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QUATERNARY EVEN POSITIVE DEFINITE QUADRATIC
FORMS OF PRIME DISCRIMINANT

YOSHIYUKI KITAOKA

In this note we study quaternary even positive definite quadratic
forms of prime discriminant. In §1 we classify quaternary even posi-
tive definite quadratic forms of prime discriminant »p = 1 mod 4 (called
simply nice quaternary lattices in this note) which represent two. We
note that the class number of such forms is closely related to the dimen-
sion of the space of certain automorphic forms. (Remark 4 in the
text). By using the classification in §1 and the theory of integral
representations of cyclic groups we show that the orthogonal group of
a nice quaternary lattice is generated by +1 and symmetries (of the
lattice). In §3, we calculate the class number of nice quaternary lattices.
Notations and terminologies will generally be those of O’Meara [5]. Any
exceptions to this convention will be stated explicitly. Through this
note Q(x) and B(x,y) denote quadratic forms and corresponding bilinear
forms (i.e., 2B(z,¥) = Q(x + ¥) — Q(x) — Q(y)), and p denotes a fixed
prime number =1 mod 4.

§1. We say that a quadratic lattice N over the ring of rational
integers Z is even if and only if Q(x) = 0 mod 2 for any element in N.
For brevity, a quadratic lattice N is called nice in this note if and only
if N is an even positive definite quadratic lattice over Z, its discriminant
d(N) is p, 2p or 4p according as N is quarternary, ternary or binary
respectively, and moreover the Hasse invariant S,(N) at the prime two

of N is ——<§> when N is binary.
p

1.1. Let L be a nice quaternary lattice and have an element ¢, with
Q(e) = 2. Then we can take a basis {e, ¢, e, e,} of L satisfying B(e,, e,)
=1 and B(e,e;) = B(e,e) =0 so that Z[elt = Z[e, — 2¢,,¢,,¢,] and
[L; Zle] | Zle]*] = 2. This implies that Z[e,]* is a nice ternary lattice.
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1.2. LEMMA. Let K be a nice ternary lattice. Then a maximal
even quadratic lattice L containing Zle] | K, (Q(e) = 2), s uniquely
determined and nice, and Zle ]t in L is equal to K.

Proof. Since K = {A(2a,2a)> | {2up> over Z,, where ¢ =0 or 1,
and u = —1 or 3 respectively, we have Z[e] | K =<2 | Cup> |
{A2a,2a)) over Z,, On the other hand <2> | (2up> has norm 2, but
it is not maximal over Z,. This means that Z[e] | K is not maximal
and [L; Z[e] | K] =2, and L is nice. Put L = Z[e,] | K + Z[u], where
u=130i.d:e) and 6, =0 or 1 and K = Z[e,, e;,¢,]. Then, since Zle,]
and K are maximal, §, = 1 holds and §, = §; = d, = 0 does not hold. By
changing the basis of K, we may assume u = (e, + e,). From the
evenness of L follow Q(u) = O0mod2 and B(u,e;) = B(u,e,) = 0mod 1.
Hence we have Q(e;) = 6 mod 8, B(e,, ¢;) = B(e,, e,) = 0mod 2., Let L’ be
any maximal even quadratic lattice containing Zl[e,] | K; then as above
we have L' = Z[e,] | K + Z[v], where v = }(e, + > i ,d:e) and 6, =0
or 1. From the evenness of L’ follows 0,B(e;, e,) = d,B(e;, ) = 0 mod 2.
Since B(e,, e,) is odd, §, = 6, = 0. This implies L = L’. Z[e,]* is obviously
K.

In the following, I(K) denotes a nice quaternary lattice constructed
as above.

1.3. LEMMA. Let K be a nice ternary lattice. Then any element
z in LK) with Q(x) = 2 is mapped on +e, by some symmetry of L(K),
or x is already in K.

Proof. Using notation in 1.2, put = = ae, + b/2(e, + e, + ce; +
de,e L(K). Then we have

Q@) = Z(a ¥ %)2 + Q(%ez + ce, + de4) —~2.

If b is odd, then ¢ + b/2 = +4. Take § = 1 satisfying § — (a + b/2)
= +3. Then de, — 2 is in L(K), Q(e, — x) = 2 and tz,,_,(®) = de;. If
b is even, then ¢ + /2 =0 or +1. Hence z is in K or # = e,

1.4. LEMMA. Let K,,K, be nice ternary lattices and suppose QK
2 2. If, then, L(K,) s isometric to L(K,), then K, is isometric to K,.

Proof. Let ¢ be an isometry from L(K, to L(K,). From our as-
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sumption and 1.3 we may assume o(¢,) = e¢,. On the other hand, Z[e]*
in L(K,) is K, and Z[e]* in I(K,) is K,. This implies ¢(K) = K,.

1.5. LEMMA. Let K be a nice ternary lattice and let K contain an
element e, with Q(e,) = 2. Then Zle,]* is a nice binary lattice.

Proof. Since K is indecomposable, B(e,, K) i 0mod2. We take a
basis {e, e;, ¢} of K satisfying B(e, e) =1, B(e,e) = 0; then Zle]+ =
Zle, — 2e,,¢,] and [K: Zl[e,] | Zle,]*] = 2. This implies d(Z[e,]*) = 4p.

It is easy to see that the Hasse invariant S,(Z[e,]}) = ——<—2—) Hence
D
Z[e,]+ is nice.

1.6. LEMMA. Let M be a nice binary lattice. Then there are only
two different even maximal ternary quadratic lattices containing Zle,] | M,
(Qey) = 2), and they are both mnice.

Proof. From our assumption on M follows M = <2u)y | <{2u~'p) over
Z,, where % is a unit = 3mod4 of Z,. Since (2> | <(2up) is not maximal
over Z,, Z[e,] | M is not maximal. Let K be any even maximal lattice
containing Z[e,] | M. Then we get [K; Zle,] | M] =2 and d(K) = 2p.
This means that K is nice. Taking some basis {e; e} of M, we may
put K = Zle,] | M + Z[v], where v = (e, + ¢;). The evenness of K
implies Q(e,) = 6 mod 8, B(e,e) =0mod2. Since 4p = Q(e)Q(e) —
B(e,, e,)?, we have Q(e) =4 or 6mod8. If Q(e,) =4 mod8, then Qle, + ¢,)
=6mod8 and M = Zle,, ¢, + ¢,]. Without loss of generality we may
assume Q(e,) = Q(¢,) = 6 mod 8 and B(e,, ¢,) = 0mod 4. Let K’ be any even
maximal quadratic lattice containing Z[e,] | M and put K’ = Z[e,] | M
+ Z[v], where v = (e, + 5,6, + d,e)) (5; =0 or 1). Then the evenness
of K’ implies either §, =1,9,=0o0rd, =0, 6, = 1. Conversely Zle,] | M
+ Z[1(e, + e)] is even and it is not equal to Z[e,] | M + Z[i(e, + e)].

1.7. LEMMA. Let M be a nice binary lattice, and K be an even
mazximal lattice containing Zle,] | M, (Q(e,) = 2). Then any element x
n K with Q) = 2 is mapped on e, by some symmetry of K.

Proof. If Q(M)>2, then the Hasse invariant S,(M) of M is (_2_)
»

Hence QM) 2. A quite similar method to the proof of lemma in 1.3
implies our statement.
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1.8. LEMMA. Let M,,M, be nice binary lattices and K,, K, be cor-
responding nice ternary lattices constructed im 1.6. If, then, K, K, are
isometric, then M,, M, are isometric.

The proof is the same as 1.4.

1.9. LEMMA. Let M be a nice binary lattice and K,, K, be different
nice ternary lattices comstructed from M in 1.6. Then K,, K, are iso-
metric if and only if M has a non-trivial isometry.

Proof. Let M = Zle, el and K, = Zle,] | M + Z[i(e, + e)], K, =
Zle,] | M + Z[i(e, + ¢,)] as in 1.6. Suppose that ¢ is an isometry from
K, to K,. Then without loss of generality we may assume o¢(e,) = e,.
Since M = Z[e,]* in K,(t = 1,2), ¢ induces an isometry of M. Hence
we get o(3(e, + ¢;) = 3(e, + e) mod Zle,] | M, and so o(e;) = e, mod 2M.
This shows that ¢ is not +1 on M. Conversely suppose that M has a
non-trivial isometry o, then there exists a basis {z,y} of M satisfying
cr=1Y, o0y =2 If K=2Zle,] | M+ Z[i(e, + d,& + &,¥)], (6; = 0 or 1), is
nice, then none of §, =9, =0 and §, = 4, = 1 can hold. Hence without
loss of generality we may put K, = Zle,] | M + Zl[i(e, + v)], K, = Zle,]
LM+ Z[i(e, + ¥)]. o satisfying a(e,) = ¢,, ¢ = ¢ on M gives an isometry
from K, to K,.

1.10. LEMMA. Let M, be a nice binary lattice and K, be a nice
ternary lattice constructed from M,; in 1.6. If L(K,) and L(K,) are iso-
metric, then M, and M, are isometric.

Proof. Let ¢ be an isometry from L(K,) to L(K,. Using notation
in 1.2, we may, by virtue of 1.8, assume o(e,) = ¢, or a(e) ¢ K,. If a(e)
= ¢, then ¢(K,) = K,, and 1.8 implies that M,,M, are isometric. If
o(e) e K,, then M = Z[o(e)]+ in K, is isometric to M, by virtue of 1.5
and 1.8. On the other hand, K, = Z[¢,]* in L(K,) is isometric to K’ =
Zlo(e)]+ in L(K,), and K’ is nice and contains Z[e,] | M. Hence from
1.8 it follows that M, and M are isometric, and so M, and M, are
isometriec.

1.11. LEMMA. Let M be a nice binary lattice, and K,, K, be dif-
ferent mice ternary lattices constructed from M in 1.6. Then L(Kl)_ and
L(K,) are different but isometric.

Proof. As in 1.6 we take a basis {e;, e} of M such that Q(e;) =
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Q(e) = 6 mod 8 and B(e;, e,) = 0mod 4, and put K, = Zle,] | M + Z [i(e,
+e)l, K,y =Zle)] | M + Z[%(ez + e)], where Q(e,) = 2. If L(K) = L(K)),
then Z[e]t in L(K)) and Z[e]+ in L(K,) are equal and so K, = K,. This
is a contradiction. Therefore we have L(K,) = L(K,). We define an
isometry ¢ of L(K) ®;Q(= L(K,) R, Q) by ale,) = e, ale) = e, a(e;) = e,
a(e,) = e,. Firstly o(IL(K))) contains Zle,e,] | M. Denote i(e, + e) by
v. Then Zle] | K, + Z[v] is even since Q) = 0mod2 and B(v,e,) =
B(v,e,) = B(v,e) = B(v, 3(e, + ¢;)) = 0mod 1. Hence 1.2 implies v € L(K,),
and we have o(I(K))20(v) = (e, + e). Since o(L(K)) is a nice
quaternary lattice containing Z[e,] | K,, the uniqueness of L(K, implies
o(L(K)) = L(K)).

1.12. Denote by h(p) the class number of nice quaternary lattices
and by 2*(p) the class number with respect to rotations (i.e., Ot over Q)
of nice quaternary lattices. Let L be a nice quaternary lattice. If,
then, any lattice which is isometric to L is isometric to L with respect
to rotations, then L has a refrexion ¢ (i.e., an isometry with det ¢ =
—1). By virtue of ¢ % +1, it follows from 2.5 in the next section that
Q(L)52. Hence it follows from the above that

2h(p) — h*(p)
= the class number of nice quaternary lattices which represent 2

My —p)/2—a

= the class number of nice ternary lattices — 3

b

where h(v—p) is the class number of Q(+—p) and a stands for the
number of ambigous classes contained in non-principal genus of Q(v/—p),
(hence necessarily a = 0 or 1). On the other hand, the class number of

nice ternary lattices is 1(hyv —p) + ﬁ(p +3— 4(%)) due to Eisenstein
and Mordell [2], [4].

Thus, we obtain

THEOREM. We have 2h(p) — h*(p) = 2—{;(10 +3— 4(%)) +a/2, where

(=) stands for the quadratic residue symbol and o is either 0 or 1 in
order that the right hand be an integer, and p is o prime = 1 mod 4.

COROLLARY. A*(p) is asymptotically equal to 2h(p).
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Proof. From the simple calculation of the mass, it is easy to see
h(p) > cp*?, where ¢ is a positive constant independent of p.

Remark 1. 'T. Tamagawa showed in the Summer Institute at Tokyo
from June 29 to July 8, 1970, that h*(p) is the type number of some
quaternion algebra over Qv —p).

Remark 2. It is easy to generalize the above corollary to even
positive definite lattices of an even dimension by the similar way to [3].

Remark 3. The number o in the above theorem is zero if and only
if »p = 1 mod 8.

Remark 4. The class number 2i(p) — h*(p) of nice quaternary
lattices which represent two is a half of the dimension of the space

EIR(—Z, I'y(p), (—*—>> of automorphic forms of dimension —2 and character
D

(—*-) with respect to /y(p). It is natural to ask whether 9 (z, 4) and

Y4

Iz, pA™Y) form a basis of E).R(—Z,]’o(p), (i», where A runs over repre-
D

sentatives of classes of nice quaternary lattices which represent two.

In case of p < 109, it is true.

§2. Let N be a quadratic lattice over Z. Let O(N) denote the
orthogonal group of N, and let S(IN) denote the subgroup of O&)
generated by symmetries of N and +1. In general S(N) is not equal
to O(V).

Our aim in this section is to prove

THEOREM. Let L be a nice quaternary lattice. Then O(L) = S(L).

2.1. Let L be a nice quaternary lattice and O(L) contain an element
o of order 5. Then by virtue of Th. 74.3 in [1] there exists a basis
{e,, e, €5, ¢,} of L such that

0 0 0 —1
g = (1) (1) g _i and (B(e;,e;)
0 0 1 —1
20 + )  —b —¢ .
_ 2(b + o) —-b —c
- * 2(b + ¢) —b

2(b + ¢)
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Hence we have p = det (B(e;, e;)) = 5(b* + 3bc + ¢®)* and so p=5. In
this case L represents 2.

-2.2. Let L be a nice quaternary lattice and let O(L) contain an
element ¢ of order 3. Then one of the following cases holds.

0 —1 20 —a d —c—d
. 1 -1 20 ¢ d
) o= o 1| and Blesep) = o b |’
1 -1 2b
0 —1 . 0 0
.. 1 -1 0 0
i) ¢= 1o and (B(e;e) = 0 0 ,
0 1 o0
0 —1 1 0 20 —a —a O
1 -1 0 0 2¢ 0 O
iii) o= 0 0 1 0 and (B(e;e)) = . b d
0 0 0 1 c

In case of i) det (B(e;,ey) = (& + ¢ + cd — 3ab)* = p. This is a contra-
diction. The case ii) contradicts det(B(e;, e;)) = p, too. In case of
iii) we want to show ¢ = 1. det (B(e;, €,) = p implies @ = 1 or p. Sup-
pose @ = p. Then Z[e]+ = Zle, + 2¢,,¢, — e;,¢,] and [L: Zle] | Zle]t]
= 2. This implies that Z[e]+ is an even ternary positive definite lattice
of d(Z[e, ) = 2. But such a lattice does not exist. Hence L represents 2.

2.3. Let L be a nice quaternary and O(L) contain a non-trivial
element ¢ of order 2. Then one of the following cases holds.

-1 1 20 —a 0 O
. 0 1 —a
l) g = 1 0 and (B(ei’ ej)) - 0 " )
0 1 0
1 0 0
1 o0 o0
i) o= 1 and (B(e;,e)) = 0 0 )
-1 o0 *
-1 * 0 0 0
1 0
iii) o= 1 and (B(e;,e)) = 0o ,
1 0
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0 1 a b e f
) 1 0 _|b o S e
iv) o= 0 1 and (B(e,ey) = e f ¢ d|’

1 0 f e d c

01 a b e f

! b a e —f
V) 0= 1 and (B(ei, ej)) =le e ¢ 0
—1 f —f5 0 d

The cases ii), iii) contradict det(B(e;,e;)) =p. In case of v),
det (B(es, €)) = 0mod 2. This is also a contradiction. Incase ofi),a=1
is proved by the same way as the proof of the case iii) in 2.2. In case of iv)
p = det (Ble,, ¢)) ={(a = 0)(c —d) — (e — H@ + b)(c+ ) — (e + )}
Put N, = Zle, + e,,¢;, + ¢,], N_ = Z[e, — ¢,,¢; — ¢,], then

dN,) = 4{(a + d)c + d) — (e + )},
dN) = 4{(a — b)c — d) — (e — )} .

Hence N, or N_ is an even binary lattice of discriminant 4, and it
represents 2.

2.4. Let L be a nice quaternary lattice and O(L) % {+1}. Suppose
that O(L) does not contain isometries of order 3 or 5, nor non-trivial
isometries of order 2. Then O(L) contains an element ¢ of order 4 and
¢ = —1. Zlo] is isomorphic to Z[+/ —1] and Z[s] operates torsion-freely
on L. Hence we may assume

0 -1 a 0 ¢ d

1 0 0 a —d ¢

o= 0 —1 and (B(e;,ey) = c —d b 0
1 0 d ¢ 0 b

This is a contradiction, because p = det (B(e;, ¢;) = (ab — ¢ — d»%

2.5. Summing up: let L be a nice quaternary lattice. If O(L) = {=x1},
then QL) > 2.

2.6. LEMMA. Let K be a nice ternary lattice. If OK) = {=1}, then
QK) s 2.

Proof. As above we may assume that O(K) contains an isometry ¢
which is one of the following form for some basis {v,, v,,v;} of K:
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0 -1 0 -1 1
i) (1 -1 ) , ii) (1 -1 ()) )
1 0o 0 1
-1 1 1
iii) ( 0 1 ) , iv) ( 1 ) .
1 -1

In case of i), iv), K is decomposable. This is a contradiction. In

case of ii) we have
20 —a —o
Bw,v)=|—a 2¢ 0 |.

—a 0 b

Since d(K) = det (B(v;,v;)) = 2p, we have a =1.
In case of iii), we have

20 —a O
(B(vi,v,-))=(—a b e),

0 e c

and det (B(v;,v;) = 2p implies ¢ =1 or p. If ¢ =1, then QK)>2. If
a = p, then d(Z[v, + 2v,,v;,])) = 4. From this follows Q(K) s 2.

2.7. By virtue of 2.5 we may, to prove our theorem, assume that
a nice quaternary lattice L is either L(K), where K is a nice ternary
lattice and Q(K) 22, or a nice quaternary lattice constructed from a nice
binary lattice M as in 1.11.

Firstly suppose that L = L(K) and Q(K) 2. Take any ¢ in O(L).
From Q(K) 22 and 1.3 (the meaning of ¢, remains same) follows a(e,) =
z(e;) for some r in S(L), and t~'¢(e,) = e,. Since Z[e ]+ is equal to K, z7%
induces an isometry of K, and 2.6 implies that z7'%¢ = +1 on K. Hence
we get r7l¢ =1 or —z,,. This shows ¢e S(L).

1

2.8. Suppose that L is a lattice constructed as 1.11. Without loss
of generality, we may assume L = L(K)) in 1.11. Using symbols in 1.11,
we show ae S(L) for any « in O(L). If ale) 2 K,, then we may assume
ale;) = e, by virtue of 1.8. This implies «(K,) = K,. From 1.7 follows
that there exists some 7z ¢ S(K,) such that 7e, = ae,. Since a nice quaternary
lattice containing Z[e,] | K, is unique, ¢ satisfying ¢|z, = 7 and z(e) = ¢,
is in S(L). Hence z~'o satisfies z7'ale) = e, 7'ale,) = ¢,. Since M =
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Zle, e+, we get r7'%a(M) = M. The relations r7'a(K,) = K, and z~'a(M)
= M imply t 'a(3(e, + e,)) = 3(e, + e;) mod Zle,] | M and so r7'ale;) = e,
mod 2M. This means that 7'« induces a trivial isometry +1 on M.
For, otherwise, as in the proof of lemma in 1.9 we may assume z 'a(e,)
= ¢,. Hence we have 7'« = id. or —r,1,, € S(L).

Suppose ale,) e K,. By virtue of 1.7 we assume a(e,) = ¢, Since
a(K)) = Zle,)*(in L), B(e,,e,) = B(e,, ale,)) = 0, we may assume moreover
ale,) = e,, applying 1.7 to «(K,). Then we have «a(M) = M again, and
1B(ey, ale;)) = 0mod 1, because B(i(e, + ey), a(i(e, + e))) is an integer.
This shows that « is not =1 on M, since Q(e;) = 6 mod 8. Without
loss of generality we may take a basis {e;, e} of M satisfying a(e;,) =
e, ale) =e; as in the proof of lemma in 1.9, and M = (B(e;,e;)
_ (p +1 p—1
-1 p+1
Zled | K+ Z[x] is even. Q(x —e) =2 and Qx + ¢) = 2 imply 7, ,,
Tore, €S(L) and S0 —t,,. T4 ea(e) = €, From the results in the first
half of this section follows —z,,.7s e, € S(L). This completes the proof
of our theorem.

). Put = {(—e, + e, + e; — ¢,); then x is in L, since

§3. In this section we calculate explicitely the class number Ai(p)
in 1.12 by method due to Eisenstein and Mordell [2], [4] assuming p > 5
(h(5) = 1 is known).

38.1. If K is a nice ternary lattice, Q(K) 2 2, and K does not contain
any element x satisfying Q(x) = 6, B(x,K) = 0mod 2, then it follows
from the proof of lemma in 1.3 that x ¢ L(K) and Q(z) = 2 imply = +e¢
(using the notation there). Hence we have |O(L)| = 4.

3.2. By definition N is called an E-lattice if and only if N is an
even binary positive definite quadratic lattice such that the diseriminant
d(N) = 3p and the Hasse invariant S,(N) (resp. S,(N)) at the prime 2

(resp. p) is (%) (resp. ——(ﬁ» In this case the Hasse invariant S,(N)
D

()
Yy
3.3. LEMMA. Let K be a nice ternary lattice such that Q(K)22
and suppose that there is an element x with Q(x) = 6, B(x, K) = 0 mod 2.
Then Z[zxlt is an E-lattice with Q(Z[x]1) 22, 12.
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Proof. Take a basis {z,e,, ¢} of K. Then Q(z) = 6, B(z, ¢;) = B(z, ¢,)
= 0O mod 2 follow from our assumption. Without loss of generality we
may- assume B(z,e) = 0. Since Z[z]t = Z[3e, — (B(x,e;)/2)x,e,] and
[K: Z[x] | Z[x]*] = 3, we get d(Z[z]*) = 3p, and the simple calculation
of Hasse invariants shows that Z[z]l is an FE-lattice. Q(Z[z]1Y) 22 is
obvious. Put ¥y = 3e; — (B(x,e;)/2)x; then Q(y) = B(y,e,) = 0 mod 3.
Suppose QLY + me,) = 12 for some integers ¢,m. Since d(Z[z]}) = 3p
implies Q(e,) = 0mod 3, we get m = O0mod 3 and ¢ = Omod3. Take an
integer o such that a + £/3 = +%; then either ax + £/3(x + ) + (m/3)e,
or ax + £/3(x — y) — (m/3)e, is in K and its norm is 2. This is a con-
tradiction.

3.4. LEMMA. Let N be an E-lattice with QN) 22, 12 and K be a
mazximal even ternary lattice containing Z[ f,] | N, where Q(f) = 6. Then
K is nice with Q(K) 22 and contains an element x satisfying Q(x) = 6,
B(x, K) = 0 mod 2, which is unique up to =+.

Proof. Let N = <{u) | <{3pw)y over Z, where u is a unit of Z,; then
we have % = p mod 3, since S,(N) = ~(-g> = —(%) This implies that
Z 1] 1 Bpuy =<6> ] (3> is not maximal over Z,, Hence Z[f,] | N is
not maximal, and therefore [K: Z[f,] | N] =3. This shows that K is
nice. For some basis {f;, fi} of N we have K = Z[f,] | N + Z[X(f, + f)]-
The evenness of K implies Q(f) = 12mod 18 and B(f,, f,) = 0 mod 3.
Q(K) 22 follows from Q(N) z2, 12, and f, satisfies Q(f,) = 6, B(f,, K) =0
mod 2. Conversely, let v =af, + b/3(f, + f») + ¢f, satisfy Q) =6,
B(w,K) =0mod2. If b =0mod3, thena 4+ b/3=00r +1. If a + b/3
= x1, then v==*f,. If a+0/3=0, then QWN)26 and S,(N) =
(6, 3p),(6-3p, —1), = (6,p),. This is a contradiction. Suppose b = 0 mod 3,
then (@ + b/3| =4 or 4. If |a + b/3| =% (resp. %), then QO f; + 3cf)
= 48 (resp. 30). From B(v, K) = 0 mod 2 follows B(v, f) = B, 3(f, + 1)
= 0mod 2, and we get b = ¢ = O0mod2. This is a contradiction.

38.5. LEMMA. Let N,,N, be E-lattices with Q(N;) 22, 12, and K,
K, are corresponding nice ternary lattices constructed in 3.4. Then N, N,
are isometric if and only if L(K), L(K,) are isometric.

Proof. Suppose that N,, N, are isometric; then we may put N, =
N,=N. Let f,, f:», /. be as in the proof of lemma in 3.4. Put K, =
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ZIfl LN+ ZIE(fo + D), and K, = ZI[f] | N + Z[3(f, + 815 + 3, /D],
where §,,6, =0 or +1. From the evenness of K, follow then 6, = 0, 4,
= +1. Let ¢ be an isometry of (Z[f,] | N)® Q satisfying o(f,) = f,,
oly = 06,-id; then ¢(K) = K,. This implies that L(K,), L(K,) are isometric.
Conversely suppose that L(K)), L(K,) are isometric, then K,, K, are iso-
metric by virtue of 1.4, and 3.4 implies that N,, N, are isometric.

3.6. LEMMA. Let K be a nice ternary lattice with Q(K) 22 such
that K contains an element x satisfying Q(x) = 6, B(x, K) = 0 mod 2.
Then |O(I(K))| = 12.

Proof. Without loss of generality, we may assume that K = Z[f,]
1 N+ ZI3(f, + f»l, where N = Z[f, f,] is an E-lattice and Q(N) 2 2, 12,
Q(fY) =6, Q(fY) =12mod18 and B(f,,f) =0mod3. Then we have
LK) = Zle] | K + ZI[}(e, + f)], where Q(e) =2. Let z=ae + b/2
(e, + f) + ¢/3(f, + f») + df, be an element in L(K) with Q(z) = 2; then
2(a 4+ b/2)" + 6(D/2 + ¢/3)* + QUe/d) f; + df) =2. If b is even, then
¢+ b/2=0o0r +1. In case of ¢ + /2= 0, z is in K. This is a con-
tradiction. In case of ¢ + b/2 = +1, we have v = +e¢,. If b is odd,
then @ + b/2 = +4% and 3b + 2¢ = +1 or +3. In case of 36 + 2¢ = 1,
we have Q(cf, + 3df,) = 12. This is a contradiction. In case of 3b +
2¢ = +3, we have * = +4(e, = f,). Hence we get |O(L)| = 12.

3.7. LEMMA. There is just one E-lattice N with QN)>2 if and
only if p = —1 mod 3.

Proof. Suppose Q(N)>2, and take a basis {z,y} of N satisfying
Q) = 2. Since d(N) = 3p implies B(z,y¥) = 1 mod2, we may assume
B(z,y) = 1, so that Q(y) = (3p + 1)/2. This implies the uniqueness. On
the other hand the Hasse invariant S,(V) is (2, 3p),(6p, —1), =1 = ——(%)
Hence p = —1mod3. Conversely assume p = —1mod3, and put N =
Z[z,y], where Q) =2, B(x,y) =1, Q) = Bp + 1)/2; then N is an
E-lattice.

3.8. LEMMA. There is just one E-lattice N with Q(N)>12 if and
only if p = 5mod&, and in this case Q(N) 22 if p = —1 mod 3.

Proof. Suppose Q(N)>12; then S,(N) = —1. This implies p =5

. - — (12 3 . 3
mod 8. Conversely if p = 5mod 8, then N = (3 o + 3)/4) is an E
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lattice and Q(N) 22 if p = —1mod3. (In this section, p > 5 is assumed).
The uniqueness is easy to prove.

3.9. LEMMA. The number (up to isometry) of E-lattices with Q(N)
22,12 is My —3p)/4 + o’ |2 — 5, where W(v/ —3p) is the ideal class number
of QW —3p), and

o — {1 or 2 ¢ p=—1mod3,
T Worliyf p=1mod3

so that (v —3p)/4 + a’/2 is an integer, and

0if p=1 . mod 24,
d=1+{14f p=13 or 17Tmod 24,
29 p=5 mod 24 .

Proof. An E-lattice N is in the principal genus if and only if p =
—1mod 3, then o/ = 1 or 2 (¢/ is the number of ambigous classes in the
genus of N).

3.10. Let M be a nice binary lattice, take a basis {e;, e} of M
satisfying Q(e;) = Q(e) = 6 mod 8 and B(e;, e,) = 0 mod 4 as in the proof
of 1.6, and put K = Zle,] | M + Z[i(e, + e))], where Q(e,) = 2; then
L =LK) = Zlel | K+ ZI[j(e; + e)], where Qe) =2. If QM) 24,6,
then it is easy to see that x = +e, or +e¢, if e L and Q) =2, and
we get |O(L)| = 8.

If QUM) 54, then Mg<4 2

2 p+1
shows p = 5mod 8. Conversely if p = 5mod 8, then M = Z[x, y], where
Q) =4, B(xz,y) =2 and Q) =p + 1, is a nice binary lattice with
QM) 26. Put e;=24 vy, e, = y; then M = Zle, ¢,], and Q(e,) = Q(e,) =
6 mod 8 and B(e;, ¢,) = 0mod 4 are satisfied. If, then, x is an element of
L with Q(x) = 2, then we have x = +e¢, +e¢, or +{ae, + be, — 3(e; + ¢,)
+ %(e;, + e))}, where |a — 1| =1, |b + 3| = 1. Hence |O(L)| = 48.

If QM) >6, and if {x,y} is a basis of M with Q(x) = 6, then we
get p = —1mod3 sgince 4p = 6Q(y) — B(x,y):. Conversely if p = —1
mod 3, then, putting we have Q(e;) = 6, Qe,) = 2p + 8)/3, B(e,,e,) = 4,
and M = Z[e,e,]. Clearly this M is nice. Therefore x = +e,, +e¢, or
+i(e, = e) if xeL and Q(x) = 2. Thus, we get |O(L)| = 24.

), and a simple calculation of S,(M)

3.11. Nice quaternary lattices are in the same genus, and its mass
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is 3. 1/|O(L)| = B,,,/3-2% (L; nice quaternary), where B, , is a generalized
~1)/4

Bernoulli number equal to p > 2 x(@)Ba — p/p) = 4/(T + 2x(2)) 2 &7
2(@)(p — 4a) with y(n) = (ﬁ)
D

3.12. Summing up the above results, we obtain

%h(p) = ?Ij zé’ﬁ
F D s i) -
~(anrs e § )
+(1- L) =5p + £~ o)
(s - DG+ -0 -a)
e (- i
where

5_{Oifp51mod8, 5_{0ifp§1mod3,
' 1 if p=5mod8, T 1lif p=—1mod3,

a,_{O or 1 if p=1mod3
T Wlor2if p=—1mod3

in order that 1i(v'—3p) + a’/2 be an integer,

Qifp=1 mod 24 ,
0 =1411if p =13 or 17T mod 24,
2if p=5 mod 24 ,

=0 or 1, in order that 1(v—=p) + /2 be an integer, and A(v'—p)
(resp. h(v'—3p)) is the class number of Q(v—p)(resp. Q(v—3p)). In
other words, we have

THEOREM. The class number h(p) of even quaternary positive definite
quadratic lattices of prime discriminant p (=1mod4) > 5 is

zoy H IO MO e o a(f) - ()
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The proper class number i*(p) in 1.12 is explicitely given by this

theorem and the theorem in 1.12, and it was given in [7].
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