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HIRONAKA'S ADDITIVE GROUP SCHEMES

HIROYUKI MIZUTANI

In [1] and [2], Hironaka referred to the importance of an additive

group scheme BPnP, which is associated with a point p in Pn, in con-

nection with the resolution of singularities in characteristic p > 0. Also

he showed that if the dimension of BPnP is not greater than p, then it

is a vector group.

By Oda [3], these schemes can be characterized in terms of vector

spaces and differential operators of the coefficient field, as we recall in

section 1. Moreover Oda classified these schemes in dimension ^ 5 com-

pletely and conjectured that;

(1) If dim BPn^ < 2p — 1, then it is a vector group,

(2) If dimBPntP = 2p — 1 and BPnP is not a vector group, then its

type is unique.

In this paper we see that this conjecture is true, using some tools

in Oda [3].

The author wishes to thank Professor T. Oda who taught this con-

cept to him and gave him many suggestions.

Section 1.

Let S = k[XQ, , X«] = Σ s™, pn = Proj (S), and p e Pn. A graded

subalgebra UQp) = Σm^o Um(p) of S is defined as follows:

Um(p) = {f\feSm, mult, (Proj (S/fS)) ^ m} .

Then U(p) is generated as a λ -algebra by purely inseparable forms in

S, i.e. elements of the form aQXf + + anXξe with ^ekyP = ch(A ).

(See [2], Th. 1, Cor.)

DEFINITION 1.1. A Hironaka scheme BPntP associated with p in Pn

is a homogeneous additive subgroup scheme of the vector group Spec(S)

defined by
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BPntP = Spec (S/ UM S) , where U+(p) = ΣQ Um(p) .

For simplicity, we call BPniP the ίf-scheme associated with p.

In order to mention the following theorem, which is the main theorem

of Oda's characterization in [3], we recall some terminologies.

(a) L = 2 Lt is a graded fc-subspace of S9 where L* is the subset

of Spi consisting of all the purely inseparable forms of degree p\ Then

L is a graded left MF]-module, with F acting as the p-th power map.

(b) Diff(fc) and Diffm(fc) are the left fc-vector spaces of differential

operators over Z of k into itself, and those of order <Lm9 respectively.

When V is a subset of Le, the following vector subspaces of Le are

defined for i < e:

= Diffp^ (k)V

(c) When Q = ΣQi is a graded left fc[F]-submodule of L, we can

find an integer e such that Qi+1 = k-FQi (i ^ e) and Qe ~^ k'FQe_λ. We
ψ

call such e the exponent of Q and write e(Q). We define the exponent

of BM to be e(t7(ίp) Π L).

(d) We call p in Pn the most generic point associated with an H-

scheme B in Spec (S) when BPnV = β and an arbitrary }/ e Pn, which

satisfies BPny = B, contains p.

Remark 1.2. B is a vector group if and only if the exponent of B

equals 0.

THEOREM 1.3. (Oda [3], Th. 2.5). Let N be a graded left k[F]-

submodule of L. Then Spec (S/N S) is an H-scheme of exponent e if

and only if e(N) = e,Ne Q Le,JίeS)e{Ne) = Ne and N = radL (k[F]Ne)9

where we define radL (Q) = {f e L\ there exists a non-negative integer j

such that FjfeQ}. Moreover γaάs(@e(Ne)>S) is the most generic point

associated with Spec (S/N-S) and dim (Spec (S/N S)) = dimk (Le/Ne).

By this theorem ίf-schemes can be written in terms of vector spaces

and differential operators as follows:

(*) Let W be a finite dimensional /^-vector space and let V be a

fc-subspace of k®W, with q — pe. Then an iϊ-scheme of exponent e is
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in one to one correspondence with a pair (F, W) satisfying the following
conditions:

( i ) jr9sB<y) = v,
(ii) VQk®mW,
(iii) F a ft(F Π (ft* <g)w TF)) if e ^ 1 .

Here dim (iϊ-scheme) = dim* (fc(g)w W/V). Since Diffg^ft) acts trivially
on ft9, it is considered to act on ft (x)fcg W through the first factor. In
this paper H(V, W) means an iϊ-scheme which is determined by a pair
(F, W) satisfying (i) (ii) (iii). Also, when e ^ 1, we sometimes assume
the condition (iv) below for the sake of convenience,

(iv) F Π W = 0 and W is minimal (i.e. ft (x)kq W 7$ F, for any
proper ft^-subspace W of W).
The former condition of (iv) means that we are dealing with the smallest
ambient vector group containing the iϊ-scheme, and the latter means
that we neglect the part of the vector group when we represent the
i/-scheme as (vector group) x (not vector group).

Remark 1.4. When e ^ 1, it is evident that if (F, W) satisfies (iii)
then (F, W) automatically satisfies (ii).

(F, W) and (F', W) are said to be of the same type when there
exist a field automorphism σ of k and a A^-semi-linear isomorphism
ψ: W ->W such that the induced map a (x) ψ: k (g)Λβ W —> k ®kq W sends
F onto F7.

Section 2.

EXAMPLE 2.1. (See Oda [3].) Let W be a fc^-vector space of dim W
= 2φ with basis Xi9Zi (ί ~ 0, ,p — 1). Let Cj and c2 be elements of
k, p-independent over kp. If F = ft./ with / = 2f=ox ci(^ί + c2Zi)> then
jff = -ff(F, W) is an ίί-scheme of exponent e(H) = 1 and dimiϊ — 2p — 1.
Furthermore ^ ( F ) - ΣU k-(Xt + ti'^cJZ^) Θ Σf"0

2 k-(Z, - c f 1 - ^ ^ ) .
The iϊ-scheme corresponding to this pair is

Spec(k[xi9Zi\
\ /

Σ cite? +
i=0

with xu Zi (i = 0, , p — 1) indeterminates. This is the most typical
example of those ίf-schemes which are not vector groups and associated
with a closed point in P2j>-i
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Now let TF* be the dual space of a fc9-vector space W with q = pe.

Since Diff^ (fc) acts on k ®kq W*, we can define @f and JΓf in the same

way as ^ and Jit for i ^ e.

DEFINITION 2.2. For a pair (F, If) we define (F*, W*) to be a pair

where IF* is the dual A^-vector space of W and F* = ^ ( F ) 1 . We define

conditions (i*) (ii*) (iii*) (iv*) in the same way as in (*) of § 1.

LEMMA 2.3. (Oda [3], Lemma 2.8.). For a k-subspace U of k (x)^ W,

we have

= 9*(U1) and ^(C/) 1 = Jίf(U1-) .

LEMMA 2.4. When q = pe and qf — pe' with ef ^ e, we have 2e(V)

Proof. Since fc F is a finite dimensional k-vector space, we can

choose a base fβ (j3 = 1, ,s). There exists a finite set cιy ,c m of

elements of A:, p-independent over fcp so that K = fc^Cc^ , cm) contains

the coefficients of / , (j3 = 1, , s). Since Diflf^i (fe)F = fc

it is enough to show

Let Dtj (1 ^ i ^ m, 0 ^ j <̂  e — 1) be the fc^-linear map of K into itself

defined by

,(π cή =

Then J5ίy is a differential operator of K over kq of order p^. Moreover

Di/s commute with each other. When ti3 (1 ^ i ^ m, 0 ^ j ^ e — 1)

vary among integers satisfying

0 ^ ί t i ^ p - 1 -

and

Σ

the operators D = f| DtjtiJ (1 ^ i ^ wι, 0 ^ < e) form a #-basis of

e_! (K/kq). Then we see easily that Z) can be written as D'Ό" with
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D' in Diffβ_β, (K/kq) and D" in Diffa,_! (X/fe9). Thus the lemma is proved.

PROPOSITION 2.5. (V, WO satisfies (i) 0/ (*) in §1 i/ and only if

(F*,* W*) satisfies (i*). Under this condition, when e ^> 1, (F, W) satisfies

(iii) (resp. (iv)) i/ and onϊi/ i/ (V*, W*) satisfies (iii*) (rβsp. (iv*)).

Proo/. If J^e^eCF) = 7, we have by Lemma 2.3 2*(y*)L =

- Λ^Φβ(V) = 7, and ^r*S*(7*) - JίHY^) = SβOO1 - V*. Thus the

equivalence of (i) and (i*) is proved. To prove the equivalence of (iii)

(resp. (iv)) with (iii*) (resp. (iv*)) it is enough to show the only if parts.

If F* = fc. (F* Π (kp <g> W*))y then we have ^*(F*) = fc C^*(F*) Π (fc* <g) W*))

by the fact in the proof of Lemma 2.4. Thus VL = k-(VL Π (kp (g> W*))

and V = k (V Π (kp (x) WO), and hence (iii) and (iii*) are equivalent. If

(V, WO satisfies (i), we have V Π W = ®e(V) Π W7 and similarly in the

dual space F* Π W* = 7^-0 W* by the remark below Proposition 3.1

in Oda [3]. Thus W is not minimal if and only if there exists 0 ψ

/ e F such that <F,/> = 0, i.e. if and only if {0} Φ VL Π W* - F* Π W7*.

Thus W is minimal if and only if F* Π W7* = {0}. By the duality the

equivalence of (iv) and (iv*) is proved.

Thus, when e ^ 1, we can associate the dual iϊ-scheme H(V*, W*),

which we denote also by H*, with H = H(V, W). Evidently we have

e(H) = e(H*) and ίί** - H.

As was seen in Oda [3], F Π W = S e(7) (Ί Ŵ  is one of the handiest

necessary conditions for a pair (F, WO to correspond to an iϊ-scheme.

LEMMA 2.6. (Oda [3], Proposition 3.1.) Let H = H(V, W) be an H-

scheme with dim H = d, e(H) = e ami* dimfc (F) = v. Then there exists a

kpe-basiδ {Xί9 Yj}{i=h...^j=h...yV) of W and a k-basis {fj}j=h...,v of V such that

fj = Yj + cljXι + + CajXafaj e k) and Jίe^e{fj) - Jc fj.

Moreover we can choose fx so that Hx = H(k- f19 kpeΎ^ Σ?^ kpe-X^ is

an H-scheme with dim H1 = d and e(flΊ) — e.

LEMMA 2.7. Let H = ίf(F, W7) &e a^ H-scheme with e(H) ̂  1. When

0 ^ ex ^ β, ίΓ = J?(F, Ψ0 is an H-scheme with e(H') = e7 and dim fί7 =

dim if, w/^βrβ W7 = W ®kPe W.

Proof, The conditions (ii) (iii) of (*) being trivially verified, it is

enough to show that JΓe,9e,(y) = V if Jfe9e(V) = F. By Lemma 2.4

above and Lemma 2.9 in Oda [3], we have 3]

eJ/\,9>(F) =
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Όifίpe_pe, (k)$e,Λ*e,$e,(V) = Ώifίpe_pe, (Jc)®AV) = ®e(V). Thus JTt.9..W) c

^e^eiV) = V. The inverse inclusion is trivial. The exponent and the

dimension are easy to calculate.

This lemma means that the image Hf of H by the Frobenius morphism

Fe~e' of the ambient vector group defined by (x0, , xn) -> (xf~e\ , xfe')

is again ίf-scheme of exponent e'.

THEOREM 2.8. // H = H(V, W) is not a vector group (i.e. e(H) ^ 1),

then dimJϊ >̂ 2p — 1. Moreover if d imi ϊ = 2p — 1 and H is not a

vector group with V Π W = {0}, then H is of the same type as Example

2.1.

Proof. Let m be the smallest dimension of iϊ-schemes with positive

exponents. Then by Lemma 2.6 and Lemma 2.7 there exists Hf =

H(k f, W) such that dimHf = m and e(Hf) = 1. Moreover it is an im-

mediate consequence of the minimality of m that Hf satisfies (iv) of

(*), hence in particular ^ ( / ) ΓΊ W = {0}. Now let us observe dimen-

sions over k of the sequence

Oi% (k)f c Diff2 (k)f a . a Όiflp^ (k)f = 3x{f) .

We claim dimfc Diffi+1 (k)f ^ dimfc Diff, (k)f + 2 (i = 0, . . . , p - 2). If

dimfc Diff; (fc)/ — ί, then we may assume that Diff* (&)/ is generated by

Xj + hj 0" = 0, , ί — 1) over fc, where hό is a fc-linear combination

of Xt, ,Xm and {Z^}yss0>...iTO is a fcp-basis of W. We define c(g) to be

the fcp-vector subspace of k spanned by the coefficients of g e k (g)tP W.

There are the following three possibilities:

(1) There exists j (0 <̂  j < ί) such that there is no intermediate

subfield of the form kv(a) containing c(Xj + hj). In this case, we may

assume that there exist D19D2 in Όer(k/kp) with D^Xj + hj) — Xt + hf

and D2(Xj + h3) = Xt+ι + h", where h! and h" are linear combinations

of Z ί + 2 , ,Xm. The above statement is obvious in this case.

(2) For each j there exists an intermediate subfield kv{a3) contain-

ing c(Xj + hj).

(i) If there exist j φ f such that kp(a,j) Φ kp(ar), then we can

choose Dj9Dj, in Der(fc/fcp) satisfying Dj(aj) — 1 and Dr{ar) = 1. It is

enough to show that Dj(hj) and Dr(h3,) are linearly independent over k.

If Dj(hj) = U'D3 ,(hr) with %e &, then

hj)) = u-c(D3,(hr)) C ft*(α,) Π u>kp(ay) .



GROUP SCHEMES 91

But it is easy to show that

ΛP(fcp(α,) Π u ^ { r ^

Hence we readily get a contradiction in view of the property 2dx(f) Π W

= {0}.

(ii) For all , kp{a3) = kp(a) with aek .

Then &,(/) = fc ( W ) Π (kp(a) <8> WO) and thus we have (&•/)* - fc •((&•/)*

Π (fcp(α) (8) WO), since (fc / ) * = ^ ( / H . Hence (fc / ) 1 = ^?((fc /)*) =

k-(@f((k-f)*) Π (Mα)(x) FT)). Thus we may assume c(f) c fc^(a). If Z>

is a derivation with D(d) = 1, there exists an integer s <̂  p — 1 such

that Ds(f) Φ o and Ds+ι(f) = 0. So 0 =£ Z)s(/) e @x(f) Π W, a contradic-

tion. Hence (ii) does not happen.

Thus we conclude that dim ^ ( / ) ^ 2p — 1 and dim W ^>2p. Hence

dim Hf — dim W — dim k-f ^ 2p — 1 and m ^ 2p — 1. But the dimen-

sion of the iϊ-scheme in Example 2.1 is 2p — 1, hence m = 2p — 1. The

first part of the theorem is thus proved. Now let us prove the second

part of Theorem 2.5. When p = 2, Hironaka already proved this

theorem (Hironaka [2], Th. 3.). From now on we assume p Φ 2.

Step (I): The case where the ίί-scheme is of the form H = H(k / , W)

with d imi ϊ — 2p — 1 and e(iϊ) = 1. (Then H automatically satisfies (iv)

of (*).) In this case the codimension of 2^f) in fc(x)fc2> W equals 1, i.e.

the most generic point associated with H is a closed point, since dimkPW

= dim TF* = 2p and (&•/)* =£ 0, thus 2p - 1 ^ dimiϊ* < 2p, hence

d i m ί P = 2p - 1 and coding ^ ( / ) = dimfc (A;./)* = 1. By the proof of

the first part, the sequence of the dimensions of k-fcz Diίfx (fc)/ c

c Diffp.j (fc)/ is necessarily 1,3, 5, , 2p — 1. In particular

dim Diff! (k)f = 3 and dim Diff2 (k)f = 5 .

We put K = kp(c(f)). Then [Z: fcp] = p2, since dim Diffx (fc)/ = r + 1 if

[K: kp] = p\ Since Diff* (k)f = fc Diff, (K/kp)f with arbitrary i ^ 0,

we have

dim, Diff2 (k)f = dim,, Diίf2 (K/kp)f = 5 .

But άimκΌif£2 (K/kp) = 6, thus there exists J9 in Όif£2 (K/kp) such that

D Φ 0 and D(/) = 0. Since W is minimal, we have

c(f) = dimfcP W = 2p .
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We may assume c(f) 3 1. Hence by Lemma 2.9 below there exists DQ

in Der (K/kp) such that D = u D2

0 with ueK and D^c,) = 0, D0(c2) = 1

where K = kp(c19 c2). Thus

and £Γ is of the same type as Example 2.1.

Step (II): The general case H = H(V, W) with dim H = 2p - 1,

= 1, and 7 Π PF = {0}. Then ίf-schemes H, = Jϊ(fc./,-, k*Yj Θ ΣJϊΓ1 &p Xύ

of dimension 2#> — 1 in Lemma 2.6 0* = 1, , v) have exponent e(H3) — 1,

since 7 Γ) W7 — {0}. Thus the codimension of ^ ( 7 ) in A: ® W is 1, since

by the proof of step (I) ^(fj) are of codimension one in kp Yό 0 Σ ^ Γ 1 kpXj

and have the property ^(fj) Γϊ W = {0} for all /. Hence 7* = A;-/*

and dim^fC/*) = dim 7 1 = d imi ϊ = 2p — 1. By applying the proof of

the first part to H(k-f*9W*), we have

dim Diffx (&)/* - 3 and dim Diff2 (fc)/* = 5 .

Thus by Lemma 2.9 below dim c(/*) ^ 2p. Since 7 Π W = {0} if and

only if W* is minimal, we have 2p ^ dim c(f*) — dim T7* = dim W,

hence dim V = v = 1. (II) is thus reduced to (I).

Step (III): The case H = H{V, W) where dim H = 2p - 1 and e(H)

= e > 1. If there exists such i ϊ (7 , W), then by Lemma 2.6 there exists

H' =: H(k-f,W) with dim2ϊ/ = 2 p - l and e(ίP) = e satisfying (iv).

Then by Lemma 2.7 and the minimality of 2p - 1, H" = H(k f,W;/)

satisfies dim iϊ^ = 229-1, e(jff/7) = 1 and (iv), where W" = A:̂  (x)fepe T77.

Thus by (I) H" is of the same type as Example 2.1. But it is easy to

calculate that

0β(jf) => Diffp (fc)/ = * ®*p T77/ = k (g)kpe W .

Thus we have a contradiction to the property @e(f) Π W — {0}.

It remains to prove the following lemma to conclude the proof of

Theorem 2.8.

LEMMA 2.9. Let k =) K D kp with [K: kp] = p2 and p Φ 2, and Zeί

D 5β a^ element of Diff2(E:/fcp) M t t D ^ 0 and JD(1) = 0. ΓAen D

satisfies the followings:

(1) dinifcp ker (D) ^ 2p wfeen D is considered to be a kv-linear map

from K to itself,
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(2) the equality holds if and only if there exists D o eDer (K/kp)

with the property DQ{cλ) — 0 and DQ(c2) = 1 where kp(cly c2) = K, such that

D — u*Ώ\ with ue K.

Proof. We put T = ker (D) c K. Then T contains 1. If T is con-

tained in a proper subfield of K, then (1) is obvious. Otherwise we may

choose elements tx and ί2 of T with kp(tu ί2) = X. Let A> A> be elements

of Όer(K/kp) defined by JD ί (t i )=δ ί , i (i,y = l,2). Then Ό ^afO\^bfOxO2

+ cfΏ\. If α' = c' — 0, then dim Γ — 2p — 1. We may thus assume

D = Dl + aDxD2 + bD\ with α, b in if .

To an element Δ = Σ i , ; ^ ^ , ^ " 1 ^ " 1 o f Diff (iί/fc3') we associate a (p,p)-

matrix^(J) = (aitJ). Then p is an isomorphism from Diff (K/kp) to the

set Wl(K;p,p) of (2>, ̂ -matrices with coefficients in K as vector spaces

over K. Then

Let I be the left ideal Diff (K/kp)-D of the ring Diff (K/kp). Then

is of the form

0 0
0 *

0 0
* 0
* 0

* 0 o
* * 1 . . .
* * a 0
* . . . * b 0 0

0 0

where ΔitJ = D\-ιD{-zD is an element of / (1 <; i 5g p,3 <Ξ> y ^ p). Since

/oCΛj) (i — 1> > P> J — 3, , p) are linearly independent over K> we

have dim^ I ^ p(p ~ 2).

By a theorem of Jacobson, we can identify the ring Diff (K/kp) with

HomfcP (K, K). Let π: K-* K/T be the natural projection and let n —
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diπifcp T. From the exact sequence

0 > HomfcP (K/T, K) - ^ > HomfcP (K, K) > HomfeP (Γ, X) > 0

we get π*(HomΛa, (X/Γ, K)) z> / and dim* Horn*, (K/T, K) =

dim* Hom w (if, Z) — dim* Hom w (Γ, K) — p2 — n. Thus p2 — n =

dim* Horn (K/T, K) ^ dim* I ^p(p - 2). Hence n ^ 2p and we get (1).

Moreover n — 2φ if and only if dim* / = p(p — 2), hence / is generated

by Jij (ί = 1 p,j = 3 p) as a If-vector space. To show (2) it is

sufficient to show the existence of DoeΌer(K/kp) with D — u D2

Q, since

2p = dim** ker (D) = dimfcP ker (D$ ^ 2 dimfcP ker (Do) ^ 2p. Hence

dim ker (Do) — p and Im (Do) 3 ker φ 0 ) s 1. Thus we can find such c:, c2

that DoίCi) = 0,Z>o(̂ 2) = 1> and kp(cl9c2) = if. In order to seek such J90,

we use a primitive method depending on complicated calculations, of

which we indicate only an outline below.

0\
a\

π is in ^(7), we can write
Ill

, ) with a?(i, i ) e K .

Comparing the (i, p — ί + 2)-components (i = 2, , p) of both sides, we

get

Since

pΦΓ

P
1*\

0

rrr

0

Σ *(i

(α2 - 46)1/2(^-1) - 0, hence b = (^α)2. Thus

) + \aD2{a))D2 .

/O 0 0

o i i ^ /n. in. 1° * * , (p - 1)A(«) |
Similarly p(I) a PΦΓιD) = | „ . . . # ( p _

0

is of the form 2 y(i,j) p(d{J) with y(i,j)eK. From the comparison of

the (i,p — i + 3)-components (i = 3, -,p) and (ί,p — ί + 2)-components

(i = 2, . , p), we get

βα)*-2(A(α) + (iα)A(α)) = 0 .

If α = 0, then Z) = Z)?, and if D^a) + (ia)D2(a) = 0, then D = (D, + iaD2)
2.

Thus Lemma 2.9 is proved.
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Remark 2.10. In general let m(e) be the smallest dimension of H-
schemes whose exponents are not less than β. By Lemma 2.7 we have
m(l) ^ ra(2) ^ <; m(e) ^ . It is quite likely that m(β) = 2pe - 1.
This is in fact the case for e = 1 as we saw in Theorem 2.8, as well
as for e = 0 (for obvious reasons). Now let H — H(k>f,Σak

p-Xa) be
an iϊ-scheme with e(H) = 1 and / — Σ« α«X«, which is associated with
a closed point. Suppose there exists a p-basis A of k over &p such that
αα's are in kv\Af) with yd7 £ Λ. Let c be an element of A not in Λ',
and define

£ V with jr, = Σαβr..,.
α

Then iϊ2 = H(k F,Σa^k*%-YaJ is an ίf-scheme with e(H2) = 2 and is
associated with a closed point. If we take the ίf-scheme in Example
2.1 as Jϊ, then H2 is an ίf-scheme with e(H2) — 2 and dimiϊ2 = 2p2 — 1.
Thus inductively we can construct examples H2, J5Γ3, , He such that

e(He) = e and dim He = 2pe - 1 .

Obviously we no longer have the uniqueness of type when e > 1.
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