H. Mizutani Nagoya Math. J. Vol. 52 (1973), 85-95

HIRONAKA'S ADDITIVE GROUP SCHEMES

HIROYUKI MIZUTANI

In [1] and [2], Hironaka referred to the importance of an additive group scheme $B_{p_n,v}$, which is associated with a point \mathfrak{p} in P_n , in connection with the resolution of singularities in characteristic p > 0. Also he showed that if the dimension of $B_{p_n,v}$ is not greater than p, then it is a vector group.

By Oda [3], these schemes can be characterized in terms of vector spaces and differential operators of the coefficient field, as we recall in section 1. Moreover Oda classified these schemes in dimension ≤ 5 completely and conjectured that;

(1) If dim $B_{p_n,v} < 2p - 1$, then it is a vector group,

(2) If dim $B_{p_n,v} = 2p - 1$ and $B_{p_n,v}$ is not a vector group, then its type is unique.

In this paper we see that this conjecture is true, using some tools in Oda [3].

The author wishes to thank Professor T. Oda who taught this concept to him and gave him many suggestions.

Section 1.

Let $S = k[X_0, \dots, X_n] = \sum_{m \ge 0} S_m$, $P_n = \operatorname{Proj}(S)$, and $\mathfrak{p} \in P_n$. A graded subalgebra $U(\mathfrak{p}) = \sum_{m \ge 0} U_m(\mathfrak{p})$ of S is defined as follows:

 $U_m(\mathfrak{p}) = \{f \mid f \in S_m, \operatorname{mult}_{\mathfrak{p}}(\operatorname{Proj}(S/fS)) \ge m\}.$

Then $U(\mathfrak{p})$ is generated as a k-algebra by purely inseparable forms in S, i.e. elements of the form $a_0X_0^{p^e} + \cdots + a_nX_n^{p^e}$ with $a_i \in k, p = ch(k)$. (See [2], Th. 1, Cor.)

DEFINITION 1.1. A Hironaka scheme $B_{p_n,v}$ associated with \mathfrak{p} in P_n is a homogeneous additive subgroup scheme of the vector group Spec(S) defined by

Received June 18, 1973.

HIROYUKI MIZUTANI

$$B_{p_n,\mathfrak{p}} = \operatorname{Spec} \left(S/U_+(\mathfrak{p}) \cdot S\right), \quad \text{ where } U_+(\mathfrak{p}) = \sum_{m>0} U_m(\mathfrak{p}) \;.$$

For simplicity, we call $B_{p_n,v}$ the *H*-scheme associated with \mathfrak{p} .

In order to mention the following theorem, which is the main theorem of Oda's characterization in [3], we recall some terminologies.

(a) $L = \sum_{i \ge 0} L_i$ is a graded k-subspace of S, where L_i is the subset of S_{p^i} consisting of all the purely inseparable forms of degree p^i . Then L is a graded left k[F]-module, with F acting as the p-th power map.

(b) $\operatorname{Diff}(k)$ and $\operatorname{Diff}_m(k)$ are the left k-vector spaces of differential operators over Z of k into itself, and those of order $\leq m$, respectively. When V is a subset of L_e , the following vector subspaces of L_e are defined for $i \leq e$:

$$\begin{aligned} \mathscr{D}_i(V) &= \mathrm{Diff}_{p^{i-1}}(k)V\\ \mathscr{N}_i(V) &= \{f \,|\, f \in L_i, \, \mathscr{D}_i(f) \subset k \cdot V\} \;. \end{aligned}$$

(c) When $Q = \sum_{i \ge 0} Q_i$ is a graded left k[F]-submodule of L, we can find an integer e such that $Q_{i+1} = k \cdot FQ_i$ $(i \ge e)$ and $Q_e \supseteq_{\neq} k \cdot FQ_{e-1}$. We call such e the exponent of Q and write e(Q). We define the exponent of $B_{p_n, \mathfrak{p}}$ to be $e(U(\mathfrak{p}) \cap L)$.

(d) We call \mathfrak{p} in P_n the most generic point associated with an *H*-scheme *B* in Spec (S) when $B_{p_n,\mathfrak{p}} = B$ and an arbitrary $\mathfrak{p}' \in P_n$, which satisfies $B_{p_n,\mathfrak{p}'} = B$, contains \mathfrak{p} .

Remark 1.2. B is a vector group if and only if the exponent of B equals 0.

THEOREM 1.3. (Oda [3], Th. 2.5). Let N be a graded left k[F]submodule of L. Then Spec $(S/N \cdot S)$ is an H-scheme of exponent e if and only if $e(N) = e, N_e \subseteq L_e, \mathcal{N}_e \mathcal{D}_e(N_e) = N_e$ and $N = \operatorname{rad}_L(k[F]N_e)$, where we define $\operatorname{rad}_L(Q) = \{f \in L \mid \text{there exists a non-negative integer } j$ such that $F^j f \in Q\}$. Moreover $\operatorname{rad}_S(\mathcal{D}_e(N_e) \cdot S)$ is the most generic point associated with Spec $(S/N \cdot S)$ and dim (Spec $(S/N \cdot S)) = \dim_k(L_e/N_e)$.

By this theorem H-schemes can be written in terms of vector spaces and differential operators as follows:

(*) Let W be a finite dimensional k^q -vector space and let V be a k-subspace of $k \otimes W$, with $q = p^e$. Then an H-scheme of exponent e is

86

in one to one correspondence with a pair (V, W) satisfying the following conditions:

- (i) $\mathcal{N}_{e}\mathcal{D}_{e}(V) = V$,
- (ii) $V \subsetneq k \bigotimes_{k^q} W$,
- (iii) $V \supseteq k(V \cap (k^p \bigotimes_{k^q} W))$ if $e \ge 1$.

Here dim (*H*-scheme) = dim_k ($k \bigotimes_{k^q} W/V$). Since Diff_{q-1}(k) acts trivially on k^q , it is considered to act on $k \bigotimes_{k^q} W$ through the first factor. In this paper H(V, W) means an *H*-scheme which is determined by a pair (*V*, *W*) satisfying (i) (ii) (iii). Also, when $e \ge 1$, we sometimes assume the condition (iv) below for the sake of convenience,

(iv) $V \cap W = 0$ and W is minimal (i.e. $k \bigotimes_{k^q} W' \not\supseteq V$, for any proper k^q -subspace W' of W).

The former condition of (iv) means that we are dealing with the smallest ambient vector group containing the *H*-scheme, and the latter means that we neglect the part of the vector group when we represent the *H*-scheme as (vector group) \times (not vector group).

Remark 1.4. When $e \ge 1$, it is evident that if (V, W) satisfies (iii) then (V, W) automatically satisfies (ii).

(V, W) and (V', W') are said to be of the same type when there exist a field automorphism σ of k and a k^{q} -semi-linear isomorphism $\psi: W \to W'$ such that the induced map $\sigma \otimes \psi: k \otimes_{k^{q}} W \to k \otimes_{k^{q}} W'$ sends V onto V'.

Section 2.

EXAMPLE 2.1. (See Oda [3].) Let W be a k^p -vector space of dim W = 2p with basis X_i, Z_i $(i = 0, \dots, p-1)$. Let c_1 and c_2 be elements of k, p-independent over k^p . If $V = k \cdot f$ with $f = \sum_{i=0}^{p-1} c_i^i (X_i + c_2 Z_i)$, then H = H(V, W) is an H-scheme of exponent e(H) = 1 and dim H = 2p - 1. Furthermore $\mathscr{D}_1(V) = \sum_{i=0}^{p-1} k \cdot (X_i + c_1^{p-1-i} c_2 Z_{p-1}) \oplus \sum_{i=0}^{p-2} k \cdot (Z_i - c_1^{p-1-i} Z_{p-1})$. The H-scheme corresponding to this pair is

$${
m Spec} \left(k[x_i,z_i] \Big/ {\sum\limits_{i=0}^{p-1} \, c_{\scriptscriptstyle 1}^i (x_i^p \,+\, c_{\scriptscriptstyle 2} z_i^p)}
ight)$$
 ,

with x_i, z_i $(i = 0, \dots, p-1)$ indeterminates. This is the most typical example of those *H*-schemes which are not vector groups and associated with a closed point in P_{2p-1} .

Now let W^* be the dual space of a k^q -vector space W with $q = p^e$. Since $\operatorname{Diff}_{q-1}(k)$ acts on $k \bigotimes_{k^q} W^*$, we can define \mathscr{D}_i^* and \mathscr{N}_i^* in the same way as \mathscr{D}_i and \mathscr{N}_i for $i \leq e$.

DEFINITION 2.2. For a pair (V, W) we define (V^*, W^*) to be a pair where W^* is the dual k^q -vector space of W and $V^* = \mathcal{D}_e(V)^{\perp}$. We define conditions (i*) (ii*) (ii*) (iv*) in the same way as in (*) of §1.

LEMMA 2.3. (Oda [3], Lemma 2.8.). For a k-subspace U of $k \bigotimes_{k^q} W$, we have

$${\mathscr N}_i(U)^{\perp} = {\mathscr D}_i^*(U^{\perp}) \quad and \quad {\mathscr D}_i(U)^{\perp} = {\mathscr N}_i^*(U^{\perp}) \; .$$

LEMMA 2.4. When $q = p^e$ and $q' = p^{e'}$ with $e' \leq e$, we have $\mathcal{D}_e(V) = \text{Diff}_{q-q'}(k)\mathcal{D}_{e'}(V)$.

Proof. Since $k \cdot V$ is a finite dimensional k-vector space, we can choose a base f_{β} ($\beta = 1, \dots, s$). There exists a finite set c_1, \dots, c_m of elements of k, p-independent over k^p so that $K = k^q(c_1, \dots, c_m)$ contains the coefficients of f_{β} ($\beta = 1, \dots, s$). Since $\text{Diff}_{q-1}(k)V = k \cdot \text{Diff}_{q-1}(K/k^q)V$, it is enough to show

$$\operatorname{Diff}_{q-1}(K/k^q) = \operatorname{Diff}_{q-q'}(K/k^q) \operatorname{Diff}_{q'-1}(K/k^q) .$$

Let D_{ij} $(1 \leq i \leq m, 0 \leq j \leq e-1)$ be the k^{q} -linear map of K into itself defined by

$$D_{ij} \Big(\prod_{1 \leq lpha \leq m} c^{\iota_{lpha}}_{\,\,lpha} \Big) = egin{cases} 0 & (t_i < p^j) \ ig(t_i \ p^j ig) c^{\iota_i - p^j}_i \prod_{\substack{1 \leq lpha \leq m \ lpha \neq i}} c^{\iota_{lpha}}_{\,\,lpha} & (t_i \geq p^j) \;. \end{cases}$$

Then D_{ij} is a differential operator of K over k^q of order p^j . Moreover D_{ij} 's commute with each other. When t_{ij} $(1 \le i \le m, 0 \le j \le e - 1)$ vary among integers satisfying

$$0 \leq t_{ij} \leq p-1$$

and

$$\sum\limits_{\substack{1\leq i\leq m \ 0\leq j< e}} t_{ij}p^j \leq p^e-1$$
 ,

the operators $D = \prod D_{ij}^{ij}$ $(1 \le i \le m, 0 \le j < e)$ form a K-basis of $\operatorname{Diff}_{q-1}(K/k^q)$. Then we see easily that D can be written as D'D'' with

88

GROUP SCHEMES

D' in $\operatorname{Diff}_{q-q'}(K/k^q)$ and D'' in $\operatorname{Diff}_{q'-1}(K/k^q)$. Thus the lemma is proved.

PROPOSITION 2.5. (V, W) satisfies (i) of (*) in §1 if and only if (V^*, W^*) satisfies (i*). Under this condition, when $e \ge 1$, (V, W) satisfies (iii) (resp. (iv)) if and only if (V^*, W^*) satisfies (iii*) (resp. (iv*)).

Proof. If $\mathcal{N}_{e}\mathcal{D}_{e}(V) = V$, we have by Lemma 2.3 $\mathcal{D}_{e}^{*}(V^{*})^{\perp} = \mathcal{D}_{e}^{*}(\mathcal{D}_{e}(V)^{\perp})^{\perp}$ = $\mathcal{N}_{e}\mathcal{D}_{e}(V) = V$, and $\mathcal{N}_{e}^{*}\mathcal{D}_{e}^{*}(V^{*}) = \mathcal{N}_{e}^{*}(V^{\perp}) = \mathcal{D}_{e}(V)^{\perp} = V^{*}$. Thus the equivalence of (i) and (i^{*}) is proved. To prove the equivalence of (iii) (resp. (iv)) with (iii^{*}) (resp. (iv^{*})) it is enough to show the only if parts. If $V^{*} = k \cdot (V^{*} \cap (k^{p} \otimes W^{*}))$, then we have $\mathcal{D}_{e}^{*}(V^{*}) = k \cdot (\mathcal{D}_{e}^{*}(V^{*}) \cap (k^{p} \otimes W^{*}))$ by the fact in the proof of Lemma 2.4. Thus $V^{\perp} = k \cdot (V^{\perp} \cap (k^{p} \otimes W^{*}))$ and $V = k \cdot (V \cap (k^{p} \otimes W))$, and hence (iii) and (iii^{*}) are equivalent. If (V, W) satisfies (i), we have $V \cap W = \mathcal{D}_{e}(V) \cap W$ and similarly in the dual space $V^{*} \cap W^{*} = V^{\perp} \cap W^{*}$ by the remark below Proposition 3.1 in Oda [3]. Thus W is not minimal if and only if there exists $0 \neq f \in W^{*}$ such that $\langle V, f \rangle = 0$, i.e. if and only if $\{0\} \neq V^{\perp} \cap W^{*} = V^{*} \cap W^{*}$. Thus W is minimal if and only if $V^{*} \cap W^{*} = \{0\}$. By the duality the equivalence of (iv) and (iv^{*}) is proved.

Thus, when $e \ge 1$, we can associate the dual *H*-scheme $H(V^*, W^*)$, which we denote also by H^* , with H = H(V, W). Evidently we have $e(H) = e(H^*)$ and $H^{**} = H$.

As was seen in Oda [3], $V \cap W = \mathscr{D}_e(V) \cap W$ is one of the handiest necessary conditions for a pair (V, W) to correspond to an *H*-scheme.

LEMMA 2.6. (Oda [3], Proposition 3.1.) Let H = H(V, W) be an H-scheme with dim H = d, e(H) = e and $\dim_k (V) = v$. Then there exists a k^{pe} -basis $\{X_i, Y_j\}_{(i=1,\dots,d,j=1,\dots,v)}$ of W and a k-basis $\{f_j\}_{j=1,\dots,v}$ of V such that

 $f_j = Y_j + c_{1j}X_1 + \cdots + c_{dj}X_d(c_{ij} \in k)$ and $\mathcal{N}_e\mathcal{D}_e(f_j) = k \cdot f_j$.

Moreover we can choose f_1 so that $H_1 = H(k \cdot f_1, k^{p^e} \cdot Y_1 \oplus \sum_{i=1}^d k^{p^e} \cdot X_i)$ is an H-scheme with dim $H_1 = d$ and $e(H_1) = e$.

LEMMA 2.7. Let H = H(V, W) be an H-scheme with $e(H) \ge 1$. When $0 \le e' \le e, H' = H(V, W')$ is an H-scheme with e(H') = e' and dim $H' = \dim H$, where $W' = k^{pe'} \bigotimes_{k^{pe}} W$.

Proof. The conditions (ii) (iii) of (*) being trivially verified, it is enough to show that $\mathcal{N}_{e'}\mathcal{D}_{e'}(V) = V$ if $\mathcal{N}_{e}\mathcal{D}_{e}(V) = V$. By Lemma 2.4 above and Lemma 2.9 in Oda [3], we have $\mathcal{D}_{e}\mathcal{N}_{e'}\mathcal{D}_{e'}(V) = V$

HIROYUKI MIZUTANI

 $\operatorname{Diff}_{p^e-p^{e'}}(k)\mathscr{D}_{e'}\mathscr{N}_{e'}\mathscr{D}_{e'}(V) = \operatorname{Diff}_{p^e-p^{e'}}(k)\mathscr{D}_{e'}(V) = \mathscr{D}_{e}(V).$ Thus $\mathscr{N}_{e'}\mathscr{D}_{e'}(V) \subset \mathscr{N}_{e}\mathscr{D}_{e}(V) = V.$ The inverse inclusion is trivial. The exponent and the dimension are easy to calculate.

This lemma means that the image H' of H by the Frobenius morphism $F^{e-e'}$ of the ambient vector group defined by $(x_0, \dots, x_n) \to (x_0^{p^{e-e'}}, \dots, x_n^{p^{e-e'}})$ is again H-scheme of exponent e'.

THEOREM 2.8. If H = H(V, W) is not a vector group (i.e. $e(H) \ge 1$), then dim $H \ge 2p - 1$. Moreover if dim H = 2p - 1 and H is not a vector group with $V \cap W = \{0\}$, then H is of the same type as Example 2.1.

Proof. Let *m* be the smallest dimension of *H*-schemes with positive exponents. Then by Lemma 2.6 and Lemma 2.7 there exists $H_f = H(k \cdot f, W)$ such that dim $H_f = m$ and $e(H_f) = 1$. Moreover it is an immediate consequence of the minimality of *m* that H_f satisfies (iv) of (*), hence in particular $\mathcal{D}_1(f) \cap W = \{0\}$. Now let us observe dimensions over *k* of the sequence

$$k \cdot f \subset \operatorname{Diff}_1(k) f \subset \operatorname{Diff}_2(k) f \subset \cdots \subset \operatorname{Diff}_{p-1}(k) f = \mathscr{D}_1(f)$$
.

We claim $\dim_k \operatorname{Diff}_{i+1}(k)f \ge \dim_k \operatorname{Diff}_i(k)f + 2$ $(i = 0, \dots, p - 2)$. If $\dim_k \operatorname{Diff}_i(k)f = t$, then we may assume that $\operatorname{Diff}_i(k)f$ is generated by $X_j + h_j$ $(j = 0, \dots, t - 1)$ over k, where h_j is a k-linear combination of X_t, \dots, X_m and $\{X_j\}_{j=0,\dots,m}$ is a k^p -basis of W. We define c(g) to be the k^p -vector subspace of k spanned by the coefficients of $g \in k \otimes_{k^p} W$. There are the following three possibilities:

(1) There exists j $(0 \leq j < t)$ such that there is no intermediate subfield of the form $k^{p}(a)$ containing $c(X_{j} + h_{j})$. In this case, we may assume that there exist D_{1}, D_{2} in Der (k/k^{p}) with $D_{1}(X_{j} + h_{j}) = X_{t} + h'$ and $D_{2}(X_{j} + h_{j}) = X_{t+1} + h''$, where h' and h'' are linear combinations of X_{t+2}, \dots, X_{m} . The above statement is obvious in this case.

(2) For each j there exists an intermediate subfield $k^{p}(a_{j})$ containing $c(X_{j} + h_{j})$.

(i) If there exist $j \neq j'$ such that $k^p(a_j) \neq k^p(a_{j'})$, then we can choose $D_j, D_{j'}$ in Der (k/k^p) satisfying $D_j(a_j) = 1$ and $D_{j'}(a_{j'}) = 1$. It is enough to show that $D_j(h_j)$ and $D_{j'}(h_{j'})$ are linearly independent over k. If $D_j(h_j) = u \cdot D_{j'}(h_{j'})$ with $u \in k$, then

$$c(D_j(h_j)) = u \cdot c(D_{j'}(h_{j'})) \subset k^p(a_j) \cap u \cdot k^p(a_{j'}) .$$

But it is easy to show that

$$\dim_{k^p} \left(k^p(a_i) \cap u \cdot k^p(a_{i'}) \right) \leq 1.$$

Hence we readily get a contradiction in view of the property $\mathscr{D}_1(f) \cap W = \{0\}.$

(ii) For all $j, k^p(a_j) = k^p(a)$ with $a \in k$.

Then $\mathcal{D}_1(f) = k \cdot (\mathcal{D}_1(f) \cap (k^p(a) \otimes W))$ and thus we have $(k \cdot f)^* = k \cdot ((k \cdot f)^* \cap (k^p(a) \otimes W))$, since $(k \cdot f)^* = \mathcal{D}_1(f)^{\perp}$. Hence $(k \cdot f)^{\perp} = \mathcal{D}_1^*((k \cdot f)^*) = k \cdot (\mathcal{D}_1^*((k \cdot f)^*) \cap (k^p(a) \otimes W))$. Thus we may assume $c(f) \subset k^p(a)$. If D is a derivation with D(a) = 1, there exists an integer $s \leq p - 1$ such that $D^s(f) \neq 0$ and $D^{s+1}(f) = 0$. So $0 \neq D^s(f) \in \mathcal{D}_1(f) \cap W$, a contradiction. Hence (ii) does not happen.

Thus we conclude that dim $\mathscr{D}_1(f) \geq 2p-1$ and dim $W \geq 2p$. Hence dim $H_f = \dim W - \dim k \cdot f \geq 2p-1$ and $m \geq 2p-1$. But the dimension of the H-scheme in Example 2.1 is 2p-1, hence m = 2p-1. The first part of the theorem is thus proved. Now let us prove the second part of Theorem 2.5. When p = 2, Hironaka already proved this theorem (Hironaka [2], Th. 3.). From now on we assume $p \neq 2$.

Step (I): The case where the *H*-scheme is of the form $H = H(k \cdot f, W)$ with dim H = 2p - 1 and e(H) = 1. (Then *H* automatically satisfies (iv) of (*).) In this case the codimension of $\mathscr{D}_1(f)$ in $k \bigotimes_{k^p} W$ equals 1, i.e. the most generic point associated with *H* is a closed point, since dim_{k^p} W $= \dim W^* = 2p$ and $(k \cdot f)^* \neq 0$, thus $2p - 1 \leq \dim H^* < 2p$, hence dim $H^* = 2p - 1$ and $\operatorname{codim}_k \mathscr{D}_1(f) = \dim_k (k \cdot f)^* = 1$. By the proof of the first part, the sequence of the dimensions of $k \cdot f \subset \operatorname{Diff}_1(k) f \subset \cdots$ $\subset \operatorname{Diff}_{p-1}(k) f$ is necessarily 1, 3, 5, \cdots , 2p - 1. In particular

dim $\operatorname{Diff}_1(k)f = 3$ and dim $\operatorname{Diff}_2(k)f = 5$.

We put $K = k^p(c(f))$. Then $[K:k^p] = p^2$, since dim Diff₁(k)f = r + 1 if $[K:k^p] = p^r$. Since Diff_i $(k)f = k \cdot \text{Diff}_i(K/k^p)f$ with arbitrary $i \ge 0$, we have

 $\dim_k \operatorname{Diff}_2(k)f = \dim_K \operatorname{Diff}_2(K/k^p)f = 5.$

But $\dim_K \operatorname{Diff}_2(K/k^p) = 6$, thus there exists D in $\operatorname{Diff}_2(K/k^p)$ such that $D \neq 0$ and D(f) = 0. Since W is minimal, we have

$$\dim_{k^p} c(f) = \dim_{k^p} W = 2p \; .$$

We may assume $c(f) \ni 1$. Hence by Lemma 2.9 below there exists D_0 in Der (K/k^p) such that $D = u \cdot D_0^2$ with $u \in K$ and $D_0(c_1) = 0$, $D_0(c_2) = 1$ where $K = k^p(c_1, c_2)$. Thus

$$c(f) = k^p(c_1) \oplus c_2 \cdot k^p(c_1) ,$$

and H is of the same type as Example 2.1.

Step (II): The general case H = H(V, W) with $\dim H = 2p - 1$, e(H) = 1, and $V \cap W = \{0\}$. Then *H*-schemes $H_j = H(k \cdot f_j, k^p Y_j \oplus \sum_{i=1}^{2p-1} k^p \cdot X_i)$ of dimension 2p - 1 in Lemma 2.6 $(j = 1, \dots, v)$ have exponent $e(H_j) = 1$, since $V \cap W = \{0\}$. Thus the codimension of $\mathcal{D}_1(V)$ in $k \otimes W$ is 1, since by the proof of step (I) $\mathcal{D}_1(f_j)$ are of codimension one in $k^p \cdot Y_j \oplus \sum_{i=1}^{2p-1} k^p X_j$ and have the property $\mathcal{D}_1(f_j) \cap W = \{0\}$ for all j. Hence $V^* = k \cdot f^*$ and $\dim \mathcal{D}_1^*(f^*) = \dim V^\perp = \dim H = 2p - 1$. By applying the proof of the first part to $H(k \cdot f^*, W^*)$, we have

dim
$$\operatorname{Diff}_1(k)f^* = 3$$
 and dim $\operatorname{Diff}_2(k)f^* = 5$.

Thus by Lemma 2.9 below dim $c(f^*) \leq 2p$. Since $V \cap W = \{0\}$ if and only if W^* is minimal, we have $2p \geq \dim c(f^*) = \dim W^* = \dim W$, hence dim V = v = 1. (II) is thus reduced to (I).

Step (III): The case H = H(V, W) where dim H = 2p - 1 and e(H) = e > 1. If there exists such H(V, W), then by Lemma 2.6 there exists $H' = H(k \cdot f, W')$ with dim H' = 2p - 1 and e(H') = e satisfying (iv). Then by Lemma 2.7 and the minimality of 2p - 1, $H'' = H(k \cdot f, W')$ satisfies dim H'' = 2p - 1, e(H'') = 1 and (iv), where $W'' = k^p \bigotimes_{k^{pe}} W'$. Thus by (I) H'' is of the same type as Example 2.1. But it is easy to calculate that

$$\mathscr{D}_{e}(f) \supset \operatorname{Diff}_{p}(k)f = k \bigotimes_{k^{p}} W'' = k \bigotimes_{k^{pe}} W'$$

Thus we have a contradiction to the property $\mathscr{D}_{e}(f) \cap W' = \{0\}$.

It remains to prove the following lemma to conclude the proof of Theorem 2.8.

LEMMA 2.9. Let $k \supset K \supset k_p$ with $[K:k_p] = p^2$ and $p \neq 2$, and let D be an element of $\text{Diff}_2(K/k_p)$ with $D \neq 0$ and D(1) = 0. Then D satisfies the followings:

(1) $\dim_{k^p} \ker(D) \leq 2p$ when D is considered to be a k^p -linear map from K to itself,

GROUP SCHEMES

(2) the equality holds if and only if there exists $D_0 \in \text{Der}(K/k^p)$ with the property $D_0(c_1) = 0$ and $D_0(c_2) = 1$ where $k^p(c_1, c_2) = K$, such that $D = u \cdot D_0^2$ with $u \in K$.

Proof. We put $T = \ker(D) \subset K$. Then T contains 1. If T is contained in a proper subfield of K, then (1) is obvious. Otherwise we may choose elements t_1 and t_2 of T with $k^p(t_1, t_2) = K$. Let D_1, D_2 be elements of Der (K/k^p) defined by $D_i(t_j) = \delta_{i,j}$ (i, j = 1, 2). Then $D = a'D_1^2 + b'D_1D_2 + c'D_2^2$. If a' = c' = 0, then dim T = 2p - 1. We may thus assume

$$D = D_1^2 + a D_1 D_2 + b D_2^2$$
 with a, b in K .

To an element $\Delta = \sum_{i,j=1}^{p} a_{i,j} D_2^{i-1} D_1^{j-1}$ of Diff (K/k^p) we associate a (p, p)-matrix $\rho(\Delta) = (a_{i,j})$. Then ρ is an isomorphism from Diff (K/k^p) to the set $\mathfrak{M}(K; p, p)$ of (p, p)-matrices with coefficients in K as vector spaces over K. Then

$$\rho(D) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & a & \\ b & & 0 \end{pmatrix}.$$

Let I be the left ideal Diff $(K/k^p) \cdot D$ of the ring Diff (K/k^p) . Then $\rho(\Delta_{i,j})$ is of the form

$$\begin{pmatrix} j \\ \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & * & \cdots & * & 0 \\ * & * & \cdots & * & 0 \\ \vdots & \vdots & & \vdots & & \\ * & * & * & 1 & \cdots \\ * & * & \cdots & * & a & 0 \\ * & * & \cdots & * & b & 0 & 0 \\ \vdots & \vdots & & & \vdots & \vdots \\ 0 & & & & 0 \end{pmatrix} \cdots i$$

where $\Delta_{i,j} = D_2^{i-1}D_1^{j-3}D$ is an element of I $(1 \leq i \leq p, 3 \leq j \leq p)$. Since $\rho(\Delta_{i,j})$ $(i = 1, \dots, p, j = 3, \dots, p)$ are linearly independent over K, we have $\dim_K I \geq p(p-2)$.

By a theorem of Jacobson, we can identify the ring $\text{Diff}(K/k^p)$ with $\text{Hom}_{k^p}(K, K)$. Let $\pi: K \to K/T$ be the natural projection and let n =

 $\dim_{k^p} T$. From the exact sequence

$$0 \longrightarrow \operatorname{Hom}_{k^{p}}(K/T, K) \xrightarrow{\pi^{*}} \operatorname{Hom}_{k^{p}}(K, K) \longrightarrow \operatorname{Hom}_{k^{p}}(T, K) \longrightarrow 0$$

get $\pi^*(\operatorname{Hom}_{k^p}(K/T,K)) \supset I$ and $\dim_{K} \operatorname{Hom}_{k^{p}}(K/T,K) =$ we $\dim_{K} \operatorname{Hom}_{k^{p}}(K, K) - \dim_{K} \operatorname{Hom}_{k^{p}}(T, K) = p^{2} - n.$ Thus $p^2 - n =$ $\dim_{\kappa} \operatorname{Hom}(K/T, K) \ge \dim_{\kappa} I \ge p(p-2)$. Hence $n \le 2p$ and we get (1). Moreover n = 2p if and only if $\dim_{\kappa} I = p(p-2)$, hence I is generated by $\Delta_{i,j}$ $(i = 1 \cdots p, j = 3 \cdots p)$ as a K-vector space. To show (2) it is sufficient to show the existence of $D_0 \in \text{Der}(K/k^p)$ with $D = u \cdot D_0^2$, since $2p = \dim_{k^p} \ker (D) = \dim_{k^p} \ker (D_0^2) \leq 2 \dim_{k^p} \ker (D_0) \leq 2p.$ Hence dim ker $(D_0) = p$ and Im $(D_0) \supset$ ker $(D_0) \ni 1$. Thus we can find such c_1, c_2 that $D_0(c_1) = 0, D_0(c_2) = 1$, and $k^p(c_1, c_2) = K$. In order to seek such D_0 , we use a primitive method depending on complicated calculations, of which we indicate only an outline below.

Since
$$\rho(D_1^{p-2}D) = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & * & \cdots & * & a \\ * & \cdots & * & b & 0 \\ 0 \end{pmatrix}$$
 is in $\rho(I)$, we can write
 $\rho(D_1^{p-2}D) = \sum_{\substack{1 \le i \le p \\ 2 \le j \le p}} x(i,j) \cdot \rho(\mathcal{A}_{i,j}) \quad \text{with} \quad x(i,j) \in K.$

Comparing the (i, p - i + 2)-components $(i = 2, \dots, p)$ of both sides, we get

 $(a^2 - 4b)^{1/2(p-1)} = 0$, hence $b = (\frac{1}{2}a)^2$. Thus

$$D = (D_1 + \frac{1}{2}aD_2)^2 - \frac{1}{2}(D_1(a) + \frac{1}{2}aD_2(a))D_2 .$$

Similarly $\rho(I) \ni \rho(D_1^{p-1}D) = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 0 & * & \cdots & * & , (p-1)D_1(a) \\ * & \cdots & * & (p-1)\frac{1}{2}aD_1(a), (\frac{1}{2}a)^2 \\ & 0 \end{pmatrix}$

is of the form $\sum_{\substack{1 \leq i \leq p \\ 3 \leq j \leq p}} y(i, j) \cdot \rho(\mathcal{A}_{i,j})$ with $y(i, j) \in K$. From the comparison of the (i, p - i + 3)-components $(i = 3, \dots, p)$ and (i, p - i + 2)-components $(i = 2, \dots, p)$, we get

$$(\frac{1}{2}a)^{p-2}(D_1(a) + (\frac{1}{2}a)D_2(a)) = 0$$
.

If a = 0, then $D = D_1^2$, and if $D_1(a) + (\frac{1}{2}a)D_2(a) = 0$, then $D = (D_1 + \frac{1}{2}aD_2)^2$. Thus Lemma 2.9 is proved.

GROUP SCHEMES

Remark 2.10. In general let m(e) be the smallest dimension of Hschemes whose exponents are not less than e. By Lemma 2.7 we have $m(1) \leq m(2) \leq \cdots \leq m(e) \leq \cdots$. It is quite likely that $m(e) = 2p^e - 1$. This is in fact the case for e = 1 as we saw in Theorem 2.8, as well as for e = 0 (for obvious reasons). Now let $H = H(k \cdot f, \sum_{\alpha} k^p \cdot X_{\alpha})$ be an H-scheme with e(H) = 1 and $f = \sum_{\alpha} a_{\alpha} X_{\alpha}$, which is associated with a closed point. Suppose there exists a p-basis Λ of k over k^p such that a_{α} 's are in $k^{p^2}(\Lambda')$ with $\Lambda' \subseteq \Lambda$. Let c be an element of Λ not in Λ' , and define

$$F = \sum_{eta=0}^{p-1} (c^p)^{eta} f_{eta}$$
 with $f_{eta} = \sum_{lpha} a_{lpha} Y_{lpha,eta}$.

Then $H_2 = H(k \cdot F, \sum_{\alpha,\beta} k^{p^2} \cdot Y_{\alpha,\beta})$ is an *H*-scheme with $e(H_2) = 2$ and is associated with a closed point. If we take the *H*-scheme in Example 2.1 as *H*, then H_2 is an *H*-scheme with $e(H_2) = 2$ and dim $H_2 = 2p^2 - 1$. Thus inductively we can construct examples H_2, H_3, \dots, H_e such that

$$e(H_e) = e$$
 and $\dim H_e = 2p^e - 1$.

Obviously we no longer have the uniqueness of type when e > 1.

REFERENCES

- H. Hironaka, Certain numerical characters of singularities, J. Math. Kyoto Univ., 10 (1970), 151-187.
- [2] —, Additive groups associated with points of a projective space, Ann. of Math., 92 (1970), 327-334.
- [3] T. Oda, Hironaka's additive group scheme, A volume dedicated to Prof. Y. Akizuki's 70th birthday.

Tokyo-Shibaura Electric, Inc.