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MULTIPLICITY OF SOME CLASSES OF

GAUSSIAN PROCESSES

MASUYUKI HITSUDA

1. Introduction.

The aim of this paper is to discuss the multiplicity of the sum of
two independent Gaussian processes

(1.1) x(t) = xι(t) + x2(t) ,

where xx{t) is a Wiener process and x2(t) = F(t) G(s)dB2(s) is a simple
Jo

Markov process.
Intuitively speaking, the process xit) may be considered as a received

message disturbed by a noise xx(t) which can be taken to be a Wiener
process. The problem discussed here is asking whether we can separate
the message and the noise in the sense of the multiplicity introduced in
the theory of canonical representation.

The concept of multiplicity was established by T. Hida [2] and EL
Cramer [1], which treated the so-called canonical representation of
Gaussian processes proposed by P. Levy [4]. Since then many authors
have discussed the problem: One of the main interests has been a
problem to find out the multiplicity and the associated measure for a
given Gaussian process. In his earlier paper, the author of the present
paper has proved that Gaussian processes x(t) equivalent to a Wiener
process has the canonical representation of multiplicity one [3], where
the xit) is necessarily expressed as in (1.1), but x2(t) is measurable with
respect to the Wiener process xx(t). Recently, T. H. Gφaπ [5] has dis-
cussed the multiplicity of the sum of two processes, using the reproducing
kernel Hubert space technique, which was formulated in [2]. In this
paper, we can see the multiplicity and the basic measure more definitely
in a rather restricted class of Gaussian processes.
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The result is this: When GO) is positive and continuous in the
formula (1.1), the multiplicity and the basic measures depend upon F(t).
(I) When F'(t) belongs to U, the basic measure is Lebesgue and the
multiplicity is one. (II) When F'(ί) does not belong to L\l,m) for any
open interval (I, m), the multiplicity is two and basic measures are
Lebesgue. (Ill) When F(t) is of unbounded variation in any open
interval, the same result as in (II) holds. The proof heavily depends
upon the previous result [3].

In the last section, applications of our theorem shall be given.
We shall construct a process x(t) of the type (1.1), whose basic measure
has a singular part. And we shall show the existence of an ΛΓ-ple
Markov Gaussian process with the multiplicity N > 1, to illustrate the
corollary.

2. Main Theorem.

We first give a lemma describing the relation between a Gaussian
process and the corresponding reproducing kernel Hubert space (RKHS).

LEMMA. Let x(t) (t > 0) be a Gaussian process with Exit) = 0, and let
£>ί be a Hilbert space with the reproducing kernel Γ(s, u) = E(x(s)x(u)),
s,u < t.

(I) // a Gaussian process x(t) has a canonical representation

x(t) = fV(ί, u)dB(u) ,
Jo

where B(t) is a Wiener process, then

Qt = ίa a(u) = ΓF(U, v)a(v)dv , 0 < u < t, a e L2[0, t]\ .

(II) // a Gaussian process x(t) is a sum of two independent canonical
processes: x(t) — xx{t) + x2(t), where

Xl(t) = ['F&uϊdBάu) , x2{t) =
Jo Jo

and Biitys (i = 1,2) are mutually independent Wiener processes, then

& = {a, + a2 a, e ®, a2 e &} ,

where φj and Sft are RKHS's corresponding to x^t) and x2(t) respectively.
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(III) In the case (II), if $] ΓΊ φj — {0} /or each t, then the multiplicity

of x(t) is two and (1.1) is the canonical representation.

Proofs of (I) and (II) are included in § I of [2], and (III) is proved

in [5], so they are omitted.

Let Bi(t) ( ΐ=l , 2) be Wiener processes which are mutually in-

dependent. And let

(2.1) x(f) = xλ(t) + x2(t) = Bx(t) + F(t)B2(t) it > 0) .

We note that the representation F(t)B(t), where B(t) is a Wiener process,

is canonical in the sense of Hida [2], and note that it is a Gaussian

Markov process.

The assertion stated below is valid in the case of x2{t) =

F(t) G(s)dB2(s) for a positive and continuous function G(s). But, es-
Jo

sentially, we may only discuss the case x2(t) — F(t)B2(t), because the proof

of the theorem can be rewritten in an easy manner.

THEOREM. (I) // F(t) in (2.1) is absolutely continuous and if the

Radon-Nikodym derivative F'(t) belongs to L2[0, tQ] for any t0 > 0, the

multiplicity of the Gaussian process x(t) is one and the basic measure is

the Lebesgue measure.

(II) // F(t) in (2.1) is absolutely continuous but F\t) does not

belong to L2(l,m) for any open interval (I, m), the multiplicity of x{t) is

two and the basic measures are Lebesgue measures.

(III) // F(t) in (2.1) is of unbounded variation in everywhere, the

multiplicity of x(t) is two and the basic measures are Lebesgue measures.

Remark. In cases which are not stated in Theorem, the circum-

stance is more complicated. Under some condition on F{t), the basic

measure has a singular part with respect to the Lebesgue measure as

we shall see such an example in the following section.

Proof of (I). We can rewrite (2.1) in the form

(2.2) xit) = Bx(t) + [tF(s)dB2(s) + fV(s)B2(s)(te .
Jo Jo

rt

Then B(t) = Bx(t) + F(s)dB2(s) is a Gaussian martingale with respect
Jo

to the σ-field S^t) V ίB2(f)=σ(B1(s); s < t) V σ(B2(s);s < t), and the cor-
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responding increasing process is deterministic and is expressed as

A(t) = Γ(l + F(s)2)ds .
J

On the other hand, the integrand of the third component F/(s)B2(s) of

the right hand side of (2.2) is S3χ(s) V S32(s)-measurable and we get

Therefore x(t) is equivalent to (2.2), so the multiplicity of x(t) is one

by the result of [3].

Proof of (II). The RKHS corresponding to xλ(t) = Bx(t) and x2(t)

= F(t)B2(t) are

® = |α(-) 5 α(s) - Γα(^)dw (s < t), ae L2[0, t]J

and

| γ (s<t), as L2[0, t]} ,

respectively. In order to prove that the multiplicity of x(t) is two, it

is enough to show that

«i n «ϊ - {0}

by Lemma. Let α e ©} Π !Q\. Then we can write a as

(2.3) α(s) = ['aMdu = F(s) Γα2(w)dw α i , α:2 e L2[0, ί] .
Jo Jo

Differentiating both sides of (2.3), we get

^ψL - aM = F'(w) \\2(v)dv + F(u)a2(u) .
C Ϊ ^ Jo

Therefore F'(u) a2iv)dv must belong to L2(l,τn) for any open interval
Jo

(Z,m) c [0,t]. So
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a2(u) = a2iv)dv = 0 for almost all u e [0, t] ,
Jo

and -α2(%) = 0 ue[0, t], because of the continuity of a2(u). Therefore
az(u) — 0, which implies a = 0.

Proo/ of (III). As in the proof of (II), we only show the equality

§\ Π φj = {0}. Let α e ^ Π ®. Then

α(s) = F(s) a2iu)du
Jo

must be absolutely continuous, so a2iu)du = 0. Because, if α2(s) =
Jo

0 for some s e [0, t], then F(t) = F ^ a ^ must be of bounded
a2(t)

variation in some neighbourhood of s.
Thus the proof of Theorem is completed.

COROLLARY (I) // F(t) in (2.1) satisfies the condition of Theorem
(I), then the process

(2.3) y(t) = BSt) + F(t)B2(t) + . + F(tY~'BN{t) ,

where B^tYs (ΐ = 1,2, , JV) are mutually independent Wiener processes,

is of multiplicity one and the basic measure is Lebesgue.

(II) // F(t) satisfies the condition of Theorem (II), then the process

y(t) defined by (2.3) is of multiplicity N.

Proof of (I) is almost same as in Theorem (I), so it is omitted.

Proof of (II). It is enough to show that the RKHS corresponding
to the process y(t) is

where φ* = (Fi-y-'ai ) a(s) = Γ α(w)efe*, α e L2[0, t ] | (cf. [2]). Suppose

that

(2.4) 0,(8) + F(s)a2(s) + .. + F(β) y %(8) = 0 ,

Differentiating the left hand side of (2.4), we get
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a[(s) + F(s)aί(8) +
+ F'(s)(a2(s) + + (N - l)FO0*-2α*(s)) - 0 .

As F'(s) does not belong to L2(l>m) for any open intervals(ί,m), we
must have

a2(s) + ... +(N- l)F(s)N~2aN(s) = 0 .

So, by induction, we can conclude the desired result.

Remark. In case that F(t) is of unbounded variation everywhere,
it is conjectured that the same result as in Corollary (II) will hold, but
it is not proved yet.

3. Concluding Remarks.

This section is devoted to state some further developments which
follow from our main Theorem.

1. In case that the RKHS's SQ] and φj, corresponding to B^t) and
F(t)B2(t) respectively, have some nontrivial intersection, the circumstance
is more complicated. Here we give an example for illustration.

EXAMPLE 1. If F(t) is decomposed in the form

(3.1) F(t) = \tf1(s)ds + F2(t) ,
Jo

where fλ e L2[0, oo) and F2(t) is a step function. Then the process

x{t) = Bx(t) + F(t)B2(t)

has the representation of the multiplicity one. But the basic measure
is m(du) + n(du), where m(du) is the Lebesgue measure and n{du) is
the point measure induced by F2(t).

2. Double Markov Gaussian process with multiplicity two.
Hida [2] defined the iV-ple Markov Gaussian processes and studied

such processes with multiplicity one. Here we can give an example of
a double Markov Gaussian process with the multiplicity two, two basic
measures of which are Lebesgue.
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EXAMPLE 2. We can construct a function F(t) satisfying the follow-

ing conditions:

( i ) F(t) is absolutely continuous,

(ii) the Radon-Nikodym derivative F'(t) is strictly positive, and

(iii) it does not belong to L2(l, m) for any open interval (Z, m) c

[0, oo), but does belong to L^O, t] for any t > 0. Using such an F(t),

put

(3.2) x(t) = Bλ(t) + F(t)B2(t) .

Then the process x(t) is an example of the desired processes. In fact,

by Theorem (II), x(t) has multiplicity two. And we have

E[x(t)\X(to)] = E[x(t)\^(t0) V S32(ίo)]

= B^Q + F(t)B2(t0) (t0 < t) ,

where 3£(ί0), S3i(f0) and 932(̂ o)> are σ-algebras generated by x(s), B^s) and

B2(s) (s<t0), respectively. For any t0 < tx < t2, E[x(t1)\3c(t0)] and

E[x(t2) I dc(t0)] are linearly independent, because F(t) is strictly increasing.

On the other hand, for t0 < tλ < t2 < t3, the system

{£7[a?(ti)|3E(ί0)];i = 1,2,3}

is linearly dependent. So x(t) is of multiplicity two, and the representa-

tion (3.2) is canonical. Of course the basic measures are Lebesgue.

Furthermore, making use of the idea of this example, we can con-

struct an N-ple Markov Gaussian process with multiplicity N and with

Lebesgue measures as its basic measures.

EXAMPLE 3. Let Fit) be as in Example 2. Then the Gaussian

process

x(t) = Bx(t) + F(t)B2(t) + F{tfBz(t) + + F(tγ-ιBN(t) ,

where Bt(t) 's (i = 1,2, , N) are mutually independent Wiener processes,

is an iV-ple Markov Gaussian process with the multiplicity N. This

result follows from Corollary (II).
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