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HIRONAKA’S ADDITIVE GROUP SCHEMES
HIROYUKI MIZUTANI

In [1] and [2], Hironaka referred to the importance of an additive
group scheme B, ,, which is associated with a point p in P,, in con-
nection with the resolution of singularities in characteristic p > 0. Also
he showed that if the dimension of B, , is not greater than p, then it
is a vector group.

By Oda [3], these schemes can be characterized in terms of vector
spaces and differential operators of the coefficient field, as we recall in
section 1. Moreover Oda classified these schemes in dimension <5 com-
pletely and conjectured that;

1) If dimB,,, <2p — 1, then it is a vector group,

(2 If dmB,,,=2p —1 and B,,, is not a vector group, then its
type is unique.

In this paper we see that this conjecture is true, using some tools
in Oda [3].

The author wishes to thank Professor T. Oda who taught this con-
cept to him and gave him many suggestions.

Section 1.

Let S = kl[X,, -, X, 1=2] S, P, = Proj(S), and peP,. A graded

mz0
subalgebra U(p) = > 0 Un(p) of S is defined as follows:
U,(p) = {f|feSn mult, (Proj (S/fS)) = m} .
Then U(p) is generated as a k-algebra by purely inseparable forms in
S, i.e. elements of the form a,X?° -+ --- 4 a,X2° with a,¢k,p = ch(k).
(See [2], Th. 1, Cor.)

DEeFINITION 1.1. A Hironaka scheme B, , associated with p in P,
is a homogeneous additive subgroup scheme of the vector group Spec(S)
defined by ’
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B,,, = Spec (S/U.(»):8),  where U.(t) = 33 Un(p) -

For simplicity, we call B, , the H-scheme associated with p.

In order to mention the following theorem, which is the main theorem
of Oda’s characterization in [3], we recall some terminologies.

(a) L= Z_O, L, is a graded k-subspace of S, where L, is the subset

of S,: consisting of all the purely inseparable forms of degree p’. Then
L is a graded left kK[Fl-module, with F' acting as the p-th power map.

(b) Diff(k) and Diff,,(k) are the left k-vector spaces of differential
operators over Z of k into itself, and those of order <m, respectively.
When V is a subset of L,, the following vector subspaces of L, are
defined for 7 < e:

2,V) = Diff,._, (k)V
N(V) = {f]feLiygi(f) o k'V} .
(c) When Q = > @, is a graded left k[F]-submodule of L, we can

120

find an integer e such that Q;,, = k-FQ; (i=e) and Q. D k-FQ,_,. We
*

call such e the exponent of @ and write ¢(Q). We define the exponent
of B, , to be e(U(p) N L).

(d) We call p in P, the most generic point associated with an H-
scheme B in Spec(S) when B, ,= B and an arbitrary e P,, which
satisfies B, , = B, contains p.

Remark 1.2. B is a vector group if and only if the exponent of B
equals 0.

THEOREM 1.3. (Oda [3], Th. 2.5). Let N be a graded left Kk[F]-
submodule of L. Then Spec(S/N-.S) is an H-scheme of exponent e if
and only if e(N)=e,N,C Lo, /. 2,N,) =N, and N = rad, (k[FIN,),
where we define rad, (Q) = {f € L|there exists a nmon-negative integer j
such that FifeQ}. Moreover rads (2.N,)-S) ts the most generic point
associated with Spec (S/N-S) and dim (Spec (S/N-S)) = dim, (L./N,).

By this theorem H-schemes can be written in terms of vector spaces
and differential operators as follows:

(*) Let W be a finite dimensional k?¢-vector space and let V be a
k-subspace of lc%? W, with ¢ = p°. Then an H-scheme of exponent e is
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in one to one correspondence with a pair (V, W) satisfying the following
conditions:

(i) H#2,(V)=7V,

(i) VSk@uW,

i) V2 rV N FK QW) ifex>1.
Here dim (H-scheme) = dim; (k¥ Q.. W/V). Since Diff,_,(k) acts trivially
on k% it is considered to act on k &y, W through the first factor. In
this paper H(V, W) means an H-scheme which is determined by a pair
(V, W) satisfying (i) (ii) (iii). Also, when ¢ > 1, we sometimes assume
the condition (iv) below for the sake of convenience,

iv) VN W =0 and W is minimal (i.e. k Qi W 5V, for any
proper k?-subspace W’ of W).
The former condition of (iv) means that we are dealing with the smallest
ambient vector group containing the H-scheme, and the latter means
that we neglect the part of the vector group when we represent the
H-scheme as (vector group) X (not vector group).

Remark 1.4. When e = 1, it is evident that if (V, W) satisfies (iii)
then (V, W) automatically satisfies (ii).

(V, W) and (V’,W’) are said to be of the same type when there
exist a field automorphism ¢ of k& and a k%semi-linear isomorphism
v : W — W’ such that the induced map ¢ @ v : k Qe W — k Rre W sends
V onto V.

Section 2.

ExAMPLE 2.1. (See Oda [3].) Let W be a kP-vector space of dim W
= 2p with basis X;,Z; ¢ =0,---,p —1). Let ¢, and ¢, be elements of
k, p-independent over k?. If V =k.f with f = > 77 (X, + ¢,Z;), then
H = H(V,W) is an H-scheme of exponent e¢(H) =1 and dimH = 2p — 1.
Furthermore 2,(V) = > 75 k- (X, + ¢?™ie,Z, ) @ 223 k- (Z; — 277 Z, ).
The H-scheme corresponding to this pair is

Spec (k[xiy zi]/il ci(x? + Cﬂ”) ’
=0

with «;,2; ¢ =0, ---, p — 1) indeterminates. This is the most typical
example of those H-schemes which are not vector groups and associated
with a closed point in P,,_,.
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Now let W* be the dual space of a k?vector space W with ¢ = p°.
Since Diff,_, (k) acts on k ®i W*, we can define 2} and 47* in the same
way as 2; and A4, for i < e.

DEFINITION 2.2. For a pair (V,W) we define (V*, W*) to be a pair
where W#* is the dual k?vector space of W and V* = 2,(V)L. We define
conditions (i*) (ii*) (iii*) (iv*) in the same way as in (*) of §1.

LEMMA 2.3. (Oda [3], Lemma 2.8.). For a k-subspace U of k Q. W,
we have

N (L = 25(UY) and 2,(0)* = /¥UL) .

LEMMA 2.4. When q = p® and ¢ = p* with ¢ < e, we have 2,V)
= Diff,_,.(k)2.(V).

Proof. Since k-V is a finite dimensional k-vector space, we can
choose a base f, (8=1,.--,8). There exists a finite set ¢, ---,¢c, of
elements of k, p-independent over k? so that K = ke, -, c,) contains
the coefficients of f, (3 =1, ---,s). Since Diff,_, (k)V = k-Diff,_(K/k)V,
it is enough to show

Diff,_, (K/k?) = Diff,_,, (K/k9 Diff,._, (K/E%) .

Let D;; A <i<m,0=<j<e—1) be the k%linear map of K into itself
defined by

0 . <p?)
D, ( 2:) = b i ta
I 1§U§m ¢ (pj)ci‘ »! 1§U§m C, (t; = p9).
aFi

Then D, is a differential operator of K over k? of order p/. Moreover
D;;s commute with each other. When ¢;; A1 =<i=m,0=j7<e—1
vary among integers satisfying

0<t,<p—1.

and

> typ! =p—1,
1gis=m
0sj<e

the operators D =[] D, A1<i1<m,0<j<e) form a K-basis of
Diff,_, (K/k?). Then we see easily that D can be written as D'D” with
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D’ in Diff,_, (K/k% and D” in Diff,,_, (K/k%). Thus the lemma is proved.

PROPOSITION 2.5. (V,W) satisfies (i) of (*) in §1 if and only if
(V*, W*) satisfies (i*). Under this condition, when e = 1, (V, W) satisfies
(iii) (resp. (iv)) if and only if (V*, W*) satisfies (iii*) (resp. (iv*)).

Proof. If ¥/ 2,V) =7V, wehave by Lemma 2.3 25(V*)L = 9¥(9,(V)4)*+
= N2,V) =V, and NFDXV*) = N/ VL) = D,(V)- = V*. Thus the
equivalence of (i) and (i*) is proved. To prove the equivalence of (iii)
(resp. (iv)) with (iii*) (resp. (iv*)) it is enough to show the only if parts.
If V¥=Fk-(V*N (k* ® W*)), then we have 9¥(V*) = k- (2¥(V*) N (k? Q W*))
by the fact in the proof of Lemma 2.4. Thus V+ = k- (Vi N (k* ® W*))
and V=k-(V N (k» ® W)), and hence (iii) and (iii*) are equivalent. If
(V, W) satisfies (i), we have VN W = 2,(V) N W and similarly in the
dual space V¥ N W* = VL N W* by the remark below Proposition 3.1
in Oda [38]. Thus W is not minimal if and only if there exists 0 =
f e W* such that (V, > = 0, i.e. if and only if {0} = V1 N W* = V* N W*.
Thus W is minimal if and only if V* N W* = {0}. By the duality the
equivalence of (iv) and (iv*) is proved.

Thus, when ¢ = 1, we can associate the dual H-scheme H(V*, W*),
which we denote also by H*, with H = H(V,W). Evidently we have
e(H) = e(H*) and H** = H.

Aswasseenin Oda [8], VN W = 92,V) N W is one of the handiest
necessary conditions for a pair (V, W) to correspond to an H-scheme.

LEMMA 2.6. (Oda [3], Proposition 3.1.) Let H = H(V,W) be an H-
scheme with dim H = d,e(H) = ¢ and dim, (V) = v. Then there exists o
kP-basis {X;, Y }iar o, jo1,0em OF W oand a k-basis {f,};....., of V such that

fj = Y] + Clel + et + cd]Xd(C’L] 6 k) and Mege(fj) = k'fj.
Moreover we can choose f, so that H, = H(k-f,k*- Y, ® > ¢, k- X,) is
an H-scheme with dim H, = d and e(H, = e.

LEMMA 2.7. Let H = H(V,W) be an H-scheme with e(H) = 1. When
0Ze e, H =HWV,W) is an H-scheme with e(H) = ¢ and dim H =
dim H, where W' = k** Qupe W.

Proof. The conditions (ii) (iii) of (*) being trivially verified, it is
enough to show that 4, 2,(V) =V if /,2,(V)=V. By Lemma 2.4
above and Lemma 2.9 in Oda [3], we have 9,4,2,(V)=
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Diff je_per ()P oo N ¢ Do (V) = Difte_per (B)2,(V) = 2,(V). Thus 4,.2,(V)C
N2,(V) =7V. The inverse inclusion is trivial. The exponent and the
dimension are easy to calculate.

This lemma means that the image H’ of H by the Frobenius morphism
Fe=¢ of the ambient vector group defined by (x,, - - -, @) — (@™, - -+, 22°™%)
is again H-scheme of exponent ¢’.

THEOREM 2.8. If H = H(V,W) is not a vector group (i.e. e(H) = 1),
then dimH = 2p — 1. Moreover if dimH =2p —1 and H is not «
vector group with V N W = {0}, then H is of the same type as Example
2.1.

Proof. Let m be the smallest dimension of H-schemes with positive
exponents. Then by Lemma 2.6 and Lemma 2.7 there exists H; =
H(k- f, W) such that dim H;, = m and e(H;) = 1. Moreover it is an im-
mediate consequence of the minimality of m that H, satisfies (iv) of
(*), hence in particular 2,(f) N W = {0}. Now let us observe dimen-
sions over k of the sequence

k-f c Dift, (b)f < Dift,(k)f < ... < Diff,_, (B)f = 2,(f) .

We claim dim, Diff, , (k)f = dim, Diff, (k)f +2 (¢ =0,..-.,p —2). If
dim, Diff; (k)f = t, then we may assume that Diff; (k)f is generated by
X;+h; (=0,---,t—1) over k, where h; is a k-linear combination
of X;,---,X, and {X,;},_,.., is a kP-basis of W. We define c¢(g) to be
the kr-vector subspace of &k spanned by the coefficients of gek Qi W.
There are the following three possibilities:

(1) There exists 7 07 < t) such that there is no intermediate
subfield of the form k?(a) containing ¢(X; + ;). In this case, we may
assume that there exist D,, D, in Der (k/k?) with D(X; + h) = X, + W/
and D(X; + hy) = X,,, + I/, where I/ and Rh” are linear combinations
of X,,, - -,X,. The above statement is obvious in this case.

(2) For each j there exists an intermediate subfield k?(a;) contain-
ing e(X; + hy).

(i) If there exist j #+ j/ such that k®(a,) #+ k?(a;), then we can
choose D, D, in Der (k/k?) satisfying D;(e;)) =1 and D,(a;) = 1. It is
enough to show that D,(h,;) and D;(h,) are linearly independent over %.
If Dy(h;) = u-D;(h;) with wek, then

cD(h) = u-c(D;(h;)) C E2(ay) N u-k2(a;) .
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But it is easy to show that
dimy, (k*(ay) N w-k7(a;) < 1.

Hence we readily get a contradiction in view of the property 2,(f/) N W
= {0}.
(i) For all j,k%(a;) = k*(a) with aeck.

Then 2,(f) = k-(2,(f) N (kP(a) ® W)) and thus we have (k- f)* = k- (k- f)*
N (k*(@) @ W), since (k- N)* = 2,(NH*. Hence (k- )t = 2F(k- 1)) =
k-(2F(k- H*) N (kP(a) ® W)). Thus we may assume c(f) C k?(a). If D
is a derivation with D(a) = 1, there exists an integer s < p — 1 such
that D*(f) # o and D**'(f) = 0. So 0 # D(f) € 2,(f) N W, a contradic-
tion. Hence (ii) does not happen.

Thus we conclude that dim 2,(f) = 2p — 1 and dim W = 2p. Hence
dimH; =dimW —dimk-f =22p —1land m = 2p — 1. But the dimen-
sion of the H-scheme in Example 2.1 is 2p — 1, hence m = 2p — 1. The
first part of the theorem is thus proved. Now let us prove the second
part of Theorem 2.5. When p = 2, Hironaka already proved this
theorem (Hironaka [2], Th. 3.). From now on we assume p #* 2.

Step (I): The case where the H-scheme is of the form H = H(k- f, W)
with dim H = 2p — 1 and e(H) = 1. (Then H automatically satisfies (iv)
of (*).) In this case the codimension of 2,(f) in k X, W equals 1, i.e.
the most generic point associated with H is a closed point, since dim,, W
=dimW*=2p and (k-f)* %0, thus 2p — 1< dim H* < 2p, hence
dim H* = 2p — 1 and codim, 2,(f) = dim,, (k- f)* = 1. By the proof of
the first part, the sequence of the dimensions of k.f < Diff, (k)f C --.
c Diff,_, (k)f is necessarily 1,3,5,---,2p — 1. In particular

dim Diff, (k)f =3 and dim Diff,(k)f =5.
We put K = kP(c(f)). Then [K: k?] = p?, since dim Diff, (k)f =» + 1 if

[K: k?] =pr. Since Diff; (k)f = k.Diff, (K/k?)f with arbitrary ¢ =0,
we have

dim, Diff, (k) f = dimy Diff, (K/k?)f =5 .

But dimg Diff, (K/k?) = 6, thus there exists D in Diff, (K/k?) such that
D =+ 0 and D(f) = 0. Since W is minimal, we have

dim;, ¢(f) = dim,, W = 2p .
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We may assume c¢(f)s1. Hence by Lemma 2.9 below there exists D,
in Der (K/k?) such that D = u-D; with ue K and Dy(c) =0, Di(c) =1
where K = k?(¢,, ¢,). Thus

C(f) = kp(cx) (‘B C,e kp(cx) s
and H is of the same type as Example 2.1.

Step (I): The general case H = H(V, W) with dim H = 2p — 1, e(H)
=1,and VN W ={0}. Then H-schemes H; = H(k-f;, k*Y,;® > 27" k?- X))
of dimension 2p — 1 in Lemma 2.6 (f = 1, - - -, v) have exponent e(H,) =1,
since VN W = {0}. Thus the codimension of 2,(V) in k® W is 1, since
by the proof of step (I) 2,(f,) are of codimension one in k?-Y; @ > 227" kX
and have the property 2,(f) N W = {0} for all j. Hence V* =k.f*
and dim 2¥(f*) = dim V' = dim H = 2p — 1. By applying the proof of
the first part to H(k- f*, W*), we have

dim Diff, (k)f* =3 and dim Diff,(k)f* =5.

Thus by Lemma 2.9 below dim ¢(f*) < 2p. Since V N W = {0} if and
only if W* is minimal, we have 2p = dim ¢(f*) = dim W* = dim W,
hence dimV = v = 1. (I is thus reduced to (I).

Step (III): The case H = H(V, W) where dim H =2p — 1 and e(H)
=e¢ > 1. If there exists such H(V, W), then by Lemma 2.6 there exists
H = H(k-f,W) with dimH =2p — 1 and e(H’) = e satisfying (iv).
Then by Lemma 2.7 and the minimality of 2p — 1, H' = H(k-f, W")
satisfies dimH” =2p — 1, e(H”) =1 and (iv), where W" = k? R W'.
Thus by (I) H” is of the same type as Example 2.1. But it is easy to
calculate that

2.f) DDIff, (B f =k Ruo W' =k Qo W’ .

Thus we have a contradiction to the property 2.(f) N W’ = {0}.
It remains to prove the following lemma to conclude the proof of
Theorem 2.8.

LEMMA 2.9. Let kD K Dk, with [K: k,] =p* and p + 2, and let
D be an element of Diff,(K/k,) with D+ 0 and D(1)=0. Then D
satisfies the followings:

1) dimg, ker (D) < 2p when D is considered to be a kP-linear map
from K to itself,
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@) the equality holds if and only if there exists D,e Der (K/k?)
with the property Dyc,) = 0 and Dyc,) = 1 where k*(c,, ¢,) = K, such that
D =wu-D: with ue K.

Proof. WeputT =ker (D) C K. Then T contains 1. If T is con-
tained in a proper subfield of K, then (1) is obvious. Otherwise we may
choose elements ¢, and ¢, of T with k?({,,t,) = K. Let D,, D, be elements
of Der (K/k?) defined by D(t;) =4, ; (t,7=1,2). Then D=a'Di+0'D,D,
+c¢Di: O If ' =¢ =0, then dimT =2p — 1. We may thus assume

D =D+ aDD, + bD} with b in K.

To an element 4 = >3?,_, a, ;D;'D{™ of Diff (K/k?) we associate a (p, p)-
matrix o(4) = (a;,;). Then p is an isomorphism from Diff (K/k?) to the
set MK ; p,p) of (p,p)-matrices with coefficients in K as vector spaces
over K. Then
0 0 1
0 a
o(D) = b
0

Let I be the left ideal Diff (K/k?)-D of the ring Diff (K/k?). Then p(4; ;)
is of the form

J

)
0 0 cvevennens 0 0
[ « 0
B e £ 0

¥ 0

* ok O .1

KOk e e x a 0
x.--x b 0 0

0 0)

where 4, ; = Di=*D{=*D is an element of ] 1 <{<p,3 <j<p). Since
od,) G=1,---,p,7=3,..-,p) are linearly independent over K, we
have dimgz I = p(p — 2).

By a theorem of Jacobson, we can identify the ring Diff (K/k?) with
Hom,, (K,K). Let zn:K — K/T be the natural projection and let n =
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dim,, T. From the exact sequence

0 —> Homy, (KT, K) —> Hom,, (K, K) —> Hom,, (T, K) —> 0

we get ~*(Hom,, (K/T,K)) D I and dimgz Hom,, (K/T, K) =
dim; Hom,, (K, K) — dim; Hom,, (T, K) = p* — n. Thus Pt —n =
dimgz Hom (K/T,K) = dimgz I = p(p — 2). Hence n < 2p and we get (1).
Moreover n = 2p if and only if dimyz I = p(p — 2), hence I is generated
by 4;,; ¢=1---p,j =3 ---p) as a K-vector space. To show (2) it is
sufficient to show the existence of D, e Der (K/k?) with D = u-Dj}, since
2p = dim,, ker (D) = dim,, ker (D?) < 2dim,, ker (D,) < 2p. Hence
dim ker (D)) = p and Im (D,) D ker (D) 51. Thus we can find such ¢, ¢,
that Dy(e) = 0, D,(¢,) = 1, and k®(¢,,¢,) = K. In order to seek such D,
we use a primitive method depending on complicated calculations, of
which we indicate only an outline below.

0 0 cvveeen. 0
..... a
Since o(D}~*D) = | * s Z o] is in pD), we can write
0
p(D?*D) = > =@, )-p(4;) with 2@, )HeK .
1Sisp
3=j=sp

Comparing the (¢,p — ¢ + 2)-components (¢ = 2, ...,p) of both sides, we
get

(af — 4b)2?-Y = (, hence b = (3a)®. Thus
D = (D, + }aD,)’ — ¥(D\(0) + }aD,(a))D, .

0 0 vvvrrrnnnnnnans 0
e L 0 % .vvee * , (@ — DD(a)
Similarly o(I) » p(D}™'D) = ¥ - %  (p — DiaD(a), Ga)?
0
is of the form 3 (i, j)-p(4; ) with ¥(,7) € K. From the comparison of

1sis
3sisyp

the (¢,p — ¢ + 3)-components (¢t = 3, ---,p) and (Z,p — ¢ + 2)-components
t=2,---,p), we get
Ga)?*(Dy(a) + Ga)Dy(a)) = 0.

If @ = 0, then D = D3, and if D,(a) + (}3a)D,(a) = 0, then D = (D, + }aD,)*.
Thus Lemma 2.9 is proved.
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Remark 2.10. In general let m(e) be the smallest dimension of H-
schemes whose exponents are not less than e. By Lemma 2.7 we have
ml) <m@) < - <mle) < -... It is quite likely that m(e) = 2p® — 1.
This is in fact the case for ¢ = 1 as we saw in Theorem 2.8, as well
as for ¢ = 0 (for obvious reasons). Now let H = H(k-f,> . k?-X,) be
an H-scheme with e(H) =1 and f = >],a,X,, which is associated with
a closed point. Suppose there exists a p-basis 4 of k over k? such that
a.’s are in kP(A") with 4/ € 4. Let ¢ be an element of /4 not in A/,
and define

M

F=5 (e, with f,=>aY.,.
B=0 «

Then H,= H(k-F,};, k- Y,,) is an H-scheme with e(H, = 2 and is
associated with a closed point. If we take the H-scheme in Example
2.1 as H, then H, is an H-scheme with e(H,) = 2 and dim H, = 2p* — 1.
Thus inductively we can construct examples H,, H,, -- -, H, such that

e(H,) =¢ and dimH,=2p°* —1.

Obviously we no longer have the uniqueness of type when e¢ > 1.

REFERENCES

[1]1 H. Hironaka, Certain numerical characters of singularities, J. Math. Kyoto Univ.,
10 (1970), 151-187.

[2] ——, Additive groups associated with points of a projective space, Ann. of Math,,
92 (1970), 327-334.

[ 8] T. Oda, Hironaka’s additive group scheme, A volume dedicated to Prof. Y. Akizuki’s
70th birthday.

Tokyo-Shibaure Electric, Inc.








