HIRONAKA'S ADDITIVE GROUP SCHEMES

HIROYUKI MIZUTANI

In [1] and [2], Hironaka referred to the importance of an additive group scheme $B_{p_{n}, \mathfrak{w}}$, which is associated with a point \mathfrak{p} in \boldsymbol{P}_{n}, in connection with the resolution of singularities in characteristic $p>0$. Also he showed that if the dimension of $B_{p_{n}, p}$ is not greater than p, then it is a vector group.

By Oda [3], these schemes can be characterized in terms of vector spaces and differential operators of the coefficient field, as we recall in section 1. Moreover Oda classified these schemes in dimension $\leqq 5$ completely and conjectured that;
(1) If $\operatorname{dim} B_{p_{n}, p}<2 p-1$, then it is a vector group,
(2) If $\operatorname{dim} B_{p_{n}, \mathrm{p}}=2 p-1$ and $B_{p_{n}, \downarrow}$ is not a vector group, then its type is unique.

In this paper we see that this conjecture is true, using some tools in Oda [3].

The author wishes to thank Professor T. Oda who taught this concept to him and gave him many suggestions.

Section 1.

Let $S=k\left[X_{0}, \cdots, X_{n}\right]=\sum_{m \geqq 0} S_{m}, \boldsymbol{P}_{n}=\operatorname{Proj}(S)$, and $\mathfrak{p} \in \boldsymbol{P}_{n} . \quad$ A graded subalgebra $U(\mathfrak{p})=\sum_{m \geqq 0} U_{m}(\mathfrak{p})$ of S is defined as follows:

$$
U_{m}(\mathfrak{p})=\left\{f \mid f \in S_{m}, \operatorname{mult}_{\mathfrak{p}}(\operatorname{Proj}(S / f S)) \geqq m\right\} .
$$

Then $U(p)$ is generated as a k-algebra by purely inseparable forms in S, i.e. elements of the form $a_{0} X_{0}^{p e}+\cdots+a_{n} X_{n}^{p e}$ with $a_{i} \in k, p=\operatorname{ch}(k)$. (See [2], Th. 1, Cor.)

Definition 1.1. A Hironaka scheme $B_{p_{n}, \mathfrak{p}}$ associated with pin \boldsymbol{P}_{n} is a homogeneous additive subgroup scheme of the vector group $\operatorname{Spec}(S)$ defined by

$$
B_{p_{n}, \mathfrak{p}}=\operatorname{Spec}\left(S / U_{+}(\mathfrak{p}) \cdot S\right), \quad \text { where } U_{+}(\mathfrak{p})=\sum_{m>0} U_{m}(\mathfrak{p}) .
$$

For simplicity, we call $B_{p_{n}, \mathfrak{p}}$ the H-scheme associated with \mathfrak{p}.
In order to mention the following theorem, which is the main theorem of Oda's characterization in [3], we recall some terminologies.
(a) $L=\sum_{i \geq 0} L_{i}$ is a graded k-subspace of S, where L_{i} is the subset of $S_{p^{i}}$ consisting of all the purely inseparable forms of degree p^{i}. Then L is a graded left $k[F]$-module, with F acting as the p-th power map.
(b) $\operatorname{Diff}(k)$ and $\operatorname{Diff}_{m}(k)$ are the left k-vector spaces of differential operators over \boldsymbol{Z} of k into itself, and those of order $\leqq m$, respectively. When V is a subset of L_{e}, the following vector subspaces of L_{e} are defined for $i \leqq e$:

$$
\begin{aligned}
\mathscr{D}_{i}(V) & =\operatorname{Diff}_{p^{i}-1}(k) V \\
\mathscr{N}_{i}(V) & =\left\{f \mid f \in L_{i}, \mathscr{D}_{i}(f) \subset k \cdot V\right\} .
\end{aligned}
$$

(c) When $Q=\sum_{i \geq 0} Q_{i}$ is a graded left $k[F]$-submodule of L, we can find an integer e such that $Q_{i+1}=k \cdot F Q_{i}(i \geqq e)$ and $Q_{e} \supsetneq k \cdot F Q_{e-1}$. We call such e the exponent of Q and write $e(Q)$. We define the exponent of $B_{p_{n}, \mathfrak{p}}$ to be $e(U(p) \cap L)$.
(d) We call \mathfrak{p} in \boldsymbol{P}_{n} the most generic point associated with an H scheme B in $\operatorname{Spec}(S)$ when $B_{p_{n}, \mathfrak{p}}=B$ and an arbitrary $\mathfrak{p}^{\prime} \in \boldsymbol{P}_{n}$, which satisfies $B_{p_{n}, p^{\prime}}=B$, contains \mathfrak{p}.

Remark 1.2. $\quad B$ is a vector group if and only if the exponent of B equals 0 .

Theorem 1.3. (Oda [3], Th. 2.5). Let N be a graded left $k[F]-$ submodule of L. Then $\operatorname{Spec}(S / N \cdot S)$ is an H-scheme of exponent e if and only if $e(N)=e, N_{e} \sqsubseteq L_{e}, \mathcal{N}_{e} \mathscr{D}_{e}\left(N_{e}\right)=N_{e}$ and $N=\operatorname{rad}_{L}\left(k[F] N_{e}\right)$, where we define $\operatorname{rad}_{L}(Q)=\{f \in L \mid$ there exists a non-negative integer j such that $\left.F^{j} f \in Q\right\}$. Moreover $\operatorname{rad}_{S}\left(\mathscr{D}_{e}\left(N_{e}\right) \cdot S\right)$ is the most generic point associated with $\operatorname{Spec}(S / N \cdot S)$ and $\operatorname{dim}(\operatorname{Spec}(S / N \cdot S))=\operatorname{dim}_{k}\left(L_{e} / N_{e}\right)$.

By this theorem H-schemes can be written in terms of vector spaces and differential operators as follows:
(*) Let W be a finite dimensional k^{q}-vector space and let V be a k-subspace of $k \bigotimes_{k q} W$, with $q=p^{e}$. Then an H-scheme of exponent e is
in one to one correspondence with a pair (V, W) satisfying the following conditions:
(i) $\quad \mathscr{N}_{e} \mathscr{D}_{e}(V)=V$,
(ii) $V \sqsubseteq k \otimes_{k q} W$,
(iii) $\quad V \supsetneq k\left(V \cap\left(k^{p} \otimes_{k^{q}} W\right)\right) \quad$ if $e \geqq 1$.

Here $\operatorname{dim}(H$-scheme $)=\operatorname{dim}_{k}\left(k \otimes_{k q} W / V\right)$. Since $\operatorname{Diff}_{q-1}(k)$ acts trivially on k^{q}, it is considered to act on $k \otimes_{k g} W$ through the first factor. In this paper $H(V, W)$ means an H-scheme which is determined by a pair (V, W) satisfying (i) (ii) (iii). Also, when $e \geqq 1$, we sometimes assume the condition (iv) below for the sake of convenience,
(iv) $V \cap W=0$ and W is minimal (i.e. $k \otimes_{k 9} W^{\prime} \not \supset V$, for any proper k^{q}-subspace W^{\prime} of W).
The former condition of (iv) means that we are dealing with the smallest ambient vector group containing the H-scheme, and the latter means that we neglect the part of the vector group when we represent the H-scheme as (vector group) \times (not vector group).

Remark 1.4. When $e \geqq 1$, it is evident that if (V, W) satisfies (iii) then (V, W) automatically satisfies (ii).
(V, W) and $\left(V^{\prime}, W^{\prime}\right)$ are said to be of the same type when there exist a field automorphism σ of k and a k^{q}-semi-linear isomorphism $\psi: W \rightarrow W^{\prime}$ such that the induced map $\sigma \otimes \psi: k \otimes_{k^{q}} W \rightarrow k \otimes_{k^{q}} W^{\prime}$ sends V onto V^{\prime}.

Section 2.

Example 2.1. (See Oda [3].) Let W be a k^{p}-vector space of $\operatorname{dim} W$ $=2 p$ with basis $X_{i}, Z_{i}(i=0, \cdots, p-1)$. Let c_{1} and c_{2} be elements of k, p-independent over k^{p}. If $V=k \cdot f$ with $f=\sum_{i=0}^{p-1} c_{1}^{i}\left(X_{i}+c_{2} Z_{i}\right)$, then $H=H(V, W)$ is an H-scheme of exponent $e(H)=1$ and $\operatorname{dim} H=2 p-1$. Furthermore $\mathscr{D}_{1}(V)=\sum_{i=0}^{p-1} k \cdot\left(X_{i}+c_{1}^{p-1-i} c_{2} Z_{p-1}\right) \oplus \sum_{i=0}^{p-2} k \cdot\left(Z_{i}-c_{1}^{p-1-i} Z_{p-1}\right)$. The H-scheme corresponding to this pair is

$$
\operatorname{Spec}\left(k\left[x_{i}, z_{i}\right] / \sum_{i=0}^{p-1} c_{1}^{i}\left(x_{i}^{p}+c_{2} z_{i}^{p}\right)\right),
$$

with $x_{i}, z_{i}(i=0, \cdots, p-1)$ indeterminates. This is the most typical example of those H-schemes which are not vector groups and associated with a closed point in $\boldsymbol{P}_{2 p-1}$.

Now let W^{*} be the dual space of a k^{q}-vector space W with $q=p^{e}$. Since $\operatorname{Diff}_{q-1}(k)$ acts on $k \otimes_{k q} W^{*}$, we can define \mathscr{D}_{i}^{*} and \mathscr{N}_{i}^{*} in the same way as \mathscr{D}_{i} and \mathscr{N}_{i} for $i \leqq e$.

Definition 2.2. For a pair (V, W) we define $\left(V^{*}, W^{*}\right)$ to be a pair where W^{*} is the dual k^{q}-vector space of W and $V^{*}=\mathscr{D}_{e}(V)^{\perp}$. We define conditions (i^{*}) (ii*) (iii*) (iv*) in the same way as in $\left(^{*}\right.$) of § 1.

Lemma 2.3. (Oda [3], Lemma 2.8.). For a k-subspace U of $k \otimes_{k^{q}} W$, we have

$$
\mathscr{N}_{i}(U)^{\perp}=\mathscr{D}_{i}^{*}\left(U^{\perp}\right) \quad \text { and } \quad \mathscr{D}_{i}(U)^{\perp}=\mathscr{N}_{i}^{*}\left(U^{\perp}\right) .
$$

Lemma 2.4. When $q=p^{e}$ and $q^{\prime}=p^{e^{\prime}}$ with $e^{\prime} \leqq e$, we have $\mathscr{D}_{e}(V)$ $=\operatorname{Diff}_{q-q^{\prime}}(k) \mathscr{D}_{e^{\prime}}(V)$.

Proof. Since $k \cdot V$ is a finite dimensional k-vector space, we can choose a base $f_{\beta}(\beta=1, \cdots, s)$. There exists a finite set c_{1}, \cdots, c_{m} of elements of k, p-independent over k^{p} so that $K=k^{q}\left(c_{1}, \cdots, c_{m}\right)$ contains the coefficients of $f_{\beta}(\beta=1, \cdots, s)$. Since $\operatorname{Diff}_{q-1}(k) V=k \cdot \operatorname{Diff}_{q-1}\left(K / k^{q}\right) V$, it is enough to show

$$
\operatorname{Diff}_{q-1}\left(K / k^{q}\right)=\operatorname{Diff}_{q-q^{\prime}}\left(K / k^{q}\right) \operatorname{Diff}_{q^{\prime}-1}\left(K / k^{q}\right)
$$

Let $D_{i j}(1 \leqq i \leqq m, 0 \leqq j \leqq e-1)$ be the k^{q}-linear map of K into itself defined by

$$
D_{i j}\left(\prod_{1 \leq \alpha \leqq m} c_{\alpha}^{t_{\alpha}}\right)=\left\{\begin{array}{l}
0 \quad\left(t_{i}<p^{j}\right) \\
\binom{t_{i}}{p^{j}} c_{i}^{t_{i}-p^{j}} \prod_{\substack{1 \leq \alpha \leq m \\
\alpha \neq i}} c_{\alpha}^{t_{\alpha}}
\end{array} \quad\left(t_{i} \geqq p^{j}\right)\right.
$$

Then $D_{i j}$ is a differential operator of K over k^{q} of order p^{j}. Moreover $D_{i j}$'s commute with each other. When $t_{i j}(1 \leqq i \leqq m, 0 \leqq j \leqq e-1)$ vary among integers satisfying

$$
0 \leqq t_{i j} \leqq p-1
$$

and

$$
\sum_{\substack{1 \leq i \leq m \\ 0 \leqq j<e}} t_{i j} p^{j} \leqq p^{e}-1,
$$

the operators $D=\Pi D_{i j}{ }^{t_{i j}}(1 \leqq i \leqq m, 0 \leqq j<e)$ form a K-basis of $\operatorname{Diff}_{q-1}\left(K / k^{q}\right)$. Then we see easily that D can be written as $D^{\prime} D^{\prime \prime}$ with
D^{\prime} in $\operatorname{Diff}_{q-q^{\prime}}\left(K / k^{q}\right)$ and $D^{\prime \prime}$ in $\operatorname{Diff}_{q^{\prime-1}}\left(K / k^{q}\right)$. Thus the lemma is proved.
Proposition 2.5. (V, W) satisfies (i) of $\left({ }^{*}\right)$ in $\S 1$ if and only if $\left(V^{*} ; W^{*}\right)$ satisfies (i^{*}). Under this condition, when $e \geqq 1,(V, W)$ satisfies (iii) (resp. (iv)) if and only if (V^{*}, W^{*}) satisfies (iii*) (resp. (iv*)).

Proof. If $\mathscr{N}_{e} \mathscr{D}_{e}(V)=V$, we have by Lemma $2.3 \mathscr{D}_{e}^{*}\left(V^{*}\right)^{\perp}=\mathscr{D}_{e}^{*}\left(\mathscr{D}_{e}(V)^{\perp}\right)^{\perp}$ $=\mathscr{N}_{e} \mathscr{D}_{e}(V)=V$, and $\mathscr{N}_{e}^{*} \mathscr{D}_{e}^{*}\left(V^{*}\right)=\mathscr{N}_{e}^{*}\left(V^{\perp}\right)=\mathscr{D}_{e}(V)^{\perp}=V^{*}$. Thus the equivalence of (i) and (i*) is proved. To prove the equivalence of (iii) (resp. (iv)) with (iii*) (resp. (iv*)) it is enough to show the only if parts. If $V^{*}=k \cdot\left(V^{*} \cap\left(k^{p} \otimes W^{*}\right)\right)$, then we have $\mathscr{D}_{e}^{*}\left(V^{*}\right)=k \cdot\left(\mathscr{D}_{e}^{*}\left(V^{*}\right) \cap\left(k^{p} \otimes W^{*}\right)\right)$ by the fact in the proof of Lemma 2.4. Thus $V^{\perp}=k \cdot\left(V^{\perp} \cap\left(k^{p} \otimes W^{*}\right)\right)$ and $V=k \cdot\left(V \cap\left(k^{p} \otimes W\right)\right.$, and hence (iii) and (iii*) are equivalent. If (V, W) satisfies (i), we have $V \cap W=\mathscr{D}_{e}(V) \cap W$ and similarly in the dual space $V^{*} \cap W^{*}=V^{\perp} \cap W^{*}$ by the remark below Proposition 3.1 in Oda [3]. Thus W is not minimal if and only if there exists $0 \neq$ $f \in W^{*}$ such that $\langle V, f\rangle=0$, i.e. if and only if $\{0\} \neq V^{\perp} \cap W^{*}=V^{*} \cap W^{*}$. Thus W is minimal if and only if $V^{*} \cap W^{*}=\{0\}$. By the duality the equivalence of (iv) and (iv*) is proved.

Thus, when $e \geqq 1$, we can associate the dual H-scheme $H\left(V^{*}, W^{*}\right)$, which we denote also by H^{*}, with $H=H(V, W)$. Evidently we have $e(H)=e\left(H^{*}\right)$ and $H^{* *}=H$.

As was seen in Oda [3], $V \cap W=\mathscr{D}_{e}(V) \cap W$ is one of the handiest necessary conditions for a pair (V, W) to correspond to an H-scheme.

Lemma 2.6. (Oda [3], Proposition 3.1.) Let $H=H(V, W)$ be an H scheme with $\operatorname{dim} H=d, e(H)=e$ and $\operatorname{dim}_{k}(V)=v$. Then there exists a $k^{p e}$-basis $\left\{X_{i}, Y_{j}\right\}_{(i=1, \cdots, a, j=1, \cdots, v)}$ of W and a k-basis $\left\{f_{j}\right\}_{j=1, \cdots, v}$ of V such that

$$
f_{j}=Y_{j}+c_{1 j} X_{1}+\cdots+c_{d j} X_{d}\left(c_{i j} \in k\right) \quad \text { and } \quad \mathcal{N}_{e} \mathscr{D}_{e}\left(f_{j}\right)=k \cdot f_{j} .
$$

Moreover we can choose f_{1} so that $H_{1}=H\left(k \cdot f_{1}, k^{p^{e}} \cdot Y_{1} \oplus \sum_{i=1}^{d} k^{p^{e}} \cdot X_{i}\right)$ is an H-scheme with $\operatorname{dim} H_{1}=d$ and $e\left(H_{1}\right)=e$.

Lemma 2.7. Let $H=H(V, W)$ be an H-scheme with $e(H) \geqq 1$. When $0 \leqq e^{\prime} \leqq e, H^{\prime}=H\left(V, W^{\prime}\right)$ is an H-scheme with $e\left(H^{\prime}\right)=e^{\prime}$ and $\operatorname{dim} H^{\prime}=$ $\operatorname{dim} H$, where $W^{\prime}=k^{p^{e^{\prime}}} \otimes_{k p^{p}} W$.

Proof. The conditions (ii) (iii) of (*) being trivially verified, it is enough to show that $\mathscr{N}_{e^{\prime}} \mathscr{D}_{e^{\prime}}(V)=V$ if $\mathscr{N}_{e} \mathscr{D}_{e}(V)=V$. By Lemma 2.4 above and Lemma 2.9 in Oda [3], we have $\mathscr{D}_{e} \mathscr{N}_{e^{\prime}} \mathscr{D}_{e^{\prime}}(V)=$
$\operatorname{Diff}_{p^{e-}-p^{\prime}}(k) \mathscr{D}_{e^{\prime}} \mathscr{N}_{e^{\prime}} \mathscr{D}_{e^{\prime}}(V)=\operatorname{Diff}_{p^{e-}-p^{e^{\prime}}}(k) \mathscr{D}_{e^{\prime}}(V)=\mathscr{D}_{e}(V)$. Thus $\mathscr{N}_{e^{\prime}} \mathscr{D}_{e^{\prime}}(V) \subset$ $\mathscr{N}_{e} \mathscr{D}_{e}(V)=V$. The inverse inclusion is trivial. The exponent and the dimension are easy to calculate.

This lemma means that the image H^{\prime} of H by the Frobenius morphism $F^{e-e^{\prime}}$ of the ambient vector group defined by $\left(x_{0}, \cdots, x_{n}\right) \rightarrow\left(x_{0}^{p^{e-e^{\prime}}}, \cdots, x_{n}^{p^{e-e^{\prime}}}\right)$ is again H-scheme of exponent e^{\prime}.

Theorem 2.8. If $H=H(V, W)$ is not a vector group (i.e. $e(H) \geqq 1$), then $\operatorname{dim} H \geqq 2 p-1$. Moreover if $\operatorname{dim} H=2 p-1$ and H is not a vector group with $V \cap W=\{0\}$, then H is of the same type as Example 2.1.

Proof. Let m be the smallest dimension of H-schemes with positive exponents. Then by Lemma 2.6 and Lemma 2.7 there exists $H_{f}=$ $H(k \cdot f, W)$ such that $\operatorname{dim} H_{f}=m$ and $e\left(H_{f}\right)=1$. Moreover it is an immediate consequence of the minimality of m that H_{f} satisfies (iv) of $\left(^{*}\right)$, hence in particular $\mathscr{D}_{1}(f) \cap W=\{0\}$. Now let us observe dimensions over k of the sequence

$$
k \cdot f \subset \operatorname{Diff}_{1}(k) f \subset \operatorname{Diff}_{2}(k) f \subset \cdots \subset \operatorname{Diff}_{p-1}(k) f=\mathscr{D}_{1}(f)
$$

We claim $\operatorname{dim}_{k} \operatorname{Diff}_{i+1}(k) f \geqq \operatorname{dim}_{k} \operatorname{Diff}_{i}(k) f+2(i=0, \cdots, p-2)$. If $\operatorname{dim}_{k} \operatorname{Diff}_{i}(k) f=t$, then we may assume that $\operatorname{Diff}_{i}(k) f$ is generated by $X_{j}+h_{j}(j=0, \cdots, t-1)$ over k, where h_{j} is a k-linear combination of X_{t}, \cdots, X_{m} and $\left\{X_{j}\right\}_{j=0, \cdots, m}$ is a k^{p}-basis of W. We define $c(g)$ to be the k^{p}-vector subspace of k spanned by the coefficients of $g \in k \otimes_{k^{p}} W$. There are the following three possibilities:
(1) There exists $j(0 \leqq j<t)$ such that there is no intermediate subfield of the form $k^{p}(a)$ containing $c\left(X_{j}+h_{j}\right)$. In this case, we may assume that there exist D_{1}, D_{2} in $\operatorname{Der}\left(k / k^{p}\right)$ with $D_{1}\left(X_{j}+h_{j}\right)=X_{t}+h^{\prime}$ and $D_{2}\left(X_{j}+h_{j}\right)=X_{t+1}+h^{\prime \prime}$, where h^{\prime} and $h^{\prime \prime}$ are linear combinations of X_{t+2}, \cdots, X_{m}. The above statement is obvious in this case.
(2) For each j there exists an intermediate subfield $k^{p}\left(a_{j}\right)$ containing $c\left(X_{j}+h_{j}\right)$.
(i) If there exist $j \neq j^{\prime}$ such that $k^{p}\left(a_{j}\right) \neq k^{p}\left(a_{j^{\prime}}\right)$, then we can choose $D_{j}, D_{j^{\prime}}$ in $\operatorname{Der}\left(k / k^{p}\right)$ satisfying $D_{j}\left(a_{j}\right)=1$ and $D_{j^{\prime}}\left(a_{j^{\prime}}\right)=1$. It is enough to show that $D_{j}\left(h_{j}\right)$ and $D_{j^{\prime}}\left(h_{j^{\prime}}\right)$ are linearly independent over k. If $D_{j}\left(h_{j}\right)=u \cdot D_{j^{\prime}}\left(h_{j^{\prime}}\right)$ with $u \in k$, then

$$
c\left(D_{j}\left(h_{j}\right)\right)=u \cdot c\left(D_{j^{\prime}}\left(h_{j^{\prime}}\right)\right) \subset k^{p}\left(a_{j}\right) \cap u \cdot k^{p}\left(a_{j^{\prime}}\right) .
$$

But it is easy to show that

$$
\operatorname{dim}_{k^{p}}\left(k^{p}\left(a_{j}\right) \cap u \cdot k^{p}\left(a_{j^{\prime}}\right)\right) \leqq 1
$$

Hence we readily get a contradiction in view of the property $\mathscr{D}_{1}(f) \cap W$ $=\{0\}$.
(ii) For all $j, k^{p}\left(a_{j}\right)=k^{p}(a)$ with $\quad a \in k$.

Then $\mathscr{D}_{1}(f)=k \cdot\left(\mathscr{D}_{1}(f) \cap\left(k^{p}(a) \otimes W\right)\right)$ and thus we have $(k \cdot f)^{*}=k \cdot\left((k \cdot f)^{*}\right.$ $\cap\left(k^{p}(a) \otimes W\right)$, since $(k \cdot f)^{*}=\mathscr{D}_{1}(f)^{\perp}$. Hence $(k \cdot f)^{\perp}=\mathscr{D}_{1}^{*}\left((k \cdot f)^{*}\right)=$ $k \cdot\left(\mathscr{D}_{1}^{*}\left((k \cdot f)^{*}\right) \cap\left(k^{p}(a) \otimes W\right)\right)$. Thus we may assume $c(f) \subset k^{p}(a)$. If D is a derivation with $D(a)=1$, there exists an integer $s \leqq p-1$ such that $D^{s}(f) \neq 0$ and $D^{s+1}(f)=0$. So $0 \neq D^{s}(f) \in \mathscr{D}_{1}(f) \cap W$, a contradiction. Hence (ii) does not happen.

Thus we conclude that $\operatorname{dim} \mathscr{D}_{1}(f) \geqq 2 p-1$ and $\operatorname{dim} W \geqq 2 p$. Hence $\operatorname{dim} H_{f}=\operatorname{dim} W-\operatorname{dim} k \cdot f \geqq 2 p-1$ and $m \geqq 2 p-1$. But the dimension of the H-scheme in Example 2.1 is $2 p-1$, hence $m=2 p-1$. The first part of the theorem is thus proved. Now let us prove the second part of Theorem 2.5. When $p=2$, Hironaka already proved this theorem (Hironaka [2], Th. 3.). From now on we assume $p \neq 2$.

Step (I): The case where the H-scheme is of the form $H=H(k \cdot f, W)$ with $\operatorname{dim} H=2 p-1$ and $e(H)=1$. (Then H automatically satisfies (iv) of (*).) In this case the codimension of $\mathscr{D}_{1}(f)$ in $k \otimes_{k^{p}} W$ equals 1, i.e. the most generic point associated with H is a closed point, since $\operatorname{dim}_{k p} W$ $=\operatorname{dim} W^{*}=2 p$ and $(k \cdot f)^{*} \neq 0$, thus $2 p-1 \leqq \operatorname{dim} H^{*}<2 p$, hence $\operatorname{dim} H^{*}=2 p-1$ and $\operatorname{codim}_{k} \mathscr{D}_{1}(f)=\operatorname{dim}_{k}(k \cdot f)^{*}=1$. By the proof of the first part, the sequence of the dimensions of $k \cdot f \subset \operatorname{Diff}_{1}(k) f \subset \cdots$ $\subset \operatorname{Diff}_{p-1}(k) f$ is necessarily $1,3,5, \cdots, 2 p-1$. In particular

$$
\operatorname{dim} \operatorname{Diff}_{1}(k) f=3 \quad \text { and } \quad \operatorname{dim} \operatorname{Diff}_{2}(k) f=5 .
$$

We put $K=k^{p}(c(f))$. Then $\left[K: k^{p}\right]=p^{2}$, since $\operatorname{dim} \operatorname{Diff}_{1}(k) f=r+1$ if $\left[K: k^{p}\right]=p^{r}$. Since $\operatorname{Diff}_{i}(k) f=k \cdot \operatorname{Diff}_{i}\left(K / k^{p}\right) f$ with arbitrary $i \geqq 0$, we have

$$
\operatorname{dim}_{k} \operatorname{Diff}_{2}(k) f=\operatorname{dim}_{K} \operatorname{Diff}_{2}\left(K / k^{p}\right) f=5
$$

But $\operatorname{dim}_{K} \operatorname{Diff}_{2}\left(K / k^{p}\right)=6$, thus there exists D in $\operatorname{Diff}_{2}\left(K / k^{p}\right)$ such that $D \neq 0$ and $D(f)=0$. Since W is minimal, we have

$$
\operatorname{dim}_{k^{p}} c(f)=\operatorname{dim}_{k^{p}} W=2 p
$$

We may assume $c(f) \ni 1$. Hence by Lemma 2.9 below there exists D_{0} in $\operatorname{Der}\left(K / k^{p}\right)$ such that $D=u \cdot D_{0}^{2}$ with $u \in K$ and $D_{0}\left(c_{1}\right)=0, D_{0}\left(c_{2}\right)=1$ where $K=k^{p}\left(c_{1}, c_{2}\right)$. Thus

$$
c(f)=k^{p}\left(c_{1}\right) \oplus c_{2} \cdot k^{p}\left(c_{1}\right)
$$

and H is of the same type as Example 2.1.
Step (II): The general case $H=H(V, W)$ with $\operatorname{dim} H=2 p-1, e(H)$ $=1$, and $V \cap W=\{0\}$. Then H-schemes $H_{j}=H\left(k \cdot f_{j}, k^{p} Y_{j} \oplus \sum_{i=1}^{2 p-1} k^{p} \cdot X_{i}\right)$ of dimension $2 p-1$ in Lemma $2.6(j=1, \cdots, v)$ have exponent $e\left(H_{j}\right)=1$, since $V \cap W=\{0\}$. Thus the codimension of $\mathscr{D}_{1}(V)$ in $k \otimes W$ is 1 , since by the proof of step (I) $\mathscr{D}_{1}\left(f_{j}\right)$ are of codimension one in $k^{p} . Y_{j} \oplus \sum_{i=1}^{2 p-1} k^{p} X_{j}$ and have the property $\mathscr{D}_{1}\left(f_{j}\right) \cap W=\{0\}$ for all j. Hence $V^{*}=k \cdot f^{*}$ and $\operatorname{dim} \mathscr{D}_{1}^{*}\left(f^{*}\right)=\operatorname{dim} V^{\perp}=\operatorname{dim} H=2 p-1$. By applying the proof of the first part to $H\left(k \cdot f^{*}, W^{*}\right)$, we have

$$
\operatorname{dim} \operatorname{Diff}_{1}(k) f^{*}=3 \quad \text { and } \quad \operatorname{dim} \operatorname{Diff}_{2}(k) f^{*}=5
$$

Thus by Lemma 2.9 below $\operatorname{dim} c\left(f^{*}\right) \leqq 2 p$. Since $V \cap W=\{0\}$ if and only if W^{*} is minimal, we have $2 p \geqq \operatorname{dim} c\left(f^{*}\right)=\operatorname{dim} W^{*}=\operatorname{dim} W$, hence $\operatorname{dim} V=v=1$. (II) is thus reduced to (I).

Step (III): The case $H=H(V, W)$ where $\operatorname{dim} H=2 p-1$ and $e(H)$ $=e>1$. If there exists such $H(V, W)$, then by Lemma 2.6 there exists $H^{\prime}=H\left(k \cdot f, W^{\prime}\right)$ with $\operatorname{dim} H^{\prime}=2 p-1$ and $e\left(H^{\prime}\right)=e$ satisfying (iv). Then by Lemma 2.7 and the minimality of $2 p-1, H^{\prime \prime}=H\left(k \cdot f, W^{\prime \prime}\right)$ satisfies $\operatorname{dim} H^{\prime \prime}=2 p-1, e\left(H^{\prime \prime}\right)=1$ and (iv), where $W^{\prime \prime}=k^{p} \otimes_{k p e} W^{\prime}$. Thus by (I) $H^{\prime \prime}$ is of the same type as Example 2.1. But it is easy to calculate that

$$
\mathscr{D}_{e}(f) \supset \operatorname{Diff}_{p}(k) f=k \otimes_{k^{p}} W^{\prime \prime}=k \otimes_{k^{p e}} W^{\prime} .
$$

Thus we have a contradiction to the property $\mathscr{D}_{e}(f) \cap W^{\prime}=\{0\}$.
It remains to prove the following lemma to conclude the proof of Theorem 2.8.

Lemma 2.9. Let $k \supset K \supset k_{p}$ with $\left[K: k_{p}\right]=p^{2}$ and $p \neq 2$, and let D be an element of $\operatorname{Diff}_{2}\left(K / k_{p}\right)$ with $D \neq 0$ and $D(1)=0$. Then D satisfies the followings:
(1) $\operatorname{dim}_{k p} \operatorname{ker}(D) \leqq 2 p$ when D is considered to be a k^{p}-linear map from K to itself,
(2) the equality holds if and only if there exists $D_{0} \in \operatorname{Der}\left(K / k^{p}\right)$ with the property $D_{0}\left(c_{1}\right)=0$ and $D_{0}\left(c_{2}\right)=1$ where $k^{p}\left(c_{1}, c_{2}\right)=K$, such that $D=u \cdot D_{0}^{2}$ with $u \in K$.

Proof. We put $T=\operatorname{ker}(D) \subset K$. Then T contains 1 . If T is contained in a proper subfield of K, then (1) is obvious. Otherwise we may choose elements t_{1} and t_{2} of T with $k^{p}\left(t_{1}, t_{2}\right)=K$. Let D_{1}, D_{2} be elements of $\operatorname{Der}\left(K / k^{p}\right)$ defined by $D_{i}\left(t_{j}\right)=\delta_{i, j}(i, j=1,2)$. Then $D=a^{\prime} D_{1}^{2}+b^{\prime} D_{1} D_{2}$ $+c^{\prime} D_{2}^{2}$. If $a^{\prime}=c^{\prime}=0$, then $\operatorname{dim} T=2 p-1$. We may thus assume

$$
D=D_{1}^{2}+a D_{1} D_{2}+b D_{2}^{2} \quad \text { with } \quad a, b \text { in } K .
$$

To an element $\Delta=\sum_{i, j=1}^{p} a_{i, j} D_{2}^{i-1} D_{1}^{j-1}$ of $\operatorname{Diff}\left(K / k^{p}\right)$ we associate a (p, p) matrix $\rho(\Delta)=\left(a_{i, j}\right)$. Then ρ is an isomorphism from Diff $\left(K / k^{p}\right)$ to the set $\mathfrak{M}(K ; p, p)$ of (p, p)-matrices with coefficients in K as vector spaces over K. Then

$$
\rho(D)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & a & \\
b & & \\
& & 0
\end{array}\right)
$$

Let I be the left ideal Diff $\left(K / k^{p}\right) \cdot D$ of the ring Diff $\left(K / k^{p}\right)$. Then $\rho\left(\Delta_{i, j}\right)$ is of the form
where $\Delta_{i, j}=D_{2}^{i-1} D_{1}^{j-3} D$ is an element of $I(1 \leqq i \leqq p, 3 \leqq j \leqq p)$. Since $\rho\left(\Delta_{i, j}\right) \quad(i=1, \cdots, p, j=3, \cdots, p)$ are linearly independent over K, we have $\operatorname{dim}_{K} I \geqq p(p-2)$.
By a theorem of Jacobson, we can identify the ring Diff (K / k^{p}) with $\operatorname{Hom}_{k p}(K, K)$. Let $\pi: K \rightarrow K / T$ be the natural projection and let $n=$
$\operatorname{dim}_{k p} T$. From the exact sequence

$$
0 \longrightarrow \operatorname{Hom}_{k p}(K / T, K) \xrightarrow{\pi^{*}} \operatorname{Hom}_{k p}(K, K) \longrightarrow \operatorname{Hom}_{k p}(T, K) \longrightarrow 0
$$

we get $\pi^{*}\left(\operatorname{Hom}_{k p}(K / T, K)\right) \supset I \quad$ and $\quad \operatorname{dim}_{K} \operatorname{Hom}_{k^{p}}(K / T, K)=$ $\operatorname{dim}_{K} \operatorname{Hom}_{k p}(K, K)-\operatorname{dim}_{K} \operatorname{Hom}_{k^{p}}(T, K)=p^{2}-n . \quad$ Thus $\quad p^{2}-n=$ $\operatorname{dim}_{K} \operatorname{Hom}(K / T, K) \geqq \operatorname{dim}_{K} I \geqq p(p-2)$. Hence $n \leqq 2 p$ and we get (1). Moreover $n=2 p$ if and only if $\operatorname{dim}_{K} I=p(p-2)$, hence I is generated by $\Delta_{i, j}(i=1 \cdots p, j=3 \cdots p)$ as a K-vector space. To show (2) it is sufficient to show the existence of $D_{0} \in \operatorname{Der}\left(K / k^{p}\right)$ with $D=u \cdot D_{0}^{2}$, since $2 p=\operatorname{dim}_{k^{p}} \operatorname{ker}(D)=\operatorname{dim}_{k^{p}} \operatorname{ker}\left(D_{0}^{2}\right) \leqq 2 \operatorname{dim}_{k p} \operatorname{ker}\left(D_{0}\right) \leqq 2 p$. Hence $\operatorname{dim} \operatorname{ker}\left(D_{0}\right)=p$ and $\operatorname{Im}\left(D_{0}\right) \supset \operatorname{ker}\left(D_{0}\right) \ni 1$. Thus we can find such c_{1}, c_{2} that $D_{0}\left(c_{1}\right)=0, D_{0}\left(c_{2}\right)=1$, and $k^{p}\left(c_{1}, c_{2}\right)=K$. In order to seek such D_{0}, we use a primitive method depending on complicated calculations, of which we indicate only an outline below.
Since $\rho\left(D_{1}^{p-2} D\right)=\left(\begin{array}{cccc}0 & 0 & \cdots & \cdots \\ 0 & * & \cdots & 0 \\ * & \cdots \cdots & * & b \\ 0 & & 0\end{array}\right)$ is in $\rho(I)$, we can write

$$
\rho\left(D_{1}^{p-2} D\right)=\sum_{\substack{1 \leq i \leq j \\ 3 \leq j \leq p}} x(i, j) \cdot \rho\left(\Delta_{i, j}\right) \quad \text { with } \quad x(i, j) \in K
$$

Comparing the ($i, p-i+2$)-components $(i=2, \cdots, p)$ of both sides, we get
$\left(a^{2}-4 b\right)^{1 / 2(p-1)}=0$, hence $b=\left(\frac{1}{2} a\right)^{2}$. Thus

$$
D=\left(D_{1}+\frac{1}{2} a D_{2}\right)^{2}-\frac{1}{2}\left(D_{1}(a)+\frac{1}{2} a D_{2}(a)\right) D_{2} .
$$

Similarly $\rho(I) \ni \rho\left(D_{1}^{p-1} D\right)=\left(\begin{array}{ccccc}0 & 0 & \cdots & \cdots \cdots \cdots \cdots & 0 \\ 0 & * & \cdots \cdots & * \\ * & \cdots & * p-1) \frac{1}{2} a D_{1}(a),\left(\frac{1}{2} a\right)^{2} \\ 0\end{array}\right)$
is of the form $\sum_{\substack{1 \leq \leq i j p \\ 3 \leq j \leq p}} y(i, j) \cdot \rho\left(\Delta_{i, j}\right)$ with $y(i, j) \in K$. From the comparison of the ($i, p-i+3$)-components ($i=3, \cdots, p$) and ($i, p-i+2$)-components $(i=2, \cdots, p)$, we get

$$
\left(\frac{1}{2} a\right)^{p-2}\left(D_{1}(a)+\left(\frac{1}{2} a\right) D_{2}(a)\right)=0
$$

If $a=0$, then $D=D_{1}^{2}$, and if $D_{1}(a)+\left(\frac{1}{2} a\right) D_{2}(a)=0$, then $D=\left(D_{1}+\frac{1}{2} a D_{2}\right)^{2}$. Thus Lemma 2.9 is proved.

Remark 2.10. In general let $m(e)$ be the smallest dimension of H schemes whose exponents are not less than e. By Lemma 2.7 we have $m(1) \leqq m(2) \leqq \cdots \leqq m(e) \leqq \cdots$. It is quite likely that $m(e)=2 p^{e}-1$. This is in fact the case for $e=1$ as we saw in Theorem 2.8, as well as for $e=0$ (for obvious reasons). Now let $H=H\left(k \cdot f, \sum_{\alpha} k^{p} \cdot X_{\alpha}\right)$ be an H-scheme with $e(H)=1$ and $f=\sum_{\alpha} a_{\alpha} X_{\alpha}$, which is associated with a closed point. Suppose there exists a p-basis Λ of k over k^{p} such that a_{a} 's are in $k^{p^{2}}\left(\Lambda^{\prime}\right)$ with $\Lambda^{\prime} \sqsubseteq \Lambda$. Let c be an element of Λ not in Λ^{\prime}, and define

$$
F=\sum_{\beta=0}^{p-1}\left(c^{p}\right)^{\beta} f_{\beta} \quad \text { with } \quad f_{\beta}=\sum_{\alpha} a_{\alpha} Y_{\alpha, \beta}
$$

Then $H_{2}=H\left(k \cdot F, \sum_{\alpha, \beta} k^{p^{2}} \cdot Y_{\alpha, \beta}\right)$ is an H-scheme with $e\left(H_{2}\right)=2$ and is associated with a closed point. If we take the H-scheme in Example 2.1 as H, then H_{2} is an H-scheme with $e\left(H_{2}\right)=2$ and $\operatorname{dim} H_{2}=2 p^{2}-1$. Thus inductively we can construct examples $H_{2}, H_{3}, \cdots, H_{e}$ such that

$$
e\left(H_{e}\right)=e \quad \text { and } \quad \operatorname{dim} H_{e}=2 p^{e}-1
$$

Obviously we no longer have the uniqueness of type when $e>1$.

References

[1] H. Hironaka, Certain numerical characters of singularities, J. Math. Kyoto Univ., 10 (1970), 151-187.
[2] , Additive groups associated with points of a projective space, Ann. of Math., 92 (1970), 327-334.
[3] T. Oda, Hironaka's additive group scheme, A volume dedicated to Prof. Y. Akizuki's 70th birthday.

Tokyo-Shibaura Electric, Inc.

