α + 6/2 — 0 or ± 1 . Hence x is in K or x = ±β x .

1.4. LEMMA. Lei 2^, iC2 6β mcβ ternary lattices and suppose Q(K2)

3 2. //, then, L(K^) is isometric to L(K2), then Kλ is isometric to K2.

Proof. Let σ be an isometry from L(ZX) to L(K2). From our as-
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sumption and 1.3 we may assume σ{e^) = ex. On the other hand, Z[e^L

in UK,) is Kλ and Z\exY in L(K2) is K2. This implies σiKJ = Z 2.

1.5. LEMMA. Lβί K be a nice ternary lattice and let K contain an

element e2 with Q(e2) = 2. Γfeβn Z\e2Y- is a nice binary lattice.

Proof. Since K is indecomposable, Z?(e2, K) ^ 0 mod 2. We take a

basis {β2, β3, β4} of K satisfying B(e2,e3) — 1, B(e2, e4) = 0; then Z[e2]
λ —

Z[e2 - 2e3, ej and [K:Z[e2] _L Zte,]-1-] = 2. This implies diZίe,]1-) = 4p.

It is easy to see that the Hasse invariant ^(ZteJ-1) = — ί—). Hence

Z[e2]
L is nice.

1.6. LEMMA. Let M be a nice binary lattice. Then there are only

two different even maximal ternary quadratic lattices containing Z[β2] _|_ M,

(Q(e2) — 2), and they are both nice.

Proof. From our assumption on M follows M = (2ΛΛ) J_ (2u~ιpy over

Z2, where u is a unit = 3 mod 4 of Z2. Since <2> _L (2up} is not maximal

over Z29Z[e2] _]_ M is not maximal. Let K be any even maximal lattice

containing Z[e2] _|_ M. Then we get [X; Z[e2] J_ M] = 2 and d(Z) - 2p.

This means that i ί is nice. Taking some basis {e3, β4} of M, we may

put K = Z[e2] _L ̂  + -2Γ|>L where v — \{ez + e3). The evenness of K

implies Q(β3) Ξ 6 mod 8, B(β3, e4) = 0 mod 2. Since 4p = Q(β3)Q(β4) —

JBf(β3, β4)
2, we have Q(β4) Ξ 4 or 6 mod 8. If Q(e4) = 4 mod 8, then Q(e3 + β4)

Ξ 6 mod 8 and M = Z[e3, e3 + e4]. Without loss of generality we may

assume Q(e3) = Q(β4) ΞΞ 6 mod 8 and Z?(e3, β4) Ξ 0 mod 4. Let K' be any even

maximal quadratic lattice containing Z[e2] J_ M and put Kr — Z[β2] J^ M

+ Z[v], where v = |(β2 + < 3̂ + 34e4) (^ = 0 or 1). Then the evenness

of K' implies either 33 = 1, 34 = 0 or δ3 = 0, δ4 = 1. Conversely Z[β2] _L M

+ Z\_\{e2 + β4)] is even and it is not equal to Z[e2] _|_ M + Z\\(e2 + e3)].

1.7. LEMMA. Let M be a nice binary lattice, and K be an even

maximal lattice containing Z[e2] _]_ M9 (Q(e2) = 2). Then any element x

in K with Q(x) = 2 is mapped on ± e2 by some symmetry of K.

Proof. If Q(M)s29 then the Hasse invariant S2(M) of M is (~\

Hence Q(M) &2. A quite similar method to the proof of lemma in 1.3
implies our statement.
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1.8. LEMMA. Let MUM2 be nice binary lattices and KlyK2 be cor-

responding nice ternary lattices constructed in 1.6. //, then, KlfK2 are

isometric, then Mλ,M2 are isometric.

The proof is the same as 1.4.

1.9. LEMMA. Let M be a nice binary lattice and Kγ,K2 be different

nice ternary lattices constructed from M in 1.6. Then KlfK2 are iso-

metric if and only if M has a non-trivial isometry.

Proof. Let M = Z[e3, e4] and Kλ = Z[e2] _]_ M + Z\\{e2 + e3)], K2 =

Z[e2] 1 M + Z\\{e2 + eA)] as in 1.6. Suppose that σ is an isometry from

Kx to K2. Then without loss of generality we may assume σ(e2) = e2.

Since M = Z\e2\
L in KS —1,2), σ induces an isometry of M. Hence

we get a{\{e2 + e3)) = \{e2 + β4)modZ[β2] J_ M, and so σ(e3) = β4mod2M.

This shows that σ is not ± 1 on M. Conversely suppose that M has a

non-trivial isometry σ, then there exists a basis {x, y} of M satisfying

σx = y, σy = a;. If # = Z[e2] J_ Af + Z[i(β2 + ^x + δ2y)], (^ = 0 or 1), is

nice, then none of ^ = <52 = 0 and δ1~δ2 — l can hold. Hence without

loss of generality we may put Kγ = Z[e2] _J_ M + Z\\{e2 + x)], K2 = Z[e2]

_L M + Z{\(e2 + y)]. σ satisfying σ(β2) = e2, σ = σ on M gives an isometry

from Kλ to K2.

1.10. LEMMA. Let Mi be a nice binary lattice and Kt be a nice

ternary lattice constructed from Mi in 1.6. // L{K^) and L(K2) are iso-

metric, then Mx and M2 are isometric.

Proof. Let a be an isometry from LiKJ to L(K2). Using notation

in 1.2, we may, by virtue of 1.3, assume σ(e^) = ex or a(ej e K2. If σ(βj)

= el9 then σ{K^) = K2, and 1.8 implies that MlfM2 are isometric. If

σ(eλ)eK2, then M — Ziσie^]1- in K2 is isometric to M2 by virtue of 1.5

and 1.8. On the other hand, Kx = Z t e J 1 in L(Kj) is isometric to K! —

Z\o(fid\L in L(K2), and K7 is nice and contains Z[βJ J_ M. Hence from

1.8 it follows that M1 and M are isometric, and so Mx and M2 are

isometric.

1.11. LEMMA. Let M be a nice binary lattice, and Kl9K2 be dif-

ferent nice ternary lattices constructed from M in 1.6. Then L(K^) and

L(K2) are different but isometric.

Proof. As in 1.6 we take a basis {β3, β4} of M such that Q(e3) =
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Q(e4) = 6 mod 8 and J3(e3, e4) = 0 mod 4, and put Kx = Z[e2] JL M + Z [J(e2

+ e3)], K2 = Z[eJ J_ AT + Z[J(e2 + βj], where Q(e2) = 2. If L{Kλ) = L(K2),
then Z t e J 1 in L(K^) and Z t β J 1 in L(K2) are equal and so Kλ = 2f2. This
is a contradiction. Therefore we have L(KX) ^ L(K2). We define an
isometry σ of L(2Q ® z Q(= L(Z2) (x)z Q) by σ(βj) = e2, σ(e2) = elf σ(e3) = e3,
σ(e4) = e4. Firstly σ(L(Kx)) contains Z[elye2] _[_ M. Denote %(ex + eA) by
v. Then Z[eJ J_ ULX + Z[^] is even since Q(τ ) = 0mod2 and B(v,eJ =
B(v, e2) = B(v, e4) = S(^, \{e2 + e3)) = 0 mod 1. Hence 1.2 implies v e L(K^,
and we have σ{L{KJ) s σ(v) = J(β2 + β4). Since σ{L(K^)) is a nice
quaternary lattice containing Z[eJ J_ K2, the uniqueness of L(K2) implies
σ{L{Kx)) = L(K2).

1.12. Denote by h(p) the class number of nice quaternary lattices
and by h+(p) the class number with respect to rotations (i.e., O+ over Q)
of nice quaternary lattices. Let L be a nice quaternary lattice. If,
then, any lattice which is isometric to L is isometric to L with respect
to rotations, then L has a refrexion σ (i.e., an isometry with det σ =
— 1). By virtue of σ ^ ±1, it follows from 2.5 in the next section that
Q{L) s 2. Hence it follows from the above that

2h(p) - h+(p)

— the class number of nice quaternary lattices which represent 2

= the class number of nice ternary lattices IV—ffj/ ~ α ,

where fe(V—p) is the class number of Q(V—p) and a stands for the
number of ambigous classes contained in non-principal genus of Q(V—p),
(hence necessarily a = 0 or 1). On the other hand, the class number of

nice ternary lattices is \(h^~^p) + -^(p + 3 — i(— j j due to Eisenstein

and Mordell [2], [4].
Thus, we obtain

THEOREM. We have 2h(p) - h+(p) = -^(p + 3 - 4 ^ ^ + α/2, where

(—) stands for the quadratic residue symbol and a is either 0 or 1 in
order that the right hand be an integer, and p is a prime = 1 mod 4.

COROLLARY. h+(p) is asymptotically equal to 2h(p).
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Proof. From the simple calculation of the mass, it is easy to see
h(p) > cpz/2, where c is a positive constant independent of p.

Remark 1. T. Tamagawa showed in the Summer Institute at Tokyo
from June 29 to July 8, 1970, that h+(p) is the type number of some
quaternion algebra over Q(V—p).

Remark 2. It is easy to generalize the above corollary to even
positive definite lattices of an even dimension by the similar way to [3],

Remark 3. The number a in the above theorem is zero if and only
if p = 1 mod 8.

Remark 4. The class number 2h(p) — h+(p) of nice quaternary
lattices which represent two is a half of the dimension of the space

9Kί—2, Γ0(p), (—)) of automorphic forms of dimension —2 and character

(_UL) with respect to Γ0(p). It is natural to ask whether $ (r, A) and
\p/

$(τ,pA~ι) form a basis of 2Kί — 2, Γ0(p), f — π, where A runs over repre-

sentatives of classes of nice quaternary lattices which represent two.

In case of p < 109, it is true.

§2. Let IV be a quadratic lattice over Z. Let O(N) denote the
orthogonal group of N, and let S(N) denote the subgroup of O(N)
generated by symmetries of N and ±1. In general S(N) is not equal
to O(N).

Our aim in this section is to prove

THEOREM. Let L be a nice quaternary lattice. Then O(L) = S(L).
2.1. Let L be a nice quaternary lattice and O(L) contain an element

σ of order 5. Then by virtue of Th. 74.3 in [1] there exists a basis
{eu e2, e3, eA} of L such that

- 1 \

and

/2(6 + c) -b -c -c
2(6 + c) -b -c

* 2(6 + c) - 6
2(6 +
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Hence we have p = det {B{ei9 e3)) = 5(b2 + Sbc + c2)2 and so p = 5. In
this case L represents 2.

-2.2. Let L be a nice quaternary lattice and let O(L) contain an
element σ of order 3. Then one of the following cases holds.

(
2α — a d —c — d\

. " » - 6

26

ii) α = | 1 0 | and

0
1

0
1

0
1
0
0

— 1
- 1

- 1
- 1

- 1
- 1
0
0

0
1

0

1
0
1
0

1

0
0
0
i

In case of i) det (B(ei9 e3)) = (d2 + c2 + cd — Sab)2 = p. This is a contra-

diction. The case ii) contradicts det (B(eif e3)) = p, too. In case of
iii) we want to show a = 1. det (BO*, eά)) = p implies α = 1 or 2?. Sup-
pose a = p. Then ZteJ-1 = Z[ej + 2e2, e2 — e3, ej and [L: Z[eJ J_ ZfeJ1]
= 2. This implies that ZteJ 1 is an even ternary positive definite lattice
of diZie^1-) — 2. But such a lattice does not exist. Hence L represents 2.

2.3. Let L be a nice quaternary and O(L) contain a non-trivial
element a of order 2. Then one of the following cases holds.

- 1 1 \ /2α - α 0

0 1 \ Λ

and

o i/

ii) a = I 1 and

iii) σ — I . 1 and (£(e*, ê )) =
0
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1 \ /a b e f\

V e d

a
b
e

b
a
e

e
e
c

f
- /
0and (B(eiy e3)) =

- I 7 V - / 0 d

The cases ii), iii) contradict det (B(ei9 e3)) = p. In case of v),
det (B(eif e3)) = 0 mod 2. This is also a contradiction. In case of i), a = 1
is proved by the same way as the proof of the case iii) in 2.2. In case of iv)
p = det (B(ei9 e,)) = {(a - b)(c - d) - (e - /)2}{(α + b)(c + d) - (e + /)2}.
Put N+ = Z[er + e2, e3 + eA], N_ = Z[ex — e29 ez — e4], then

d(N+) =, 4{(α + 6)(c + d) - (e +

J_) = 4{(α - 6)(c - d) - (e -

Hence ΛΓ+ or N_ is an even binary lattice of discriminant 4, and it
represents 2.

2.4. Let L be a nice quaternary lattice and O(L) ^ {±1}. Suppose
that O(L) does not contain isometries of order 3 or 5, nor non-trivial
isometries of order 2. Then O(L) contains an element a of order 4 and

0
1

- 1
0

o
1

- 1
0

a
0
c
d

0
α

- d
c

c
- d
&
0

d
c
0
&

σ2 = —1. ZW is isomorphic to ZW — 1] and Z[σ] operates torsion-freely
on L. Hence we may assume

and

This is a contradiction, because p = det (B(eu e3)) = (αδ — c2 — d2)2.

2.5. Summing up: let L be a nice quaternary lattice. If O(L) ̂  {± 1},
then Q(L) 3 2.

2.6. LEMMA. Let K be a nice ternary lattice. If O(K) ̂  {±1}, then
QiK) 3 2.

Proof. As above we may assume that O(K) contains an isometry σ
which is one of the following form for some basis {v19v29v3} of K:
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0
1
0

1

- 1

0

1

1
0
1

i ϋ ) ( O i l , i v )

I 1/ \ -V
In case of i), iv), K is decomposable. This is a contradiction. In

case of ii) we have

( 2α — a —a\
-a 2α 0 1 .
- α 0 b )

Since <ZCK) = det (B(vu v3)) — 2p, we have a — 1 .
In case of iii), we have

/2α - α 0\
( B ( V i , ^ ) ) = - α & e ,

\ 0 β c)

and det (BO ,̂ ̂  )) = 2p implies a = 1 or p. If α = 1, then Q(X) 9 2. If
α = 39, then d{Z[vx + 2v2, v3]) = 4. From this follows Q(K) 9 2.

2.7. By virtue of 2.5 we may, to prove our theorem, assume that
a nice quaternary lattice L is either L(K), where K is a nice ternary
lattice and Q(K) 0 2, or a nice quaternary lattice constructed from a nice
binary lattice M as in 1.11.

Firstly suppose that L = L(K) and Q(K) 3 2. Take any σ in O(L).
From Q(7£) 0 2 and 1.3 (the meaning of eι remains same) follows σ(e^) =
τ(e^) for some τ in S(L), and r"1^^) = ev Since ZteJ 1 is equal to if, r"V
induces an isometry of K, and 2.6 implies that r'V = ±1 on K. Hence
we get τ~ισ = 1 or —τβl. This shows σeS(L).

2.8. Suppose that L is a lattice constructed as 1.11. Without loss
of generality, we may assume L = L(K^) in 1.11. Using symbols in 1.11,
we show aeS(L) for any a in O(L). If ot(β^^Ku then we may assume
aiej = βj by virtue of 1.3. This implies a(Kλ) = ί̂ . From 1.7 follows
that there exists some t e SiKJ such that τe2 = αβ2. Since a nice quaternary
lattice containing Z[eJ _[_ Xi is unique, τ satisfying τ\Kχ = τ and r(eχ) = et

is in S(L). Hence τ"1^ satisfies z~la(e^ = ex, z~λa(el) = β2. Since M =
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Z[e19 e2V, we get τ~ιa{M) = M. The relations τ~ιa(Kd = #1 and τ~ιa{M)

= M imply τ~ιa{\{e2 + e3)) = J(β2 + e3) modZ[β2] _]_ M and so τ^αίe,) = β3

mod2M. This means that τ~ιa induces a trivial isometry + 1 on I ,

For, otherwise, as in the proof of lemma in 1.9 we may assume τ~ιa(ez)

= β4. Hence we have τ~ιa = id. or — τeiτβ2 e S(L).

Suppose exiβi) e K^ By virtue of 1.7 we assume a(e^) = e2. Since

a ^ ) = Z[β2]
J-(inL), B(e19e2) = B(e29a(e2)) = 0, we may assume moreover

α(e2) = β1? applying 1.7 to αOQ. Then we have a{M) — M again, and

\B{ez, a(e3)) = Omodl, because B{\{e2 + β3), a{\{e2 + e3))) is an integer.

This shows that a is not ί l on Jlί, since Q(e3) = 6 mod 8. Without

loss of generality we may take a basis {e3, e4} of M satisfying a(e3) =

β4, a(eA) = β3 as in the proof of lemma in 1.9, and M = (B(eίy e3))

_ ίP + P — \ p u | . ^ _ i ( _ β i _|_ e2 _)_ ̂ 3 _ e j then α; is in L, since

Z[βJ J_ K + Z M is even. Q(x — β2) = 2 and Q(x + ex) = 2 imply τ^_β2,

^ + e i e S ( L ) and so — rJ.+βlra._β9α(e1) = βlβ From the results in the first

half of this section follows —τx+eiτx_e2ae S(L). This completes the proof

of our theorem.

§3. In this section we calculate explicitely the class number h(p)

in 1.12 by method due to Eisenstein and Mordell [2], [4] assuming p > 5

(h(5) = 1 is known).

3.1. If K is a nice ternary lattice, Q(K) $2, and K does not contain

any element x satisfying Q(x) = 6, B(x, K) = 0 mod 2, then it follows

from the proof of lemma in 1.3 that x e L(K) and Q(x) = 2 imply x = ±ex

(using the notation there). Hence we have \O(L)\ = 4.

3.2. By definition N is called an ^-lattice if and only if N is an

even binary positive definite quadratic lattice such that the discriminant

d(N) — 3p and the Hasse invariant S2(N) (resp. SP(N)) at the prime 2

(resp. p) is ( — ] ίresp. —(—))• I*1 this case the Hasse invariant S3(2V)

is - y
3.3. LEMMA. Let K be a nice ternary lattice such that Q(K) % 2

and suppose that there is an element x with Q(x) = 6, B(x, K) = 0 mod 2.

Then Z\x\L is an EΊattice with Q(Z[x]1)?>2, 12.
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Proof, Take a basis {x, e3, e4} of K. Then Q(x) = 6, B(x, e3) = £>(#, β4)

= 0 mod 2 follow from our assumption. Without loss of generality we

may- assume B(x, e4) = 0. Since Z\xY = Z[3β3 — (BO, e3)/2)#, e4] and

[ Z : Z[>] J_ Zlx]1] — 3, we get d(Z[x]λ) = 3p, and the simple calculation

of Hasse invariants shows that Z\x\L is an ^-lattice. Q(Z[x\L)%2 is

obvious. Put 2/ = Se3 — (B(x, e3)/2)x then Q(y) = 2?(#, β4) ΞΞ 0 mod 3.

Suppose Q(βy + mβ4) = 12 for some integers ^,m. Since d{Z[x\L) = 3p

implies Q(β4) ^ 0 mod 3, we get m = 0 mod 3 and ^ ^ 0 mod 3. Take an

integer a such that a + £/S = ± £ ; then either αx + /̂3(a? + i/) + (m/3)β4

or αx + ^/3(x — y) — (m/3)β4 is in if and its norm is 2. This is a con-

tradiction.

3.4. LEMMA. Let N be an E-lattice with Q(N) 3 2, 12 and K be a

maximal even ternary lattice containing Z[f2] J_ N, where Q(f2) — 6. Then

K is nice with Q(K) 3 2 and contains an element x satisfying Q(x) — 6,

B{x, Z) = 0 mod 2, which is unique up to ± .

Proof. Let N = (u) J_ (Spu} over Z3, where u is a unit of Z3 then

we have u = pmod3, since S3(N) — —(—) = ""(—)• This implies that

Z3[f2] J_ <βpu> = <6> J_ <3> is not maximal over Z3. Hence Z[/2] J_ N is

not maximal, and therefore [K: Z[/2] _L iV] = 3. This shows that K is

nice. For some basis {/3,/4} of N we have K = Z[/2] J_ iV + Z [ | ( / 2 + / 3)].

The evenness of K implies Q(/3) = 12 mod 18 and J5(/3, /4) = 0 mod 3.

Q(K) 3 2 follows from Q(N) 3 2, 12, and f2 satisfies Q(f2) = 6, B(/2, Z) = 0

mod 2. Conversely, let v = α/2 + 6/3(/2 + /3) + c/4 satisfy Q(v) = 6,

β(v, JK) Ξ 0 mod 2. If 6 = 0 mod 3, then a + bβ = 0 or ± 1 . If α + 6/3

= ± 1 , then v=±U If α + 6/3 = 0, then Q(N) s 6 and SP(N) =

(6,3p)p(6 3p, —l)p — (6,p)p. This is a contradiction. Suppose 6 ̂  0mod3,

then \a + 6/3| = | o r f If |α + 6/3| - } (resp. | ) , then Q(bf3 + 3c/4)

= 48 (resp. 30). From B(v, K) = 0 mod 2 follows B(v,fA) = B(v,i(f2 + /3))

= 0 mod 2, and we get J Ξ C Ξ O mod 2. This is a contradiction.

3.5. LEMMA. Let NUN2 be E-lattices with Q(N€)^29 12, and K19

K2 are corresponding nice ternary lattices constructed in 3.4. Then N19N2

are isometric if and only if L{K^), L(K2) are isometric.

Proof. Suppose that N19 N2 are isometric then we may put N1 =

N2 = N. Let / 2 , / 3 , / 4 be as in the proof of lemma in 3.4. Put Kλ =•
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Z[f2] J_ N + Z[i(/ 2 + /3)], and K2 = Z[f2] J_ N

where <53, £4 = 0 or ± 1 . From the evenness of K2 follow then £4 = 0, d3

= ± 1 . Let σ be an isometry of (Z[/2] J_ N) (x) Q satisfying σ(f2) = /2,

σ\N = £3-id; then ĈECi) = K2. This implies that LfTQ, L(K2) are isometric.

Conversely suppose that L(K^), L(K2) are isometric, then K19 K2 are iso-

metric by virtue of 1.4, and 3.4 implies that NUN2 are isometric.

3.6. LEMMA. Lβ£ K be a nice ternary lattice with Q(K)$2 such

that K contains an element x satisfying Q(x) = 6, B(x, K) = 0 mod 2.

Then \O(L(K))\ = 12.

Proof. Without loss of generality, we may assume that K = Z[/2]

J_ N + Z [|(/2 + /3)], where N - Z[/ 3 , fj is an £7-lattice and Q(N) ?> 2, 12,

Q(/2) = 6, Q(/3) = 12 mod 18 and B(/3,/4) = Omod 3. Then we have

L(Z) = ZleJ ±K + Z\\{eλ + / 2)], where Q{eλ) = 2. Let a? - αex + δ/2

(βi + /2) + c/3(/2 + /3) + d/4 be an element in L(K) with Q(x) = 2; then

2(α + &/2)2 + 6(5/2 + c/S)2 + Q((c/3)/3 + d/4) - 2. If 6 is even, then

a + 6/2 = 0 or ± 1 . In case of a + 6/2 = 0, x is in K. This is a con-

tradiction. In case of a + 6/2 = ± 1 , we have x = ±e 1 # If 6 is odd,

then α + 6/2 = ± J and 36 + 2c = ± 1 or ± 3 . In case of 36 + 2c = ± 1 ,

we have Q(c/3 + 3d/4) = 12. This is a contradiction. In case of 36 +

2c — ± 3 , we have x = ±JOi ± Λ)- Hence we get |O(L)| = 12.

3.7. LEMMA. There is just one E-lattice N with Q(N)B2 if and

only if p = — I m o d 3 .

Proof. Suppose Q(N) 3 2, and take a basis {a?, y] of iV satisfying

Q(x) = 2. Since d(Λ0 = 3p implies B(x, y) = 1 mod 2, we may assume

B(x,y) = 1, so that Q(#) = (3p + l)/2. This implies the uniqueness. On

the other hand the Hasse invariant SZ(N) is (2,3p)3(6p, —1)3 = 1 = — ( — ) .

Hence p = — I m o d 3 . Conversely assume p = — I m o d 3 , and put N =

Z[x,y], where Q(a ) = 2, J3(B,2/) = 1, Q(i/) = (3p + l)/2; then iSΓ is an

i7-lattice.

3.8. LEMMA. There is just one E-lattice N with Q(N) 9 12 if and

only if p = 5 mod 8, and in this case Q(N) $ 2 if p = —1 mod 3.

Proof. Suppose Q(N)s 12; then S2(N) = - 1 . This implies p = 5

(12 S \

o / , SV4/ ^S a n ^ "
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lattice and Q(N) 3 2 if p = — Imod3. (In this section, p > 5 is assumed).

The uniqueness is easy to prove.

3.9. LEMMA. The number (up to ίsometry) of E-lattίces with Q(N)

3 2, 12 is h(V — 3p)/4 + α'/2 — d, where hW — 3p) is the ideal class number

, f 1 or 2 ΐ/ p = — 1 mod 3 ,
~~ lO or 1 if p = 1 mod 3

of Q(v/:=:3p), and

so that h(V—Sp)/4t + α'/2 is an integer, and

(0 if p ΞΞ 1 . mod 24 ,

δ == | l if 2) = 13 or 1 7 m o d 2 4 ,

[2 if p = 5 mod 24 .

Proof. An ^/-lattice N is in the principal genus if and only if p =

— I m o d 3 , then α' = 1 or 2 (α' is the number of ambigous classes in the

genus of N).

3.10. Let M be a nice binary lattice, take a basis {β3, β4} of M

satisfying Q(e3) = Q(e4) = 6 mod 8 and β(β3, e4) = 0 mod 4 as in the proof

of 1.6, and put K = Z[β2] J_ M + Z\\{et + e3)], where Q(β2) = 2; then

L = L(K) = Z[eJ _L if + Ztifci + β4)], where Q(eλ) = 2. If Q(M) 0 4, 6,

then it is easy to see that x = ±eλ or ±e2 if x e L and Q(x) = 2, and

we get |O(L)| = 8.

If Q(M)a4, then M^(t ^ Λ and a simple calculation of S2(M)

shows p = 5 mod 8. Conversely if p = 5 mod 8, then M = Z[x, y], where

Q(x) = 4, β(aj, y) = 2 and Q(i/) — p + 1, is a nice binary lattice with

Q(M) 3 6. Put e3 = x + y, β4 = y; then M = Z[e3, ej, and Q(β3) = Q(e4) =

6 mod 8 and 2?(β3, β4) = 0 mod 4 are satisfied. If, then, x is an element of

L with Q(cc) = 2, then we have # = ±e19 ±e2 or ±{αβx + be2 — ^(βx + β4)

+ i(e2 + e3)}, where \a - J | = | , |6 + i | = J. Hence |O(L)| = 48.

If Q(M) 9 6, and if {x, y] is a basis of M with Qix) = 6, then we

get p = — I m o d 3 since 4p = 6Q(i/) — B(x,y)2. Conversely if p = — 1

mod 3, then, putting we have Q(β3) = 6, Q(e4) = (2p + 8)/3, β(e3, β4) = 4,

and M = Z[ezyeJ. Clearly this M is nice. Therefore x— ±elf ±e2 or

± i θ 2 ± β3) if ^ G L and Q(x) = 2. Thus, we get |O(L)| = 24.

3.11. Nice quaternary lattices are in the same genus, and its mass
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is 2] 1/|O(L)| = Z?2,χ/3 26, (L; nice quaternary), where B2>χ is a generalized

Bernoulli number equal to p Σa=i χ(α)£2(α - pfp) = 4/(7 + 2χ(2)) Σ f c 1 " 4

χ(a)(p - 4α) with χθι) = (—).
\p Ip

3.12. Summing up the above results, we obtain

=it-

f

where

__ ΓO if p ΞΞ 1 mod 8 , ΓO if p ΞΞ 1 mod 3 ,
1 - l l if p ΞΞ 5 mod 8 , 2 " l l if p ΞΞ - 1 mod 3 ,

, _ ίO or 1 if p ΞΞ 1 mod 3
a ~ l l or 2 if p ΞΞ - I m o d 3

in order that \h(\l—3p) + α'/2 be an integer,

jΌ if p ΞΞ 1 mod 24 ,
δ = j l if p ΞΞ 13 or 17 mod24 ,

[2 if p ΞΞ 5 mod 24 ,

a — 0 or 1, in order that ^h(V^p) + α/2 be an integer, and h(V—p)

(resp. h(V—3p)) is the class number of Q(V^p)(resp. Q(V—3p)). In

other words, we have

THEOREM. The class number h(p) of even quaternary positive definite

quadratic lattices of prime discriminant p (ΞΞlmod4) > 5 is

25 3 16 12 48 \ V 3 /
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The proper class number h+(p) in 1.12 is explicitely given by this
theorem and the theorem in 1.12, and it was given in [7].
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