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ON SOME DEGENERATE PARABOLIC EQUATIONS II

TADATO MATSUZAWA

§ 1. Introduction. In the article I: [8], we have proved the hypo-

ellipticity of a degenerate parabolic equation of the form:

(1.1) Pu = *L - a(x, t)^L + b(x, t)^L + c(x, t)u = / ,
dt dx2 dx

where the coefficients a(x, t), b(x,t) and c(x, t) are complex valued smooth

functions. The fundamental assumption on the coefficients is that

&ed(x,t) satisfies the condition of Nirenberg and Treves ([8], (1.5)). To

prove the hypoellipticity we have constructed recurcively the parametrices

as pseudodifferential operators with parameter. This method may be

viewed as an improvement of that of [9] and [7]. We have analyzed

the properties of these parametrices by estimating the symbols with

parameter associated with the given operator. We shall summerize these

results in §3.

The aim of this paper is to solve the Cauchy problem for an equa-

tion of the type (1.1). To this end, we shall apply the Levi method,

which is described in detail in the book [2], Ch. 9.

The first step is to construct the fundamental solution starting with

the above mentioned parametrices (§ 4, § 5). There we need to obtain

the precise estimates of the singularity of parametrices. Those estimates

are derived by observing the order of the corresponding symbols more

precisely than [8]. The difficulty arises in constructing the fundamental

solution since the singularity of the derivative of the first parametrix

can no longer be integrable. We shall be able to obtain the fundamental

solution as a solution of an integral equation by using the μ-th parametrix

with μ sufficiently large (§ 5). As soon as the fundamental solution is

obtained, we can prove the existence of the solution of the Cauchy

problem by forming the integral expression (§6).
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The second step is to prove the uniqueness of the solution. The

estimates of the derivatives of the fundamental solution are not available

yet, so, in § 7, we shall make use of the method of [1] to prove the

uniqueness of the solution, where it is necessary to assume all the

coefficients of P are real valued. We shall therefore assume that the

coefficients α, 5, c are real valued smooth functions throughout this

paper, while such an assumption is not necessary in the first step, namely

in constructing the fundamental solution. The precise condition and the

formulation of the Cauchy problem will be prescribed in § 2. These two

steps will prove Theorem 2.1 which is our main result.

Finally, we remark that the degenerate Cauchy problem for a wide

class of equations has been treated in [11], [12] by the method of elliptic

regularization, and in [6] by using the method of semi-group theory.

Our approach is based on the application of the theory of pseudo-

differential operators for a classical treatment of the parabolic equations.

§ 2. Main results. Let a(x, t), b(x, t) and c(x, t) be real valued in-

finitely differentiable functions defined in R x /, / = [0, T], T > 0, and

satisfy the following conditions:

For any integer m ;> 0, \D%a(x,t)\, \D™b(x,t)\ and \D™c(x,t)\ are

bounded in R x / where D™ = —^—

dxm

(2.2) a(x, t) ^ 0 in R x /

there exist an integer σ ^ 1 and a real number δ > 0 such that
(2.3) ft

a(x, τ)dτ ^ δ(t - t')σ x e R , O ^ f ^ ί ^ Γ ;
if

(2.4) I ax{x, t) I ̂  Ca(x, t)ι/2 i n f i x / ;

\b(x91)\ ̂  Ca(x, t)1/2 in R x /, where C denotes a positive
(2.5)

constant

Under these conditions, we shall solve the following Cauchy problem:

Pu = — - a(x, t)^- + b(x91)— + c(x, t)u = f(x, t)
(2.6) dt dx2 dt

in f ix (0, T) ,

(2.7) u(x, 0) = ψ{x) on R ,
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where fix, t) is a measurable function in R x I and φ(x) is a continuous

function in R.

By a solution of (2.6), (2.7) we mean a function u = u(x, t) in

C(R X /) which satisfies the equation (2.6) in the distribution sense in

R x (0, T) and satisfies the initial condition (2.7) in the usual sense.

Our main result is the following.

THEOREM 2.1. Let f(x,t) be a measurable function in R x I and

<p(x) be a continuous function in R and assume that

(2.8) | / ( 3 , t)\ ^ M exp [k \x\2] a.e. in R x I ,

(2.9) \φ(x)\ ^ M exp [k \x\2] in R

for some positive constants M and k. Then there exists a solution

u(x,t) of the Cauchy problem (2.6), (2.7) in the strip R x [0 5g t <Ξ ί0],

where t0 (0 < t0 ^ T) is α constant depending on the operator P and where

(2.10) |M(α, ί ) | ^ const, exp [A/ \x\2] in R x [0 ^ ί ^ ί0]

/or some constant kf. The solution is unique in the class of continuous

functions satisfying (2.10) with some constant k'. Furthermore the solu-

tion u(x, t) is in C°°(R X [0 < t <; t0]) if f(x, t) is in C°°(R x /).

In § 6, we shall prove the existence part of this theorem, and in § 7

we shall prove the uniqueness of the solution. We remark that the

solution exists in the whole strip R x [0, T] if we replace the condition

(2.8), (2.9) by

(2.87) | / (a , t)\^M exp [Jc \x\2~β] a.e. in R x I ,

(2.90 \φ(x)\ ^ M exp [k |x|2"β] in R, ε > 0 .

E X A M P L E : The coefficients of the operator

Pk - J L _ (t* + e - 1 / | Λ | ) — + £ C ( * + 1 ) / 2 : l — + const., Λ integer > 0
dt dx2 dx

satisfy the conditions (2.1)^(2.5) in Rx x [0, T] (T > 0) with σ = A; + 1.

§ 3. Application of the results of the article I: [8]

We can construct the parametrices for the operator P as in [8] under

the conditions (2.1) ~ (2.5). We note that we have treated the case where

a = 2£ + 1, t :> 0 and the coefficients α, 6, c have been assumed to be
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complex valued functions (in [8]). We recall the procedure in the fol-
lowing. We set

L1 = -ξΓ + a(x, t)ξ2 ,
ot

L2 = -iζa(x, t ) J L - a(x, ί ) -^- + b(x, t)(^- + iξ) + c(x, t) ,
dx dx2 \dx I

for {x,t,ξ)eRx X / X Rr Consider the problem:

/ o ^ L.X, = ( 4 - + a(-x> t)ξ2)κ0(x, ξ t, if) = 0 in Rx x R, x Δ ,
(O,Λ.) \ ot /

Δ = {(ί, ί7) 0 ^ t7 < t ^ Γ} ,

(3.2) ZoO^f M O U = 1,

(3.3) X0(^,f; ί,f) = 0 if 0 ^ ί < f ^ Γ .

Then we have the solution

if(3.4) X0(s,£;t0 =
0 when 0 ^ t < tf ^ T .

We note that the notion of the set Δ is slightly different from that of
[8]. For j = 0,1,2, ••• we define recurcively the symbol functions
Kj(x, ξ t, tθ as the solution of the problem:

(3.5) LxKj+ι(x, ξ t, tf) = —L2Kj(x, ξ t, ίθ in Rx x Rξ x J ,

(3.6) X, + 1 ( s ,£ ; t , t0 | ί β l ί , - 0 ,

(3.7) Xi+i(», f t, ί7) = 0 if 0 ^ t < ί ; ^ Γ .

The K/s satisfy.

— Ko(^> ξ >̂ s)L2Kj(x, ξ s, tOds ,

(3.8) KJ+ι(x, ξ t, tθ = '' (Xf ξf ^ v) e R χ X R ξ X j

0 , when 0 ^ t < ί' ^ Γ .

As in [8], we have the following proposition:

PROPOSITION 3.1. (c/. [8], Prop. 4.1, Prop. 5.1) For any ε > 0 αwd
for any integer a and β !Ξ> 0, we foαw
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(3.9) Kj(x, ξ t, tf) e S(Δ S—(RX X Rt)) Π Π <̂ P(Λ SlffJij/ iR, X Λf)) ,

J = 0,1,2,...,

(3.10) \(K0(x, ξ ί, tθ - 1)(1 + |f |)-fi zt 0 m ^ χ ί f as t[ f ,

fy)(l + |f |)<-><-I))/*-'P+«+J/.-.| z> 0 in|(D

Rx X Rξ as t i t ' for 0 ^ p < j .

For the notations in the proposition we refer to the article [8].
By virtue of Proposition 3.1, for every j ;> 0, we can define a dis-

tribution Xj — 3fj{x, y, t, V) e @'(RX X Ry X It X If) by an oscillatory
integral:

(3.12) jfjix, y, t, tf) - (2ττ)-1/2 Γ e«*-™K£x, ξ t, f)d? .
J -oo

As in [8], we can show that

( i ) Px,twr0 + + jrμ] = δ(χ - y), t - t') + (2π)~1/2 Γ e^-^L2Kμ
J - o o

(a;, ξ t, t')dξ in Rx x Ry x 7£ x 7£- ,

( i i ) JΓ/ίc, ?/, t, t θ 6 C-(1F) , j = 0 , 1 , 2 , . - . ,

Ψ = { ( x , 2/, t , t ' ) e R x χ R v χ l χ l ; \ x - y \ + \ t - f | > 0 }

(iii) Jfj(x,y,t,t') is very regular in the sense of Schwartz [15],

j — 0,1,2, , that is to mean the mappings

iV, tθ «-* JJ ̂ /* , V, t, t')ψ(y, t')dydt' ,
RXl

<p(x, βπ> 3fj(x, y, t, tf)φ(x, t)dxdt
R l

define linear continuous transformations from @{R x /) into $(R x /).
These are extended to the linear continuous transformation from if{JR x /)
into Q)\R x /) by continuity (cf. [8], Prop. 4.2).

(iv) the second term in the right of (i) is also very regular and
becomes smoother in Rx x Ry x / x I according as μ becomes
larger.

From these facts we obtain the following theorem.
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THEOREM 3.1. (cf. [8], Theorem 1.1). The operator P is hypoelliptic

in the strip R x I.

§ 4. Precise estimates of D™Jfj(x,y, t, * ) , m,j = 0,1,2, .

We set

A = A(x, t, tθ = α(£, τ)dr (a;, t, tθ e R x Δ ,

J = {(t,ίO|O^ f < t ^ T}.

Then by the assumptions (2.1)~(2.4) we have

(4.1) δ(t - ty ^ A(x, t, t θ ^ C ( t - ί θ (x> t,t')eRχΔ ,

(4.2) I Γ ax(x,τ)dτ ^ d ( t - f)1/2A1/2 ^ C2(ί - tθ («, t,t')eR X Δ .

In the following we use the symbols C, C1? C2, to express the different

positive constants.

Now we recall that

rt π _

6 Rx X R X Δ ,Λ , ^ (exp f - Γ α(», τ)dτ. f 21 (a?, f, t, ίθ

[ 0 0 ^ t < tf ^ Γ .

Substituting ξ by ζ = ξ + iη e C, we can extend the domain of Ko to the

v ( r . +A f e χ P Γ Γ α ( x ? r ) d τ ( f + i y l A > ( x , ζ , t , t ' ) e R χ C χ Δ ,
K0(x,ζ; t, tθ = I LJί' J

[ 0 0 ^ t < f ^ Γ .

LEMMA 4.1. ((cf. [8], Prop. 4.1) For ewr?/ integer m ^> 0 we have

(4.3) |Z>?lίΓo(3, C t, tθ I ̂  Cm(l + If I + \η\)™-™" exp [~Mf 2 +

(a?, ζ, t, tθ e J2 X C X Δ ,

where Cm9δί,δ2 are positive constants depending only on m.

Proof. For m = 0, we easily have

(4.4) |ίΓ0(3, ζ t, tθI - exp [-Af2 + A?2] , (t, f) e i .

For a positive integer m, D™K0(x, ζ t, tθ is expressed as a linear com-

bination of terms
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(4.5) Π ( D™(ί)a(x, τ)dτ(ξ + iη)2) exp — a(x9 τ)dτ(ξ + iη)2

0 < m{j\ ma) + + mU) + = m .

We are now ready to analyse each factor in (4.5). For a factor with

= 1 we see by (4.2)

αx(x, τ)dτ(ξ +

Then by (4.1) we have

^ C(t - ί' (i, ί ' ) e J .

(ί - t'ψWψ exp [-δ.Aξ2]

^ |f|(-»/ ((ί - t'Yξψt'iAξψ2 exp [-(4.6)

for any ε such that 0 < e < δx. Similarly we have

(4.7) (t - fOwAvy exp [M^2] = C, l^r'-^ exp [(ί, +

with some positive constants CΊ and C2. Next, for a factor with
we have

^ 2

^ C(t - f

^ C(\ξ\mσ-ί))/σ

Hence we have, as above, for m(j) ^ 2

(4.8)

Dfs)a(x,τ)dτ(ξ + iη exp [- +
i exp [-(δ, - ε)Af2 + (32 + QA^2] ,

0<e<δ1.

The assumption (2.1) has been assumed throughout the proof of Lemma
4.1, while we have used the same symbols C1,C2,δ1,δ2, although they
differ in different cases. Combining (4.6), (4.7) and (4.8) we prove
Lemma 4.1.

Now wτe recall that

KJ+ι(xfξ;t91f) =
?, ξ ί, s)L2Kj(x, ξ s, t')ds , it, f ) e J ,

0 0 ^ V < t ^ Γ ,

where
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L2 = ~iξa(x, t ) A - a(x, t)-^- + b(x, t)(-A- + iξ) + c(x, t) .
dx dx2 \dx /

We can also extend the domain of Kj+ι(x,ξ; t, f) by substituting f be

C = f + «?•

LEMMA 4.2. (c/. [8], Prop. 5.1) We have

\D™Kj(x, C ί, f ) | ^ Cw,,(l + |fI + |9|)<«<-i»/-i/ exp l-δ.Aξ2 +

{x, ζ, t, V) e R x C X Δ , y, m = 0 , 1 , 2 , . ,

where the constants CmJ, ^ and δ2 depend only on m and j .

Proof. We shall use mathematical induction in /. By Lemma 4.1

we have the result in the case j = 0. Assume the inequality (4.9) for

some j ^ 0 to estimate D™Kj+ί for m = 0,1,2, :

Z??Xi+1(3, C t, tf) = -Z>? £ X0(a?, C t, s)L2Kj(x, ζ s, t7)

(4.10) = -

. Γ Z)

It suffices to estimate some typical terms in the last expression, and

other terms will be treated similarly:

(i) By Lemma 4.1 and by the assumption on K3 we have

I$>β = \^D™-aK0(x, ζ t, s)D"Ma{x, s)DxKj(x, ζ s, t')ds

^ Σ (a)Γ |βϊ-α^o(^,C t,β)Dr'+ 1x/s,c s,ODJCΛ?,

β=o\ β IU'
H If I | | ) < » ^ > < " / ' - ' / ' exp [ - M f 2 + δ2A

As in the proof of Lemma 4.1 we will estimate each term in the last

summation. For the term with β = 0 we have

)dτ(\ξ\ + \η\)



DEGENERATE PARABOLIC EQUATIONS 69

^ CXI + Ifl + |9 |)(««».-»/-ί/-i exp [ - & - ε)Af2 + (δ2 + C2)AV

2]

(0 < s < δλ)

= 0,(1 + \ξ\ + |,|)c»<-»/.-u+i>/ exp [- f t - ε)Af2 + (δ2 + C2)AV

2] .

For the term with β — 1, applying (4.2) we have

(1 + |f I + |7|)(»(.-»>/-i/. exp f - 8tA? + δ2Aη2]^\ax{x,τ)\ dτ(\ξ\ + \v\)

^ C,(l + If I + |,|)<»<-»>-«+»/ exp [-(δ^Aξ2 + (δ2 + C2)AV

!] .

We use (4.8), then the terms with β 3: 2 are bounded by

^ (1 + If! + |7|)<»"-'»/-y+»

Thus we have

(4.11) /™. ^ C(l + |f| + |3?|)(»<-»>/-w+»/ exp [-

with some constants C, ^ and δ2 depending only on m,j.

(ii) We have

);-JΓβ(a!, ζ ί, s)D°Mb(x, s)Kj(x, ζ s, t')ds

^ Σ f " ) Γ \D*~aKo(x, C t, s)D^KJ(x, ζ s, t')Dίb(x, β)| ds(\ξ\ + \v\)
β-0 \ β /Jt>

^ C± (1 + If I + |9|)<™-'><-»/-ί/ .exp [ - M f 2 + M>?2]

• f \Dib(x>S)\dsQξ\ + \v\) .

We will estimate the term with β = 0:

/ = (1 + |f I + |5?|)
(™('-1»/'-^exp[-δ1Af2 + δ2Av

2]- ^\b(x,s)\ ds(\ξ\ + \η\) .

By the assumption (2.5) we have

Γ \b(x,8)\ ds(\ξ\ + \η\) ^ C(t - ίO1/2A^(|f| + \η\)
if

S C(\ξ\-V' + \η\~v')((t - t')°(ξ2 + ηψ

Then we have

^ C,(l + |f I + |J7|)t»t-")-y+i)/ exp [-(δ, - ε)Af2 + (δ2 + C2)AV

2]

(0 < ε < δt) .
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To estimate the terms with ^ 1 we use the assumption (2.1).

// = Σ (1 = |f I + \η\γ*-w-w exp ί-dAξ2 + d2Aη2]

. Γ \Dtb(x,8)\dsQξ\
Jt'

If I + |,|)<«-i><-»/-;/' exp [-M? 2 + W l (t ~
(ί - fxie i + \v\) ^ c(\ξ\ + \v\y-"/σ((t - mf 2 + vw

σ.

Thus we have

II £ 0,(1 + |f I + |,|)<m<-i»/*-u+i>/ exp [-(δ, - ε)Af2 + (δ2 + C2)Aη2] .

Combining the above two estimates we have

(4.12) 72>β ^ Cil + |f I + |,|)(*(-i))/-(i+v exp [-δ.Aξ2 + W] ,

where C, δλ and ^2 depend only on m and j .

To complete the proof of Lemma 4.2, it remains to estimate the

terms:

D™ f' K0(x, ζ t, s)α(x, s)D2,X/^, ζ s, f)dβ ,

Z)J Γ K0(x, ζ ί, 8)b(x, s)DxKj(x, ζ s, V)ds ,

JSΓ0(», ζ ί, s)c(x, s)X/aj, ζ s, f )ds

which are treated in the same manner as above and we get Lemma 4.2.

Using Lemma 4.2 we shall obtain the precise estimate of X'j:

M, V, t, V) = (2ττ)-1/2 J e^-^Kjix, f ί, t')dξ (3.12) .

THEOREM 4.3. For every integers m, j ^ 0 £fce following inequality

holds:

|<D?-#\(a, V, t, t')\ ^ CA^ / 2 σ- ( 1 + m ) / 2 exp Γ ~c^x ~ VΏ ,
(4.13) L A J

(x,y,t,t')eR x R x A

where C and c are positive constants depending only on m and j .

Proof. We can easily see that Kj(x,ζ; t,tf), m, j = 0,1, , are

entire functions in ζ, ζ e C. Using Gauchy's theorem and the inequality

(4.9), we find that
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(4.14) X j(x,y,t,V) = (2π)"1/2f e
J Rξ

iη t,t')dξ

is independent of η, and hence, it coincides with the functions Jfs defined

in (3.12) for 0 ^ t' < t ^ T. We have

, y, t, f) = (2π)"I/2 Σ (
«=o \ a

. Γ ei(*-ynξ+iv)(iξ _ ψ n - ' D l K j i x , ξ + i η ; t , t')dξ , O ^ V < t ^ T .
J Rξ

We shall analyse each term of the right side. Using (4.9) again we set

I f e«x-v)<*+w(fc _ η)n-D xKj(x, ξ + iη t, tf)dξ
\J R

Rξ

^ de-^-v* exp [32AV

2] f (1 + If \)m~j/σ exp
J Rξ

+ C e - " - " * | 9 | m - ^ exp [δ2Av

2] f exp [-

= / + //.
Take

(4.15) η =

Then we obtain

As for // we have

, ί, ί')

' exp
AδΛ

= C"A-1/2exp
2<S2A

1/2

) e x p Γ _ (a - ^ ) 2 1
L 5<S2A J

§ 5. Construction of the fundamental solution.

As in t h e book [2], we give the following definition.

Q.E.D.
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DEFINITION 5.1. A fundamental solution of Pu = 0 in Rx x / is a

function Γ(x, y, t, f) defined in Rx x Ry x Δ which satisfies the following

conditions:

( i) for fixed (y, t'), Γ is, as a function of (x, t) (x e R, 0 ^ t' < t ^ Γ),

a solution of the equation Pu — 0

(ii) it holds that

(5.1) lim I Γ(x, y, t, tf)φ{y)dy = ψ{x) , xeRx ,
t\t' J Ry

for every continuous function <p(x) such that

(5.2) ^(aOI ^ const, exp [hx2] , Λ > 0 .

LEMMA 5.1. Let φ(x) be a continuous function satisfying (5.2) with

some positive constant h. Then we have

(5.3) lim Jfo(x, y, t, t')φ(y)dy = ψix) , x e Rx ,

(5.4) lim I JT/α;, y, t, t;)φ{y)dy = Q,xeRx , j = 1,2, .

Proof. We can easily see that

, V, t, If) = —i= exp ί-
2VA L
—i= exp ί /
2VτrA L 4 A

Then it follows that

Γ Xlx, y, t, t')dy = 1 .
J — σo

Thus we have

jfo(^, y, ί, tr)φ{y)dy = ^(x) + jfo(#, j/ , t, ί'X^d/) - φ{x))dy
J -oo J -oo

The integral 7 is divided into two parts: /x with \y — x\ < δ and 72

with \y - x\ ^ 3, and take a such that \f(y) — f(x)\ < e if \y - x| < δ.

Here ε is any fixed positive number, and δ is a fixed positive number

depending on ε. If we use the estimate (4.13) we obtain

(5.5) Γ I jfo(α?, y, t, f)| # ^ C 0 ^ t7 < t ^ Γ ,
J —oo
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where C is independent of t, f. Similarly we see that

(5.6) ί Ijfo(α?, y, t, f)\ exp [2h(x - y)2]dy -> 0 t [ tf .
J|y-a?fe«

Using (5.4) it follows that

(5.7) \1Λ\ ̂  ε f \Xlx, y, t, tf)\ dξ^C ε.
J\y-χ\<δ

Using (5.6) and the inequality

(5.8) \<p(y)\ ^ const, exp [2h(x - y)2] ,

where the constant depends on x, it is proved t h a t I2 —> 0 as t[tf (for

each fixed x). Hence |/ 2 | < e if t — tf is sufficiently small. Combining

this with (5.7) we get |/ | <k (C + l)ε if t — V is sufficiently small. Since

ε is arbi t rary, (5.3) follows.

To prove (5.4), using the inequalities (4.13) and (5.8) we have, for

any fixed x e R,

9 y, t, t')φ(y)dy exp
Cχ(x ~

A

^ CΆ(x, t, ty/2' — 0 as t i tf, j = 1,2, ,

Now we set

Eμ = | ] 3f}{x> y> *> *0 . // = 0,1,2, •••.

Then we have

P X j ί ^ = 3(a; - 2/, t - if) + (2ττ)-1/2 Γ e^-^L2Kμ{x,ξ; t, t')dξ
J - 0 0

= δ(x - y , t - tθ + Fμ(x, y, t, tf) , (§ 3, (i)) .

LEMMA 5.2. We have

(5.9) \Fμ(x, y, t, tθ\ ^ CA'3/2+fi/2σ exp Γ ^ ~ ^/)21 ? ^ = 0,1,2, ,

(a;,y,t,sOeR x R x d ,

where the constants C and c depend only on μ.

Proof. If we substitute ξ by ζ=ξ + ίηeC, then L2Kμ(x, ζ t, V) is

an entire function of ζ. By Lemma 4.2 we have
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\L2Kμ(x, ζ t, f ) | - C(l + If | + fel)2-^ exp [-

where the constants C, 32 and <52 depend only on μ. Using Cauchy's

theorem and setting η = (x — y)/2d2A(x,t,t') as in the proof of Theorem

4.3, we have the inequality (5.9).

We shall need the following lemmas.

LEMMA 5.3. (cf. [2], Ch. 1. Lemma 1.) Let f(x,y) be a continuous

function of (x, y) when x9 y bury in a compact domain S of R™ x R™ and

x Φ y, and let

ί \f(x,y)\dy->0 as ε-> 0 ,
J S(X,s)

uniformly with respect to x in S, where S(x9ε) is the intersection of S

with the ball with center x and radius ε. Then, for any bounded

measurable function g(y) in S, the (improper) integral

h(x) = I /(as, y)g(y)dy
Js

is a continuous function in S.

LEMMA 5.4. Let f(x, t) be a measurable function in R x 70, 70 =

[To, ΓJ, 0 ^ Γo < Tx ^ Γ, satisfying

(5.10) |/(a;, ί) | ^ co^sί. exp U^2] α.β. in R x 70 /or ^ ^ c(TΊ - T0)-σ

where c is chosen depending only on μ.

Then

(5.11) Φ(x, t) = Γ ί Eμ(x, y, t, t?)f(y, tf)dydtf , μ = 0,1,2, . . . ,

(5.12) ?τ(aj, t) = f f F/x, y, t, ί')/(?/, ί O ^ d ί ' , μ^2σ

are continuous functions in R x Io and

(5.13) lim Φ(x, t) = 0 , xeRx .
t i n

Furthermore, for μ ^ σ/2 we /̂ â  β ίfte following equality in the distribu-

tion sense:

(5.14) PΦ(a, ί) - f(x, t) + Ψ(x, t) in Rx (Γo, 2\) .
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Proof. We note that Φ(x, t) is called the volume potential of / with

respect to the parametrix Eμ. This is an improper integral, the integrand

having a singularity at y = x, i' = t. However the singularity is in-

tegrable. Indeed, by Theorem 4.3, we have

(5.15) \Eμ(x, y, t, t')\ ^ const. A~1/2 exp Γ- c* ( a ? " y ) Ί .

Then we have

Γ \Eμ(x, y, t, f) | dy ^ const. cμ

 1/2 .
J -oo

Hence the singularity is integrable.

If

(5-16) λ<
c(T1 - Γo)

then λ < (cβ — ε)/A by the assumption (2.3), and the integral in (5.11)

exists.

The continuity of Φ(x, t) follows by breaking the ^-integral into two

parts and treating each part separately. The continuity of the integral

corresponding to the unbounded part Dx of Ry (x is bounded away from

A) follows by a standard theorem of calculus, whereas the continuity

of the integral corresponding to the bounded part Do of Ry follows by

employing Lemma 5.3.

The continuity of ψ(x, t) is obtained similarly as above taking the

bound of λ smaller than (5.16) if necessary. Indeed, we have by (5.9)

(5.17) \Fμ(x, yt, tf)\ ^ Cf

μA-w exp [ - c«(x ~ y

if μ ;> 2σ and the singularity is integrable as above.

Remembering that

Eμ{x,y,t,tf) = 0 t<t' ,

we have (5.13) by the same consideration as above.

It remains to prove the equality (5.14). By the property (i) of § 3

it follows that if μ ^ 2σ
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Eμ(x,y,t,t')φ(y,t')dydt'

= φ(x, t) + f ί Fμ(x, y, t, t')Ψ(y, t')dydt'
J TQJ By

for any φ(xy t) e CQ(R X [ΓO, TJ). By continuity this equality holds in
the distribution sense for any bounded measurable function φ(x, t) with
compact support in R x Jo. For f(x, t) as given in Lemma 5.4, we set

\ 0 \x\>n , n = 1,2,

Then we find that

/»(<c, t) - fix, t) ,

Φn(x, t) = Γ f ί?,(a!, i/, t, t')fn(y, t')dydt' -> Φ(x, ί ) ,

Ψn(x, t) = Γ f F,(a;, i/, t, ίOΛd/, tOdydί' - Ψ(x, t)
J ToJ By

in the distribution sense as n—> oo. Thus we obtain the equality (5.14)
and this completes the proof of Lemma 5.4.

Now applying the parametrix method (cf. [2], Ch. 9), we shall con-
struct the fundamental solution Γ in the form

)dz(5.18) Γ(x, y, t, t') = Eμ(x, y, t, t') + Γ ds f Eu(x9 z, t, s)Φ(z, y, s, tr

Jt' jBz

when μ ^ 3σ.
If Φ is a function such that Lemma 5.4 can be applied to the

integral on the right hand side of (5.18), then Γ satisfies the equation
PΓ = 0 as a function of (α?,ί) (see (i) of Def. 5.1) if and only if

Φ(x, y, t, t')
(5.19) ct r

= -Fμ{xy yy t, tf) - \ ds\ Fμ(x9 zy t, s)Φ(z, y9 s, t')dz(t > if) .
J t' J Bz

The following series is a formal solution of (5.19):

(5.20) Φ(x, y, t, tf) = ± Φm(x, y, t, tf) ,
m = l

where Φλ = Fμ and

(5.21) φm(x9 y, t> f) = I ds \ Φ^x, z, t, s)Φm_x(z, y, s, tf)dz , m ^ 2 .
J t' J B2
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Setting aμ = —(JL - 3), μ ^ 3<x, we have by (5.9)

(5.22) |F,I g Cl(ί - t'Y" exp [ ~ % ( a ? ~ y ) Ί -

where the constants cλ and c2 depend only on μ. Thus Fμ = Φx is a

bounded function if μ ^ 3σ.

We shall prove by induction in m that

|ΦTO+i(a?,2/,ί,*0| ^ C ^ Γ ί ί t O e x p [ ^ f
(5.23) m! L (t - ίθ

0 < A2 < c2 .

Indeed, (5.22) implies (5.23) the case m = 0. Assume (5.23) for m ^ 0,

then we have

+2ι = - ^ f Γ ds f (t - «)«/•
m\ Jt> JRZ

t — S

. exp

m !

8 — tf

Γ e χ p Γ fe ~ A2)JX - z)2 1

We can easily see

[ (/γ> /y )2 ί,y ηι |2 ~1 (/γ Λ/ j2

t — s s — f A t — V
Thus we have

~ m! L t — t' A if JRZ

. exp Γ fe - A2)(α? - ^ ι f e

aμ+i)eχγ> Γ_ ^ 2 ( ^ ~ I/)2"]
L t - f J '= (m !(m(α, + 1) + 1)

If we take Ax = max (c1? c2CT1/2), the proof of (5.23) is completed.

From (5.23) it follows that the series in (5.20) is convergent and
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that Φ satisfies (5.19). Furthermore, from the estimates of Φm (m ^ 1)
we see that

(5.24) \φ(x, y, t, tθ I ̂  A[(t - V)% exp \-
— u

where the constants A[ and A2 depend only on μ. It is then clear that
Lemma 5.4 is applied to the integral on the right hand side of (5.18)
and thus Γ satisfies the equation Px>tΓ(x,y, t, ίθ = 0 (0 ^ V < t ^ T).

The second property of fundamental solution, namely (5.1), follows
from Lemma 5.1 and the following estimate:

(5.25) Γ ds f Eμ(x, y, t, s)Φ{z, y, β, t')dz ^ C,{t - t'Y* exp ί-
J t' J Rz L t — t

where the constants CΊ and C2 depend only on μ. We have (5.25) as
follows:

I Γ ds ί EΦdz ^ const, (t - t θ α ' Γ ds[ it- s)~σ/2

\Jt' JR3

 μ it' J Rz

. exp Γ C'(x - yf _ C"{z - yfΛ ^ 4 3 )

L t - s s- V J

<; const, (ί - m . exp Γ const fa-y)Π
L t/ — T) J

. I (j- Q^σ/2(r""i)/7Q I (Ύ /y\~^ PY'

%} ι> %β -ttz ί — s

L b v J

Thus we have obtained the following theorem.

THEOREM 5.5. There exists a fundamental solution Γ(x, y, t, f) (given
in (5.18)) of Pu = 0 in Rx X / satisfying the inequality:

(5.26) \Γ(x, y, t, to I ̂  CA-v* exp Γ- c f a ~ y)*λ + C\t - tθα^
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A = a{x9 τ)dτ , a. — —\£- — 3) μ > 3<7 ,

and the constants C, c, Cf and cf depend only on μ.

§ 6. Existence of solution*

THEOREM 6.1. {Existence) Let f{x91) be a measurable function in

R X I and φ{x) be a continuous function in R and assume that

(2.8) \f{x9 t)\^M exp [kx2] a.e. in R x / ,

(2.9) \φ{x)\ ̂  M exp [kx2] in R .

Then the function

(6.1) u{x9 ί) = Γ f Γ{x9 y, t, t')f{y9 t')dydϊ + ί Γ{x9 y91,0)φ{y)dy
J Oj Ry J Ry

is a solution of the Cauchy problem (2.6), (2.7) in the strip 0 < t < t0

where tQ = min ί T , ~ j and where c is a constant depending on P, and

(6.2) \u(x, t)\ ̂  const, exp [k'x2] xeR , 0 <* t ̂  tQ 9

for some constant k'. The solution u{x91) is in C°°{R x (0, Q) if f{x91)

is in C°°{R x I).

We prepare the following simple lemma whose proof is omitted.

LEMMA 6.2. For any positive numbers A and B with B < £A, there

exists a positive constant C such that, for all x e R9

(6.3) f exp [-A{x - y)2] exp [By2]dy ^ CA~1/2 exp \~Ax2] .
JRy L3 J

Proof of Theorem 6.1. First we consider the function

(6.4) ux{x, t) - Γ ί Γ{x, y919 t')f{y9 t')dydtf .
JθJ Ry

By (5.18), decompose ux{x9t) into two parts;

ux{x91) = \ \ Eμ{x9 y, t, f)fiy, f)dydf
J Oj Ry

+ Γf i f f Eμ(x,z,t,s)Φ(z,y,s,t/)dzds]f(y,t')dydt'
JojRyUt'jRz J

= / + //.
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By Lemma 5.4 we are given

(6.5) PXJ = f(x, t) + Γ f Fμ{x9 y, t, t')f{y, V)dydtf

J OJ Ry

in a strip 0 < t < tx. And by using the estimates (5.10), (5.15) and

Lemma 6.2 we have

(6.6) |/| <: const, exp [const, x2] , 0 <£ ί <£ ίt .

Next we analyse the integral //. Define Φ(x, y, t, t') — 0 for t < t'. Then

after changing the order of integration the integral II can be written

in the form:

II = f f Eμ(x, z, t, s)\[Ί Φ{z, y9 s9 t')f(y, t')dydt']dzds .
J 0j Rz LJ OJ Ry A

By Lemma 6.2 and by the estimate (5.23) we have

(6.7) Iff Φ{z,y,syt')f{y,tf)dydtf

I J OJ Ry

£ Cx exp [C2z
2]

in a strip 0 < s < t2.

Thus by Lemma 5.4, the integral II has a meaning in some strip 0 ^

t ^ t3 in fact this is a continuous function in the strip 0 ^ t ^ t3 by

the same reasoning as in the proof of Lemma 5.4, and we have the

following equality in the distribution sense:

PXJI = Γ f φ(χ9 y, t, t')f(y, t')dydtf

Ry

(6.8) + Γί Fμ(x,z,t,s)\{Ί
J θj Ry IJ OJμ \ {

Ry IJ OJ Ry

0 < t < ί4 , t4 = min (t19 t2y Q .

Furthermore, by (5.22) and by using Lemma 6.2 again, we have

(6.9) \II\ £ const, exp [const, x2] 0 ^ t ^ ί4 .

Summing up the above considerations we have

(6.10) Pχ.Mx, t) - /(a, ί) i n f i x (0, t j ,

(6.11) \Uiix, t)\ ̂  const, exp [const, x2] in R x [0, ί j .

By (5.26) and by the similar way to the proof of Lemma 5.4 we have

(6.12) \im u^X t) = 0 .
ί |0
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Now we consider the function

(6.13) u2(x, t) = ί Γ{x, y, t, O)φ(y)dy .
J By

By using Lemma 6.2, we have

(6.14) \u2(x, ί)| ^ const, exp [const, x2]

in some strip 0 ^ ί ^ ί5. By the properties of fundamental solution

derived in § 5, we can easily see that u2(x, t) is a continuous function

in the strip 0 <̂  t ^ ί3 and

(6.15) lim u2(x, t) = φ(x) x e R .

Furthermore, we can easily see that u2(x, t) satisfies the equation

(6.16) Pu2(x, t) = 0 i n f i x (0, tδ)

in the distribution sense, hence in the usual sense by virtue of hypo-

ellipticity of P. Combining (6.10), (6.12), (6.16) and (6.15) it follows

that u(x, t) defined in (6.1) is a solution of the Cauchy problem (2.6),

(2.7) in a strip 0 ^ t <; ί0, ί0 = min (£4, £5). We note that the constants

tjf 1 ^ i ^ 5, are chosen in the form min{2\ Cf/k} where Cf is a con-

stant depending on P (and μ) so the same is true for ί0.

Finally, by the hypoellipticity of P we have u(x, t) eC°° (R x (0, t0])

if /(a?, ί) 6 C 0 0 ^ X /). In this case, we have u(x, t) e C{R x [0, ί0]) Π

C"(R x (OΛB- Q.E.D.

§7. Uniqueness of solution. As stated in the introduction we shall

follow the method of [1]. Let Ω be an open finite interval in Rx =

[x; _oo < x < oo}. We set Q = Ω x (0, Γ), 5PQ - [dΩ X [0, Γ]} U

{ ύ χ ( t = 0)} and Q - Q/9PQ.

THEOREM 7.1. {Maximum principle.) Let P be the parabolic operator

given in §2. Let u(x,t) be a real valued function in C^]t{Q) Π C(Q)

satisfying

Pu^0 in Q y

u<*Q on 3PQ .

Then we have u{x, t) ^ 0 in Q.
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Proof, (a) The case c{x, t) > 0 in Q. Assume that there were a
point (xQ, t0) e Q such that

max u = u(xQ, ί0) > 0 .

Then the following must hold at (x0, ί0):

i * = 0 , ^ 0 , cu>0.
dx dt

And then

dt ox2
0 ,

which is a contradiction.
(b) If c(x,t) 2> — 7* in Q for some f > 0, we can reduce to the case

c(x, t) > 0. Setting u(x, t) = eftv with any f larger than γ, we have

Pv + γ'v ̂  0 in Q ,

i; ^ 0 on apQ ,

c(x, ί) + / > 0 in Q ,

from which our assertion follows immediately.

COROLLARY 7.2. Let u(x, t) be a real valued function in C2£t(Q) Π
C(Q) satisfying

Pu = 0 in Q 9

u = 0 on 3PQ .

ΓΛen w(a?, ί) = 0 m Q.

THEOREM 7.3. (c/. [1], Theorem 1.) Lei ̂ (#, ί) δe a complex valued
function in C*£t(R X (0, T]) Π C(# X [0, Γ]) satisfying

(7.1) P^ = 0 i n f i x ( 0 , T ] ,

(7.2) ^(», 0) = 0 on β ,

(7.3) |w(α, ί)| ^ M exp [k(x2 + 1)] in β x [0, T] , M, k > 0 .

we have u(x, t) = 0 in R x [0, T],

Proof. We can easily see that it is sufficient to prove the theorem
in the case where u(x9t) is a real value function.
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We set v = exp [2keH(x2 + 1)] with θ > 0 determined later. Then
we have

— = Akeθtθ(x2 + 1) - Wk2e2θtx2a(x, t) + <±keθt(a(x, t) + xb(x,)) + c(x, t)
v

^ 4keθt(x2 + ΪKΘ - CJcen ~ C2)
^ 4keH(x2 + ΐ)θ - CM - C2) , 0 ^ t ^ θ'1 ,

where the constants CΊ and C2 depend only on max(|α(a;,t)| + \b(x,t)\ +
RXl

\c(x, t)\). If we put θ = 2ίί, i ϊ = CM + C2, then we have

Pv> 0 in β x [O,^-1] .

Next, for any ^ > 0, we set

w = w - M exp [2fceHί(#2 + 1) - fc(^2 + 1)]

in Qx\<p) X [ 0 , f l i Ξ ( } r

Then we have

Pw =: Pu - M exp [—fc( 2 + 1)P^ < 0 in Q , w(a?, ί) ^ 0 on 9PQ .

By Theorem 7.1, we have w(x,t) ^ 0 in Qp. For any point (#*,£*) e #
X to,./?"1], we have (#*, t*) e Q̂  if we take p sufficiently large, and hence
we have w(x*, ί*) ^ 0. Thus we have

utx*, t*) ^ M exp [-fc(^2 + Dlt ίa;*, ί*) .

Since p is arbitrary and the right hand side tends to zero as p->oo,
we have

u(x,t) ^ 0 in R x [O,^-1] .

Iterating this procedure finitely many times, we obtain

u(x, ί) ^ 0 i n f i x [0, T) .

Similarly we have

u(x, ί) ^ 0 i n f i x [0, T] .

Q.E.D.

Theorem 2.1 has now been proved combining Theorem 6.1 and
Theorem 7.3.
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