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ON STOCHASTIC OPTIMAL CONTROL LAWS

MAKIKO NISIO

§ 1. Introduction. Let us begin by recalling the existence of optimal
controls for a class of stochastic differential equations

(1.1) dX(t) = β(t, X(s), s <t, U(t))dB(t) + a(t, X(έ), s < t, U(t))dt, t > 0 ,

with given initial condition X(0) = x, where B is an ^-dimensional
Brownian motion and the control U is a stochastic process. As ad-
missible controls, let us allow all non-anticipative process U(t)
= (ΪΛ(f), * Um(t)) e Γ where Γ is a compact subset of Rm. We call Γ
a control region. Assume that the matrix valued functional j8 and the
n-vector valued a satisfy a Lipscitz condition in X and some growth
condition. Then we have a unique solution Xu for an admissible con-
trol U.

We shall consider the minimization problem for the expectation of
cost functional Φ(XU, [/). If yS does not depend on U and a is linear in
ϋ, i.e

Fleming and Nisio [4] consider the existence of an optimal control Uo,
(open loop control), in the case where Φ(X, U) is non-negative and lower

nt

semi-continuous on X and V(t) — U(s)ds. But in many problems of

controls, we would like to minimize EΦ{XU, U) subject the condition that
the control U(t), selected at time t, should depend only on the observed
data up to time t. Let us suppose that the system X of (1.1) is com-
pletely observable. Thus an admissible control will be a function
^;[0oo) χCn->Γ, which satisfies the non-anticipative condition. If β
= 1 and aitfΓ) is convex (Roxin's condition), then Benes [2] proved
the existence of an optimal control u0, (control based on a complete

Received March 7, 1973.



2 MAKIKO NISIO

observation), in the case where the cost functional Φ is given by an
integral form.

We shall remark, in § 5, that an optimal control based on a complete
observation turns out to an optimal open loop control under some con-
ditions. This means that the synthesis problem is decided, i.e. an
optimal open loop control will be determined as a function of data of
the system X. In §§3 — 5, we assume that β does not depend on U.
The existence of an optimal open loop control will be proved under the
Roxin's condition, (A 6) and (A 7), in § 3. Moreover when β is uni-
formly positive definite, we shall consider the correspondence between
the laws of response of open loop controls and controls based on a com-
plete observation. Namely, let £P and Q be set of all laws of response
of open loop controls and controls based on a complete observation res-
pectively. Then we show that 0* = Q, in § 5. When β depends on U,
the existence of optimal controls and the synthesis problem will be
discussed in § 6. In § 7, we discuss controls of diffusion type processes.
We shall sketch the Krylov's work [9], i.e. when the cost functional Φ
is given by an integral form, an optimal control is attained by a
Markovian policy, under some conditions. But, when Φ is not an integral
form, we have a little counter example.

Let us now introduce some preliminary definitions and notations.
Given a stochastic process X(t), t > 0, ϊ8t(X) denotes the least σ-

algebra generated by {X(s), s < £}.
The ^-dimensional Brownian motion is denoted by B(t) = (2?χ(ί),

• Bn(t)), t > 0, and we normalize it by B(0) = 0. ϊdtυ(dB) denotes the
least cr-algebra generated by {B(s) — B(τ), t < τ < s < v).

Cn denotes the space of all 2?%-valued continuous functions defined
on [0 oo), with the usual metric p,

w -, sup|/(ί)-flr(t)|

" s - f aeC

t<n

where | | means the Euclid norm of Rn. Let St be the σ-algebra
generated by {/O), s < ί}. According to Benes [1], we define the σ-algebra
Gn on [0 oo) x Cn as follows, a Borel subset E of [0 oo) x Cn is in Gny

if and only if
( i) every ί-section of E is ^-measurable, for t e [0 oo) , and
(ii) every /-section of E is a Borel set of [0 oo), for feCn.
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Let X(t),t > 0, be a l?w-valued stochastic process with continuous

simple paths. Define π [0 oo) x Ω -> [0 oo) x Cn9 by 7r(£ω) = (t X(ω)). We

denote T Γ " 1 ^ ) by ©n.

Let the control region Γ be a compact subset of Rm. A process

Z7(t), ί > 0, is called an admissible control if, with probability 1,

( i ) U(t) e Γ , 0 < t , and if

(ii) S8t(U,B) is independent of S8too(dB) for every ί > 0 .

To be more precisely (B, U) is called an admissible system. We denote,

by SI, the set of all admissible systems.

Let aitfu) and β(tfu) be an ^-vector and an n X n matrix valued

Gn X 23m(Γ)-measurable function, defined on [0 oo) x Cn xΓ. Then the

equation (1.1) can be understood as

dXit) = β(t X U(t))dB(t) + a(t X U(t))dt .

By a solution of (1.1), we mean a stochastic process (X(t)B(t)U(t)), t

> 0, defined on a suitable probability space (we may assume the Lebesgue

space [0 1]), such that

( i ) X has continuous paths,

(ii) (BU) has the same law as the given admissible system (BΌ),

(iii) SQt{XBU) is independent of %5too(dB) for any t > 0, and, with pro-

bability 1,

(iv) X(t) = x + ['βis X U(s))dB(s) + Γαr(s X U(s))ds , for any t > 0.
Jo Jo

For simplicity, we call X a solution of (1.1), or a response to the con-

trol [7.

§ 2. Existence and uniqueness of solution. Let us impose following

assumptions

(A.I) aitfv) and βitfu) are Gn x 23m(Γ)-measurable,

(A.2) there exists a bounded measure dM on (—oo 0], such that

Σ \«i(tfu) - aligns + £ \βiά(tfu) - βij(tgu)\
i ijij

< |° \f(s + ί) - g(s + Of dM(s)

and
(A.3) there exists a increasing function Lit), such that

Σ \at(t 0u)f + Σ \βtβ 0u)\2< L(t) , vue Γ .
i ij
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THEOREM 1. Under assumptions (A 1) (A 2) and (A 3) there exists

a solution of (1.1) uniquely. Moreover, this solution X(t) is %$t(UB)-

measurable and has the following moments,

(2.1) E \X(t)\k < K(k, T) , for t < T , k = 1,2 .. .

(2.2) E \X(t) - X(s)|4 < K(T)((t - s)2 + (t - sY) , for t, s < T ,

where K(k, T) and K(T) are independent of an admissible control U and

increasing in T.

Proof. The method of proof is just a repeat of Sect. 2 of [4]. To

show the existence of a solution, we shall use the well-known successive

approximation. Let us define a sequence of approximate solutions

Xn, n — 0,1, , as follows,

X0(t) = x

* n + i ( t) = x + f/3(s Xn U(s))dB(s) + [Sa(s Xn U(s))ds .
Jo Jo

Then the following inequality will be proved by induction;

(2.3) Σ E \Xm ,{t) - Zm_x m\2 < n ( O r r * ( ^ + i r , m = 1,2 ,
% m !

where γ2 is a constant determined by \\M\\{ — M{— oo,0]) and γx(t) is

independent of m and increasing in ί.

Therefore, we have

p( sup \Xm Is) - Zm_, 4(β)| > 2ε)
XO^s ί̂ /

P(sup
j Jo

m_2C7(r)| dr > β)

- βtj(τXm_2U(τ))]dBj(τ) > ε)

/

m !

Setting ε = 2"m, we get
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Therefore, by Borel-Cantelli's lemma, we see that, with probability 1,

m

Xm(s) = x + Σ [*/«) - X

converges uniformly on [0 t], and so, on every bounded subinterval of
[0, co). Hence the limit process X has continuous paths. Applying an
usual method, it is easy to see that X is a solution. In order to prove
(2.1) we may assume that k is even.

Xk

mi(t) < 3k

(2.4) + ( Σ fβtjbXn-i E7(r))<ZB/τ))*]

< S^[xk + ί*"j αίdτ + n*"1 Σ (Jβijd

Putting ξ(t) = βijdBj, we shall evaluate its fc-th moment. Let σA be
Jo

the first passage time of ξ to (—A,A)C. From a formula on stochastic
differentials [6], we get

(2.5) Eξ*A(t) = fc(fc~υ ί
2 Jo

where ξA(t) — ξ(t Λ σΛ) and βA = XιoσΛ-βij- Hence by Holder's inequality,
we get

Em) < \\
£i JO

Since (2.5) implies that EξA(t) is increasing in t, we have

namely,

Em) <

From (A 2) and (A 3),
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( no \ k/2

L(t) + j \f(s + t)\2dM(s)J
< K2(t, k)(l + J° \f(s + t)\kdM(sή .

Hence, setting dm(t) = sup EX\(s)y we have
0<s<ί

Eξ\t) < \imEξ"A{t)

Therefore, by virtue of (2.4), we can easily see

EXk

m i(t) < K,(k, t)(l + jX^OOdβ) i = 1, w, m = 1,2 .

where KA(k9 T) is independent of U and increasing in t. So we have

(2.6) dm(t) < KA(k,

On account of d0 < oo, this (2.6) implies (2.1).

In order to prove (2.2) we can apply a similar calculation. Since

Xt(t) - X^s) = fWτ X U(τ))dτ + ^ ['βtJ(τ X U(τ))dBj(τ) ,

we have

From (A 2) and (2.1) we see

E\la\dτ < Kδ(T)(t - s) , for t s < T ,
J s

where Kb(T) is independent of U. Putting ξ(f) = βijdBj and using same
J s

notation as above, we have

^ , Γ^fiWdr + 18(t -
— S) JsS)

Since Eξ4

A(t) is increasing in t, we get
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Hence from (A 2) and (2.1), we have

Eξ\t) < limSfi(i) < K6(T)(t - s)2 .

Therefore (2.2) holds.

Let Y be a solution with bounded second moment. Recalling that

X(t) is S3ί(C7, immeasurable, we shall evaluate Y(t) — X(t). In a routine,

we can show

This completes the proof of Theorem 1.

§3. Existence of optimal controls for βitf). Let us introduce follow-

ing assumptions

(A 4) β(tfu) = β(tf)

(A 5) β(tfu) is continuous in (tfu)

(A 6) a{tfu) is continuous in {tfu)

(A 7) a(tfΓ) is convex, for each (ί/).

For an admissible system (BU), we denote a solution of (1.1) by Xu.

THEOREM 2. Let Φ be lower semi-continuous on Cn, with 0 < Φ(f) < oo.

Then, under the assumptions (A 1)~(A 7), there exists an admissible

system (U0B0) such that

EΦ(XU°) < EΦ(XU) , y(BU) e Sϊ

Setting θu(f)= [ta(sXuU(s))ds and 3K = {(Xu, B, θu), (B, C7)e2ί}, we

Jo

can see, from (2.2)

LEMMA 1. Under assumptions (A 1) (A 2) and (A 3), 9K is L-totally

bounded.

Hereafter we suppose that (A 1)~(A 7) hold.

LEMMA 2. Let X be the solution for (B U) of 21. Then there exists

a Gln-measurable function v [0 oo) x C2n —> Γ, such that with probability 1,

(3.1) X(t) = x + ['βis X)dB(s) + Γα(s Z <y(s X B))ds , vί > 0
Jo Jo

Proof. Let (β^P) be a probability space on which (XBU) is defin-

ed. For simplicity, we may suppose that X(tω) and B(tω) are continuous

in t, for all ωeΩ. Let us define π; [0 oo) x Ω —> [0 oo) x C2n by τr(

= (ί Z(ω) i?(α))) and endow the ^-algebra © = π-\G2n) on [0 oo) x Ω.
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is the completion of © by the product measure, Lebesque measure X P.
Since

(3.2) θ u ( t ) = X(t) - x - [ ^
Jo

βu is ©-measurable. Moreover ait X Uit)) is a (Radon-Nikodym) derivative
of the right side of (3.2). So, ait X Uit)) is ©-measurable. Put ait ω u) =
a(t X(ω) u). Then a is continuous in u and a(t X(ώ) U(tω)) e ά(tωΓ). Hence
an implicit function theorem [1] guarantees the existence of a ©-meas-
urable Vί [0 oo) x Ω —> Γ, such that

= ff(t ω Vitω)) .

Since there exists a ©-measurable modification F of V, i.e.

F(ίω) = V{tω) , y(fe») ,

we have, with probability 1,

θu(tω) = fVs -3Γ(ω) 7(sω))ds , vj > 0 .
Jo

From the definition of ©, Vitω) turns out to ^(ί Xiω) Biω)) with a G27l-
measurable v. This completes the proof of Lemma 2.

This lemma 2 means that we may change Uit) to v ( t ΙB) , if we are
concerned with an event of iX,B).

LEMMA 3. Suppose that iXββ^ e ffll converges to iXBΘ) in L-rnetric.
Then iXBΘ) is in ϊΰl, i.e. there exists a control U such that (JS U) is in
Si and X = Xu, θ - θu.

Proof. By Lemma 2, we may assume

X4(t) = x + [*β(s X,)dB£is) + f α(s Xev£isX£B£))ds
Jo Jo

and

θt{t) =

Using Skorohod's theorem, we can construct iXeBβe) and iXBΘ) on the
Lebesgue space (again we denote by Ω), such that

{S Xe)dBs + θeit) ,
o'
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Ut) =

and, with probability 1, (Xe(t)B£(t)θ£(t)) tends to (X(t)B(t)θ(t)) uniformly

on any bounded subinterval of [0 oo). Hence B is a Brownian process

adapted to ϊδt{XBΘ) and, by (2.1),

(3.3) E\X(t)f<K(t) .

From the continuity of β, we have

(3.4) X(t) = x+ [*β(8 X)dB(s) + θ(t) t > 0 .
Jo

On the other hand, by virtue of (A 2) and (A 3), we see

I r« ~ ~ ~
\θ(t) — θ(s)\ = lim \θ4{t) — Θ4(s)\ = lim a(τX£v£(τX£B£))dτ < K^Tω) \t — s\

I i Us

for t, s < T .

Moreover, setting α/ίω) = αr(ί X(ω) v4(sX4(ω)B4(ω)), we have

0(ί) — ae(s)ds
Jo

(3.5) < \θ(t) - Θ4(t)\ + Γα(s X4vt{βXtB4)) - α(s Z'y/s .
Jo

Hence, with probability 1,

(3.6) a£(s)ds -> 0(ί) , uniformly on any bounded interval .
Jo

For simplicity, we may assume that (X(t)B(t)θ(t)) is continuous in

all ω and (3.4) holds for all ω. Define π [0 oo) x Ω —> [0 oo) x C2n by

π(tω) — (t X(ώ) B(ώ)) and put @ = ̂ "1(G2 n). From (3.4), we can take a

©-measurable derivative γ of θ> i.e, with probability 1,

(3.7) 0(£) = I ̂ (s)d5 .
Jo

Therefore, by (3.6), we have, for any ^-vector η e L2([0 T] x Ω),

(η(s),ae(s))ds -* I (η(s), γ(s))ds , Vω .

o Jo

Recalling (3.3), we get the following estimate,
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I pT 4/3 fT

£? Jo (?(«), ae(s))ds < T'*E\ Jv(s)f'3 lairds

( ΛΓ \2/3/ fT \l/3

E^\v(s)fdsJ {EjJcceisXds) < Kt{T)\\η\\^ , £ = 1,2 • .

Therefore, by virtue of uniform integrability, E\ Ms),a£(s))ds tends to
Jo

# (η(s), r(s))ds. Consequently a£ tends to γ weakly in L2([0 T] x 42).
Jo

Hence a convex combination of αr* can converge to γ strongly. So, we

have a subsequence which converges almost everywhere. Since a(s X(ω) Γ)

is convex and closed, for almost all (tω),

(3.8) γ(tω) e a(s X(ω) Γ) .

We can modify γ, so that (3.8) holds for all (tω), i.e. there exists a im-

measurable f such that

(̂fo>) = γ(tω) for almost all (£ω) ,

and

γ(tω) e ait X(ώ) Γ) V(tω) .

Again, by an implicit function theorem, we have a C?2?Γmeasurable

v [0 oo) x C2n -> Γ, such that

= a(t X(ω) v(tX(ω)B(ω)) v(ία>) .

Hence, (# v(sXB)) is an admissible system and by (3.7), with probability 1,

θ(t) = Ptf(s ^ ^(sZβ))ds , n > 0 .= f α
Jo

Recalling (3.4), we conclude that (XBΘ) is in 3ft.

Proof of Theorem 2. Let Xw be approximate optimal, i.e.

limEΦiXJ = inf ^ΦίZ^) .

Let Z m be a response for (BmUm). By Lemmas 2 and 3, 9ft is sequen-

tially compact. Hence it is enough to verify that EΦ(X) is lower semi-

continuous under L-convergence. If Xm tends to X in L-metric, then

Skorohod's theorem tells us that we may assume that, with probability

1, Xm(t) converges to X(t) uniformly on any bounded interval. Hence,

with probability 1,
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Φ(X) < ljm Φ(XJ .

By Fatou's lemma, we have

EΦ(X)<\\mEΦ(Xm)

which proves Theorem 2.

§4. Transformation of measure. Consider a stochastic differential
equation

(4.1) dX{t) = β(t X)dB(t) + γ(t X)dt , X(0) = x .

We assume the following conditions,
(C 1) β is Gn-measurable
(C 2) β(tf) is locally square integrable in t, for any feCn.
(C 3) there exists a bounded (-^-measurable ^-vector function φ, such
that

γ{tf) - β(tf)φ(tf) .

Under these assumptions, we can apply the method of the so-called
transformation of measure [2]. We have the following

THEOREM 3. Suppose that a stochastic differential equation

(4.2) dξ(t) = β(tξ)dB(t) , f(0) - x

has a solution and the explosion does not occur. Then (4.1) has a
solution. Moreover if the law of the joint process (ξB) is unique for
any solution ξ of (4.2), then the law of (X B) is unique for any solution
X of (4.1).

Proof. Put Ft = ϊ8t(Bξ) and

D(t) - exp

Then it is well-known that D is an Frmartingale. Define the probability
measure Qτ, on (Ω,FT), by

(4.3) dQτ = D(t)dP , T > 0 .

Appealing to the extension theorem of measure, we have the probability
measure Q on (ΩF), where F = V FT- The following lemma 1 is easy.

T

LEMMA 1. Let ζ be a bounded and Ft -measurable random variable.

Then
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E(ζD(t)/Fs) = E(ζ/F8)D(s) t > s ,

where E means the expection with respect to Q. Using Lemma 1, we

shall show

LEMMA 2. Wit) = Bit) - [tφ(sξ)ds
Jo

is a Brownian motion adapted to Ft, on iΩFQ).
Proof. Put Zit) = Wit)Dit). Then, using a formula on stochastic

differentials, we have

dZit) = Dit)dB(t) + Dit)Wit)Σ φM)dBk(t) .
k = l

So, Z is an Frmartingale on iΩFP). Therefore, by virtue of Lemma 1,
W is an Frmartingale on iΩFP). Since E\Wit)f < oo, we now seek
the variation process <TFt^>(ί) on (ΩFQ), [10]. Put Z(t) ~ Wiit)Wjit)Dit).
Then again by a formula on stochastic differentials, we have

dZ(t) - Dit)δiόdt
+ LitWmWβ) Σ φM)dBkit) .

Hence, from Lemma 1, we get on iΩFQ)

This implies that W is an FrBrownian motion, on iΩFQ), [10].
Let us show that the process ξ is a solution of (4.1) on iΩFQ).

According to McKean [11], we define β' and β" by

β(t/) = 2M β(sf)ds and j8£(ί/) = β(2-»[2»t],/) ,
J ί-2-*

where [c] is the largest integer less than c. Then β" is G^-measurable
and simple in t. Moreover, by (C 2), we see that for any / e Cn,

T\β(sf) - β'L(sf)fds -> 0 , if m -> oo and i -> oo .

Therefore, we can take a Gw-measurable function βk9 which is simple in
t, so that

and
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(4.5)

Hence there exist sets Nt( e F), such that PiNJ = 0 and Q(N2) = 0.
Moreover, for ωeNl9

(4.6) [* βk(sξ)dB(s) -» Γj9(sf)dB(s) , uniformly on [0 Γ] ,
Jo Jo

and, for ω g N2

(4.7) Γj8t(sf)dT7(s) -> P/3(sfW(s) , uniformly on [0 T] .
Jo Jo

Since Q is absolutely continuous to P, putting N = iVj U N2, we set that
Q(ΛΓ) = 0 and (4.6) and (4.7) hold for ωgN. Because βk is simple in ί,
we have

fV,(sί)dβ(s) - ΓftOφdϊFGO + ['βk(sξ)φ(sξ)d8 .
Jo Jo Jo

Furthermore,

- ['βk{βf)φ{βf)d8 < \\φ\\Λ\β{sf) - βk(sf)\ds .
Jo Jo

Therefore, recalling (4.5), we see that, with Q-probability 1,

[*βk(sξ)φ(sξ)ds -> ['β(sξ)φ(8ξ)ds , uniformly on [0 T] .
Jo Jo

Consequently, with Q-probability 1,

(4.8) ξ(t) = x+ ϊ'βisξWWis) + fr(sf)ώ , *t > 0 .
Jo Jo

Let I be a solution of (4.1) and μ the probability law of (XB).
For convenience, we take the coordinate representation of (XB), i.e. we
endow the probability measure μ on Ω — C2n, setting Zf(tω) = ω«(ί),i =
1 n, and Bi(tω) — ωw+i(ί)> ί = 1 w. Put

£>(t) = exp ( -
o

and dvΓ = D(T)dμ on ^(=^8^(15)). Then pΓ can be extended to the
probability measure v on F ( Ξ V F Γ ) uniquely. Repeating the same cal-

T

culations as (4.8), we see that, on (ΩFv), W(t) = Bit) + φ(sX)ds is an
Jo
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FrBrownian motion and

X(t) = x

Therefore the law of (XW) is unique. Since B(t) = W(t) - [lφ(sX)ds,
Jo

the law of (XB) is unique. This turns out that the law of coordinate
is unique in (ΩFv). Hence vτ is unique on Fτ. This means that μ is
unique on Fτ, since D(T) is positive. Consequently, μ is unique on F.
This completes the proof of Theorem 3.

COROLLARY. Suppose that (A 8) is satisfied, besides (A 1) —(A 4),
(A 8) there exists a bounded Gn x ?βm(Γ)-measurable n-vector function
φ, such that

a(tfu) = β(tf)φ(tfu) .

Then, for any Gn-measurable function v;[0 oo) x Cn —• Γ, the following
stochastic differential equation

dX(t) = β(t X)dB(t) + ait X v(tX))dt , X(0) = x ,

has a law unique solution X.
This means that (B v(tX)) is an admissible system and X is the

response.

5. Laws of solutions. Let A be the set of all Gn-measurable functions
v [0 oo) x Cn-+ Γ. We introduce two sets of probability measures on
Cn, namely

^ = {law of Xu;(BU)e%}

and

Q = {law of Xv v e A} .

THEOREM 4. Suppose that (A 9) is satisfied, besides (A 1) —(A 4)
and (A 6)-(A 8),

(A 9) β(tfu) is uniformly positive definite, i.e.

j > K \c\2 with K > 0 .

Then 0* = Q.
This theorem means that the response of an admissible control may

be regarded as the response of control based on a complete observation.
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From Theorems 2 and 4, we can easily see

COROLLARY. Under the conditions (Al)~ (A 9), there exists a function

v of A such that Xv is optimal, i.e.

X(t) = x + Γj8(s X)dB(s) + Γα(« X v(sX))ds
Jo Jo

and

EΦ(X) = inf EΦ(XU) .

Let X be the response for (BU). Then we have

LEMMA 1. There exists a function v of A, such that

E(a(tXU))/ίBt(X)) = a(t X v(tX)) v(tω) .

Proof. Let φ(tω) be a measurable and 93;(Z)-adapted version of the

conditional expectation, E(a(tXU(t))/%5t(X)). Hence φ is ©^-measurable

and, by (A 7),

(5.1) φ(tω) e a{t X(ω) Γ) y(tω) .

Therefore we may modify φ, so that (5.1) holds for any (tω). This

means that there exists a φn-measurable φ such that φ(tω) — φitω) for

almost all (tω), and %{tω) e a(t X(ω) Γ) for all (tω). Hence an implicit

function theorem guarantees the existence of a ©^-measurable V; [0 oo)

χ β - ^ f , such that

φ(tω) = a(t X(ω) V(tω)) .

Taking a ©^-measurable modification of V, we have a function veA,

such that

φ(tω) - ait X(ω) v(tX(ω)) γ(fω) .

This completes the proof of Lemma 1.

Put Zit) = X(t) - x - f α(s X v(sX))ds . Then we see
Jo

LEMMA 2. Z is an L2-martίngale adapted to %}t(X) and its variation

process (ZιZ3y is given by

(5.2) <ZtZj>(f) = ± βu(sX)βtj(sX)ds .

Proof. From the definition of Z9Z(t) is S3ί(Z)-measurable. On the

other hand
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Z(t) = \*faX)ds + [\<x(sXU(s)) - E(a(sXU(s)/ίδs(X)))ds
Jo Jo

Hence Z is an L2-martingale adapted to S3t(Z). Using a formula on
stochastic differentials, we have

d(ZU)Zβ)) = Zlt)dZβ) + Zβ)dZm + Σ βu(tX)βje(tX)dt .

Therefore Zlΐ)Zβ) - Σ [tβu(sX)βje(sX)ds is a ^(Zί-martingale. This
i Jθ

means (5.2).
Proof of Theorem 4. In order to show & c Q, we shall apply the

method of the so-called innovation, [5], Set θ(sf) = β(sf)~\ Then, by
(A 9), θ is bounded, symmetric and GTO-measurable. Hence, by Lemma
2, we can define the stochastic integral ζ(t) = (d(i), ,ζn(£)),

ζ(ί) - f
Jo

as an L2-martingale adapted to ?βt(X), with

<Ci?>(«) = Σ [tθik(sX)d{ZkVy(s) i = 1 . . w ,
A; J θ

for any L2-martingale ^ adapted to S8t(X), [10]. Hence, by (5.2),

= Σ ϊtθJe(sX)βep(sX)βpk(sX)ds .
iχ> J 0

Therefore,

• Jo

Σ f
k£p Jo

This means that ζ is a Brownian process adapted to S8t(X)

Consider the stochastic integral ξ(t) = β(sX)dζ(s). Then
Jo

= Σ ί̂ /
i Jo

Since
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we have

<CsvXf) = Σ
ί

- Σ

This implies that, with probability 1, Z*(t) = ft(ί) for all t > 0.

Because ζ is a Brownian motion, Cor. of Theorem 3 implies "

Appealing to " ^ D Q", this completes the proof of Theorem 4.

c Q".

§ 6. Optimal controls for β(tfu). In this section we drop the con-

dition (A 4). An optimal control is obtained by a little different as-

sumption, i.e. (A 9) instead of (A 5). But, since the solvability of

stochastic differential equation

dX{t) = β(tXv(tX))dB , veA

is not yet decided, the synthesis problem is settled only in a weak sense.

Hereafter we assume (B 1) and (B 2), besides (A 1)~(A 3) and (A 9),

(B 1) aitfu) and β(tfu) are continuous in u for any (ί/),

(B 2) {(β}t{UΛ u e Γ\ is convex,

PROPOSITION 1. Let B = (Bλ Bn) δe cm n-dίrnensional Brownian

process. Suppose that e9 e, γ and f are real non-antίcίpative processes,

whose Uh moments are locally bounded, say E\η(t)\A < K\t), η = e, e γ,γ.

We define ξ and ξ by

ξ(t) = [te(s)dBi(s)
Jo

and

= ϊ'eisWBjis) + Γ
Jo Jo

Then, putting άnU = ξ(±) - ξ(iL=A) α«d 2,. = {(A.) - l ( ^ ) ,

we have

(6.1) Pfsup
t<,T

C2~n/

where a constant C depends only on T and K(T).
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Proof. Put Δnk(t) = Δ(t) = ξ(t) - ξ(c) where c = (k - 1)/2TC and Δ(t)

similarly. Then, in the same way as (2.2) of Theorem 1, we obtain,

for t < T,

(6.2) EI Δ(t) |4 < K.iTXit - cY + ( t - cY)

where Kλ(T) depends only on T and K(T). By a formula on stochastic

differentials,

(6.3) Δ(t)Δ(t) = \te(s)Δ(s)dBi(s) + ΐ e(s)Δ(s)dB j(s)

+ ϊ'r&Ms) + f(s)Δ(s)ds + δJ'e(s)e(s)ds .

From (6.2), we have

(6.4) E \\ f

tfV^ = iK2(T)(t - c)3 / 2.

'e2(s)J(s2)ίZs < 2£2(T)jV#2(s)4 ds

- c)ds = | Z 3 ( D ( ί - c) 2 .

Hence, by a martingale inequality, we see

sup Σ e(s)Δnk(s)dBi(s) > 2-'*)

<Σ
fc<Γ2

\\(s)Δ(.s) + f(s)Δ(s)ds < K(T)fVEΔ(sy +VEΔ(s)2 ds

Using (6.3) (6.4) and (6.5) we can obtain (6.1).

By virtue of Borel-Cantelli's lemma, (6.1) implies that, with pro-

bability 1,

(6.6) lim 2 ΔnkΔnk = e(s)e(s)ds uniformly
W ôo fc<ί2» JO

on any bounded subinterval of [0 oo). We denote the left side of (6.6)

by ΓdfGOd&β) .
Jo

COROLLARY. Let X be a response for an admissible (BU). Then,

with probability 1,
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Jo k JO

Hen.ce, using a mapping π with π(tω) = (t X(ω)), we see that the process

Y{t) = ['β\sXU(s))ds is %n-measurable.
Jo

Now we shall prove the following existence theorem.

THEOREM 5. Under the assumptions (A 1) —(A 3), (A 9) (B 1) and

(B 2), we have an optimal control.

LEMMA 1, There exists a Gn-measurable function v; (0 oo) x Cn ->

Γ, such that for almost all (tω)

(6.7) β\t X(ω) U(tω)) = β\t X(ω) v(tX(ω)) .

Because a symmetric and positive definite root of a symmetric positive

definite matrix is unique, (6.7) means that, for almost all (tω)

βit X(ω) U(tω)) = β(t X(ω) v(tX(ω)) .

L E M M A 2. There exists a G2n-measurable w;[0 oo) x C2n —> Γ, such

that, for almost all (tω)

β(t X(ω) U(tω)) = β(f X(ω) w(tX(ω)B(ω))

and

a(t X(ω) U(tω)) = a(t X(ω) w(tX(ω)B(ω))

Proof. Define π [0 o o ) χ β - > C 2 n by π(tω) = (ί X(ω) B(ω)). Put Z(t)

= ΐais X U(s))ds. Then Z(t) = X(t) - x - ['β(s X U(s))ds is also ®2?Γmeas-
Jo Jo

urable by Lemma 1. Therefore a(t X U(t)) is also ®2rΓmeasurable as a

derivative o, Z. Put K « = ( $ $ $ $ $ ) and
Then ^(ίω) ef(ί ω f ) , and 7( ) and f ( u) are ®27i-measurable. So, we

have a ©2π-measurable IF; [0 oo) x Ω -> Γ, such that

r(ίω) = f (ί ω ^(fa))) .

Again taking a ©^-modification of IF, we get a G2n-measurable function

w; [0 oo) x C2n —> Γ, such that for almost all (tω)

γ(tω) = f(tω

Recalling the definitions of γ and f, we have Lemma 2, since a symmetric
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positive definite root of β2 is β.

For (BU) e SI, we define θu and θϋ by

θu(t) = Γα(
Jo

:X
Jo

and

θu(t) = fV(s Z i7(s))ίfe
Jo

where Z = Z^ is a response of (BU). Put 9ft = {(Xuθuθu), (BU) e Si}.

Then, by (2.2) of Theorem 1, we can easily see the following lemma,

LEMMA 3. 9ft is L-totally bounded.

LEMMA 4. Suppose that (Xββe) comes from an admissible system

(BeUe) and (Xβββe) converges to (XΘΘB) in L-metric. Then (Xθθ) is in

9ft.

Proof. By Lemma 2, we may assume U4(t) — v£(tX£Be), with a G2n-

measurable function v£. Hence, using Skorohod's theorem, we can con-

struct (Xβββ^) and (XΘΘB), so that

Xs(t) = x+[\
Jo

sit) - Γ"

θe(t) =

o

β
o

and, with probability 1, (Xe(t)θe(t)θ£(t)B£(t)) tends to (X(t)θ(t)θ(t)B(t))

uniformly on any bounded interval.

P u t £ , ( ί ) = X,(t) - x - θ&(t) -

Then f̂  is an L2-martingale adapted to f8t(Xj}4). Tending £ to oo, we

can see that ξ(t) = X(t) — x ~ θ(t) is an L2-martingale adapted to ί8t(Xθ).

Now we shall show

(6.8) Θίό(t) = Ϋ d f a
Jo

Define Δnk by Xi(k/2n) - X,((k - 1)/2W) and Jn f c similarly for j .

Σ ΔnkAnk
k<2

sup
t<τ

< sup {θiβ) - θHj(t)\ + sup ΘHj(t) -
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+ sup Σ diJik - ΔnkΔnk .

Recalling (6.1) of Prop. 1, we have

P(2nd term > 2~n/i) < C2~n/* , I = 1,2 .. .

For any n, we can take a large A0(n) so that

P(3rd term > 2~n/i) < 2~n/" , for A > A Jin)

and

P(lst term > 2~n") < 2~n/i , for A > A0(n) .

Hence we see that, with probability 1, 2] ΔnkΔn1c tends to 6^(i) uniformly

on any bounded interval, namely we have (6.8). Therefore Θ is (Im-
measurable.

i<y(t) - δΛ/8)| - lim fc(τlΛ)c

Γ \Xt(τ + X)\2dM(X)\2 lim [ (

= 2 £dr[L(r) + J° |

So, there exists a symmetric ©^-measurable H, such that

Θ(t) = fΉ(β)dβ
Jo

Moreover, by (A 9), we see, setting Ve(t) = ve(tXeBe),

Σ (βί/ί) - βtjWctCj = lim Γ Σ j ί M v ^ C j d ί > Z|c|2(ί - s)

Hence, we may assume that H is uniformly positive definite. If neces-
sary, we may take a ©^-modification of H, and Θ may be regarded as
©^-measurable. From

ξi(t)ξj(t) - θis(t) - lim (£Λ(ί)£</ί) - ΘHj(t)) ,

we see that ξi(t)ξj(t) — Θij(t) is a ^(X^-martingale. This means

Let Viϊ be the symmetric positive definite root of H. The V# is
^-measurable and we can define W by
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Wit) = [tΛ(s)dξ(s)
Jo

where A = V# "Λ i.e. IF is a ^(X^-martingale with variation process

<WίWj}(t) = Σ Γ.
fc^ Jo

Namely, W is a Brownian process. Moreover, in the same way as in
§ 5, we have

f(ί)= [tVH(s)dW(s).
Jo

Consequently

(6.9) X(t) = x + ['</Hζβ)dW(β) + θit) .

Jo

\hit) - 0,001 - lim|^(ί) - ^(s) | = lim

< 2 HmfdτfJ \Xe(τ + p)\2dM(P) +

+ p)\2dM(v)
Hence there exists a Radon-Nykodym derivative of θ. Define π [0 oo)
X β->C2w by ^(ίω) = (ί X(ω) W(ώ)). Then (6.9) tells us that 0 is im-
measurable. So,

0 = (ί) ϊCh(s)ds
Jo

with a @2n-measurable ft.
Recalling the definition of θ and θ, we see that, with probability 1,

θ£(t) = Γ/32(ίX,F,)ds -> [tH(s)ds uniformly on [0 T]
Jo Jo

and

θ£(t) = Γα(fcX,y,)cfe -> Γ/ι(s)ds uniformly on [0 T] .
Jo Jo

But, from (A 2), we see
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< \θtj(t) - &Hj(t)\ + θuβ) -

< \θij(t) - θHj{t)\ + jds(j \Xlτ + s) - X(τ + s)\2dM(τ)J K^Tω)

where K^Tω) depends on T and sup \Xt(t)\. Since θe and X£ converge
ί = l,2

uniformly on [0 T], we have, with probability 1,

['βXtXV^ds -+ [tH(s)ds uniformly on [0 Γ]
Jo Jo

and

s -> [\{s)ds uniformly on [0 T] .
Jo

Put γJLtω) = (βUtXV£), β2

nn(tXV£), atfXV,) an(tXV£)) and γ(tω) =
(Hu(β), Hnn(s), K(s) . . hn(s)). Then for any (n2 + n)-vector η e L2([0 T]
X f l ) ,

I (r/(s)ι^(s))^ "^ I (r(s), 37(s))ds , for yω .
Jo Jo

Recalling (2.1), we get the following estimate

4 (r

<

,(s)
4/3

,τ](s)ds

TME\T\η(s)
\ Jo

Therefore, by virtue

C T

\

J

of

lim#
& J o

Jo
,2/3/ rr

\φ)\4/*ds

*y/3 < K,{T

uniform integrability,

(r/s), η(s))ds
Jo

) \w\r,
we have

, η(s))ds .

Consequently γt tends to γ weakly in L2([0 Γ] x fi), Hence a convex
combination of γ£ can tend to γ strongly. Therefore we can take a sub-
sequence which converges almost everywhere. From (B 1) and (B 2), we
have, for almost all (tω),

(6.10) (ΆeU

We can modify H and h on a null set, so that (6.10) holds for all (tω),
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namely there exists a ©27l-measurable H and h such that, for any (tω)

(6 11) (H(tωΛe^itjt(ω)u) ue

Hence, from an implicit function theorem we can take a ©27Γmeasurable

V; [0 oo) x Ω -> Γ, such that

βF(tX(ω)V(tω)) =

and

Taking a ©^-modification of V, we have a G2rΓmeasurable function v;

[0 oo) x C2n -^ Γ, such that, for almost all (tω),

H(tω) = β\t X(ω) v(tX(ω)W(ω)))

and

h(tω) = a(t X(ω) v(tX(ω)W(ω))) .

Since β(t X(ώ) v(tX(ω))) is the symmetric positive definite root of H(tω),

we have, from (6.9)

X(t) = x + Γi8(t-X'i;(ίZW0)ίίTF(s) + Γα(ί-X"i;(tXϊF))ds t > 0
Jo Jo

with probability 1. This means that (XΘΘ) comes from the admissible

system (W v(tXW)), namely (XθΘ) is in 2K.

Proof of Theorem 5. By Lemmas 3 and 4, we can apply the same

method as Theorem 2. Let Xm be approximate optimal. Since Wl is

sequential compact, we have a subsequence Xmi of Xm which converges

in Wl, say X = lim Z m . . The lower semi-continuity of Φ induces

EΦ(X)<\imEΦ(Xmι)

This completes the proof of Theorem 5.

Concerning synthesis problems, we have

THEOREM 6. Let (BU) be an admissible system and X its response

i.e.

X(t) = x + Pβ(s X U(s))dB(s) + [atβX U(s))ds .
Jo Jo

Under the assumption of Theorem 5, we have a Gn-measurable function

v;[0 oo) x Cn —> Γ, such that
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X(t) = x + ['βis X v(sX))dζ(s) + ['ais X v(sX))ds
Jo Jo

with a Brownian process ζ.

Proof. By Lemma 1 of Theorem 5, βit X U(t)) may be regarded as
©^-measurable ψ. This fact guarantees the possibility of the method in

Let φ(s) be a &n-measurable version of E(a(s X U(s))/$βs(X)) and put

Z(t) = X(t) — x — φ{s)ds. Then £ is an L2-martingale adapted to
Jo

and its variation process is given by

Σ f V Ψ /
k Jo

Set θ(s) = ψ(s)-1 and define ζ by

ζ(ί) = ϊtθ(s)dX(s) .
Jo

Then ζ is an L2-martingale adapted to %ίt(X) and

<C*Q(ί) - Σ fλ(β)ίi*(s)Ψι,(s)
A ^p J 0

Namely, ζ is a JB ĴSO-Brownian motion and
Z(t) =

Hence we have

(6.12) X(t) = a? + ίVθ)dζO) + f
Jo Jo

On the other hand, for almost almost all (tω)

E(β(tXU(t))/%t(X)) = ]8(tZ(ω) t7(fa))) - ψ(tω)

and

E(a(tXU(t))/®t(X» = φitω) .

Therefore, by (B 1) and (B 2),

(6.13)
φ(tω) ) \\a(tX(ω)u)

for almost all (tω). Taking a ©^-modification of ψ2 and ^, so that (6.13)
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holds for any (tω), we have a ©^-measurable V;[0 oo) x β —> Γ, such

that, for almost all (t ω),

ψ\tω) = β\t X(ω) Vitω)) and φ(tω) = a(t X(ω) V(tω)) .

Hence we can take a Gn-measurable v;[0 oo) x Cn —> Γ such that , for

almost all (£ω),

= β\t X(ω) v(tX(ω))

and

0(ίω) = a(t X(ω) v(tX(ω)) .

Since ψ is symmetric and positive definite, we see that, for almost all

{tω),

ψ(tω) = β(t X(ω) v(tX(ω)) .

Recalling (6.11), we complete the proof.

§ 7. Diffusion type processes. In this section, we assume that βitfu)

= σ(f(t) Ή) and a(tfu) — γ(f(t) u). Namely, we treat a stochastic differ-

ential equation of diffusion type,

(7.1) dX{t) = σ(X(t) U(t))dB(t) + γ(X(t) U(t))dt , X(0) = x .

Suppose that a and γ are Lipschitz continuous in x. Then (7.1) has a

unique solution Xu. When Φ is given by an integral form, Krylov

proved that an optimal control can be given by a Markovian policy, i.e.

he showed the following theorem

THEOREM [9]. Let τ{X) be the hitting time of X to the boundary
/MX)

of a bounded open set A. Put Φ(JJ) = F(X(s) U(s))ds, where X = Xu.
Jo

Suppose that is uniformly positive definite and a, γ and F are bounded

and continuous in u. If Bellman equation

(7.2) suv\iΣ^M^P^ + Σϊi^u)^^~F(xu)]=Oy on A
uerl dXidXj dXi J

v(x) = 0 on dA

where a = σ2, has a continuous solution v of W2, i.e. (7.2) is satisfied

for almost all xeA, then inf EΦ(U) can be attained by a Markovian

policy.

We shall sketch the outline of his proof. Fix measurable version
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of derivatives of v arbitrary. Since Γ is compact and coefficients are
continuous in u> the supremum is attained. From an implicit function
theorem, we take a Borel function w; A —» Γ, such that, for almost all
x of A,

i Σ aυ(χ wix^Vi^x) + Σι n(χ w(x))Vi(x) - Fix w(x)) = 0

where vt = dv\dxt and v{j = d2v/dXidXj. If it is necessary, we may extend
to to the whole Rn. By virtue of uniform positivity of σ, the stochastic
differential equation

(7.3) dY(t) = o (Y(ί) w(Y(t))dB(t) + γ(Y(t) w(Y(t)))dt , Y(0) - a?

has a solution [7]. Moreover we have, with probability 1,
Lebesgue meas. {t; r(ia))eN} = 0, for any null set N of Rn. This

means that there exists no trouble about the ambiguity of w on a null
set of A.

From a formula on stochastic differentials [7], [8],

v(X(t)) - f
Jo

+ martingale

Hence we have
/ M )

-V(X) = E\ \ Σ Oiί(^(8) U(.8))VU(.X(8)) + Σ rt(ί(») ϋ(.8))Vt(.X(.8))d8
Jo

< Γ(XV(Z(5) J7(β)(fe .
Jo

On the other hand,

/V(F)

-v(») = E\ F(Y(s)w(Y(s))ds .
Jo

Therefore, Y is an optimal trajectory and w an optimal Markovian
policy.

APPLICATION TO LINEAR CONTROLS. Suppose that σ(x u) and Fix u)
are independent of u and

m

ftία u) = Σ 7iAχ)uJ > i = 1 n .
. 7 = 1

So, we have the following Bellman equation,
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(7.4) sup h 2 diji&Vtjix) + Σ VitorijWUj - F(x)] = 0 , on A

v = 0 on dA .

If A is a connected and bounded open set with a smooth boundary, all

coefficients α, 7 and F are bounded and smooth and a is uniformly positive

definite, then there is a unique solution v of C(A) Π C\A), [3]. We set

the inside of the parenthesis of (7.4) by S(xu). Since SGctO is linear in

u> we have

sup S(x u) = sup S(x u) = 0 , x e A
wer wear

namely, S can be regarded as a mapping A x 3Γ —> β1, and by an im-

plicit function theorem, a Borel function w A —> 3Γ, such that S(x w(x))

— 0, exists. Hence we get a Bang-Bang control which is an optimal

Markovian policy.

When Φ is not an integral form, we have a little example, where

any optimal control cannot be given by a Markovian policy.

EXAMPLE. Consider the 1-dimensional stochastic differential equation,

dX(fi) = dB(t) + U(t)dt , X(0) = x .

Let a control region Γ be [-1 1] and Φ(f) = /(l)/(2). Hence,

(7.5) EΦ(X) = EXQ)X(2) =

Since any non-anticipative process U(t), such that U(t) is in Γ, is an

admissible control, we have

(7.6)

and, for U(s) = — sgnX(l), the equality of (7.6) is satisfied. Hence,

putting v = inf EΦ(XU), we see

v - inf E{X\1) - |Z(1)|) - inf JS7(|X(1)| - | ) 2 - i .

Because the cost functional of (|/(1)| — \)2 is non-negative and continuous,

an optimal control U exists by Theorem 2. Since U(t), ί > 1, is irrele-

vant, the control Z70, defined by

£ < 1 , = - s g n Z ( l )

is optimal, i.e.
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v = EXu*(X)XUo&)

Suppose that a Markovian policy w satisfies

v = EXw(ΐ)Xw&)

Putting Y(ί) = Xw{t\ we have, from (7.6),

(7.7)

If the inequality of (7.7) holds with positive probability,

v>E(\Y(l)\-ϊY-i.

On the other hand, "v < E(\Y(1)\ - | ) 2 - J" i s satisfied by the definition

of U. Hence, we have, with probability 1,

(7.8)

But, Y is a diffusion whose law is mutually absolutely continuous to the

law of Brownian process. So, P(Y(1) = 0) = 0 and, for any Borel set

D with positive Lebesgue measure,

(7.9) p(txD)> 0 .

Hence, (7.8) means that, with probability 1,

= -sgn

Since \w\ < 1, we have, for almost all ω

w(Y(s)) = -sgn Y(l) , for almost all s of [1, 2]

Hence, for almost all s of [1, 2]

= —sgn Y(l) , for almost all ω .

Appealing to (7.9), we have, w( ) = 1 for almost everywhere and w( )

= — 1 for almost everywhere. This is absurd. Consequently we have

not a Markovian policy which can give v.
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