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PRIMEABLE ENTIRE FUNCTIONS

FRED GROSS1, CHUNG-CHUN YANG2

AND CHARLES OSGOOD2

I. Introduction.

An entire function F(z) = f(g(z)) is said to have f(z) and g(z) as
left and right factors respe2tively, provided that f(z) is meromorphic
and g(z) is entire (g may be meromorphic when / is rational). F(z) is
said to be prime (pseudo-prime) if every factorization of the above form
implies that one of the functions / and g is bilinear (a rational func-
tion). F is said to be ί7-prime (E'-pseudo prime) if every factorization
of the above form into entire factors implies that one of the functions
/ and g is linear (a polynomial). We recall here that an entire non-
periodic function / is prime if and only if it is £7-prime [5]. This fact
will be useful in the sequel.

In this paper we consider the following question: Given an entire
function /(E£ 0) can one find an entire function g such that g{z)f{z) is
prime? We shall call an entire function / primeable if and only if
there exists an entire function g such that g(z)f(z) is prime. We prove
that given an entire function / there always exists an entire function
g (of zero order) such that g(z)f(z) does not possess any nonlinear poly-
nomial factor. We then apply this result to show that certain classes
of entire functions are primeable.

II. Preliminary Results.

We shall first prove some theorems which are interesting themselves.

THEOREM 1. Given F(z), an entire transcendental function, there
exists an entire function h(z) of order zero such that h(z)F(z) can not
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be written as either p(g) or g(p), where p is a polynomial of degree
larger than one.

As a preliminary we now show except for a countable set of αeC,
z(z — a)F(z) may not be written as g(p), where p is a polynomial of
degree larger than one. Suppose the assertion is false. Without loss of
generality we may assume that p(0) = 0 and that p(z) is monic. Then
p(z) = z Π?=i (s — βj) for some n>l. Since g(p(β)) = 0 we see that the
βj are each either equal to a or equal to a zero of zF(z). Then p(z) —
z(z — a)a Y[?=i(z — fj)> f° r nonnegative integers a and m, where each fj
is a zero of zF(z). Also, if a is not a root of zF(z), a equals either 0
or 1, since if a > 1 it would follow that z = a is a multiple root of
2(2 — ά)F(z). There are at most countably many polynomials q(z) —
z Y\7=i(z — fj)- Since we are assuming the existence of a noncountable
number of values of a for which there exists an entire function g{z)
with z(z — a)F(z) = g(p(z)), one sees that there exist two distinct complex
numbers aλ and a2, neither of which is a zero of zF(z)9 such that for
the same polynomial q(z) and the same choice of a (equal to zero or one)

z(z - aλ)F(z) =

and

z(z - a2)F(z) = g2((z - a2)
aq(z)) .

If above α = 0 we shall show, shortly, that we have a contradiction.
If we never have the above situation with a = 0 we have instead that

z(z - <Lj)F(z) = 0/(2 - a,j)q(z))

for a noncountable set of different α/s.
If α = 0 above we have that

(2 - αx)(2 - α^" 1 == gι{q{z)){g2{q{z))Yι,

where (̂2) = 2 Π7=i(^ — /?)• If m > 0 then, counting multiplicities, we
have that should the right hand side above have any poles it has more
than one. Since the left hand side has exactly one pole, m = 0 and we
are through in this case.

If we can not assume the above case then consider each z(z — a^
7= gό{z{z — a3)q(z)). Since gό{ϋ) = 0 we see t h a t

= z{z - aj)q(z)hj(z(z - a,j
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Also H(z) = F{z)(q{z))~ι must be an entire function. We have then that
H(z) = hj(z(z — a,j)q(z)). Let Zj = Zj(w) denote any solution to the equation

z(z — dj)q(z) = w .

Then each H(Zj(w)) = hjiw) is entire. Now z'j(w) must become infinite
when Zj(w) equals a zero of (z(z — a^qiz))'. Thus, at each zero of
(z(z — (ij)q(z)y, H;(z) must be zero. Given any such zero zό we see that

aj = (2zjq(zj) + ίήq'(Zj))(q(Zj) + Zjq'izj))-1,

unless the denominator vanishes. If there always exists a zj9 say zf,.
which leaves the denominator nonzero then we may define a one to one
mapping from aό to zf. It would follow that H'(z) equals zero on a
noncountable set, so H(z) is a constant and F(z) is a polynomial contrary
to assumption. This would conclude our present proof. If the denomi-
nator vanishes then the denominator, 2zjq(zj) + z)q'(Zj), must vanish also.
Thus, Zjq(Zj) vanishes. If z3 — 0 is put in the equation (z{z — a3)q(z)y
= 0 we see that g(0) = 0. Therefore Zj must be a zero of q(z) = 0.
This equation is of degree one less than (z(z — aj)q(z)y — 0 hence, there
exists a point zf. This proves that z(z — a)F(z) = g(p) is possible for at
worst a countable number of different values of a.

What we wish to do next is to construct a transcendental function
hλ{z) of order zero such that h^fiz) can not be written as p(g) where
p is a polynomial of degree larger than 1. We shall see that our h^z)
is such that the same assertion holds for each (z — a)zh1(z)F(z) there-
fore, we may choose a such that (z — a)zh1(z)F(z) may not be written
as g(p) either.

We wish to rely in what follows on the following result essentially
due to Borel [2].

LEMMA. Suppose that A(r) > 0 is monotone increasing and B(r) > 0

is monotone decreasing for all r > r0, Air) and B(r) are continuous, and

that I B(r)dr < oo. Then A(r + B(A(r))) < A(r) + 1 except for, at most,

a set of finite measure.
Let Mir) = max\Fiz)\. Then Mir) > 0 and is monotone increasing

if r > 1. Set nir)~= (log (M(r)))2/3. Set fir) = log (M(r + l/w(r))). Then
we have

LEMMA 1. For any positive constant N, Mif)/en(r)fir)r > N for all
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r except, at most, a set of finite measure.

Proof. In the lemma of BoreΓs set A(r) = (log M(r))1/3 and B(r) =

r~2. Then

/(r) 1 / 3 = (log (M(χ + (n(r))-ιW/3 < (1 + log (M(r)))1'3, so

/(r) < 2 log (M(r)), except on a set of finite measure. The result now

follows trivially, since M(r) -> oo, as r->oo, faster than r2 say.

LEMMA 2. Except for a set of finite measure

Mir + -λ-\ < en<r)ilf(r) .
\ /(r) /

Proof. This is equivalent to log (M(r + l//(r))) < n(r) + log (M(r))

except for a set of finite measure. Since fir) > log (M(r)) this would

be implied by

log (M(r + (log (M(r)))"1)) < n(r) + log (M(r)),

except for a set of finite measure. Let us drop references to the ex-

ceptional set in what follows. Setting A(r) = (log (M(r)))1/2 and B(r) =

r"2 we see by the BoreΓs Lemma that log (M(r + (log (M(r)))~1)) < ((log

(M(r)))1/2 + I)2. Now logM(r) + 2(log M(r))1/2 + 1 < n{χ) + log(M(r)). This

proves Lemma 2.

LEMMA 3. Given F{z) as above and any positive integer N > 0,

we may choose a point a19 with |α x | — r, s^cΛ ίΛαί |JF'(^)| > N and

< \z - ax\ < (8en

Proo/: Let r > 0 be chosen so that the inequalities of Lemmas 1

and 2 are both satisfied (with 2W replacing N in Lemma 1). Let c0,

<?!, and c2 be circles with center at ax of respective radii, (8en(r)/(r))"S

<2/(r))~1, and (fir))'1. Now if w is inside of cλ we see that

\F'(w)\ = (2πί)-1[ F(z)(z- w)~2dz
JC2

< Af(r)en(r)M(r) .

Thus if w is inside of c0 we see that

\F(w)\ > Mix) - iSenWfir))-K4fir)en{r)Mir)) > \M{χ) > N .

Then if

-1 <\z-a,\< iSe
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we have that

- - Ϊ - )F(z) M(\z\) >
\2ax\ 2δrf(r)en{r)

by Lemma 2. This proves Lemma 3.

N

LEMMA 4. Let c be a circular path which winds once about z — aγ

in the positive direction and has radius S.2~b(enir)f(r))~\ Then, under the
conditions of Lemma 3, where H = (1 — z/aJF(z) we see that Γ = H(c)
winds once about zero in the positive direction and always stays outside
of \w\ < N.

Proof. The second assertion is trivial. To see the first statement
look at

2;n Jc dz { \ a1 I)

(since \F(z)\ > N on and inside of c). This proves Lemma 4.

LEMMA 5. If H1 = E(z)H(z) where \E(z)\ > \ on and inside of c
then Lemma 4 holds with H1 substituted for H and ̂ N substituted for
N.

Proof. Trivial.
Now let us prove our Theorem. Choose two sequences of positive

integers b19 , and c19 such that f]"=i 0- — zlb3) has zero order of
growth and Π7=i (1 — 1/CJ) > h Pick ai a s i n Lemma 3 for Fx(z) = F(z)
and N = 1, subject to the conditions that \ax\ > 6j and the radius of c
is less than one. Proceeding by induction apply Lemma 3 with our
M(r) being for the function

Y (Fnte) = Π (1 - — )F(z) and with N = n,

subject to the conditions that

K l > bn, each 1 -
\aj\

|α»l

for every 1 < j < n — 1, and the curve c has radius less than one.
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Now set hx(z) = Π 7=i (1 — zja3). We see that h(z) has order zero.

Also each

\h1(*)F(z)/Fn+1(z)\>i,

if z is on or inside of the curve c about an. Thus by Lemma 5 each

curve Γj = hι(c)F(c), where c is about ajf winds once about w — 0 in

the positive direction and lies entirely inside of {w||w| > j/2}.

Suppose now that

Uz)F{z) = P(g(z))

where P is a polynomial of degree n > 1. Then for all sufficiently large

j we have that on the different curves c,

g(z) = pKh&Wizψ" + K + o(\U*)F(z)\-1'»)

for some complex constant K and some positive integer k, where p is

a primitive %-th root of unity. Continuing g(z) about c we obtain

/ + W * ) * W M + K + oQh1(z)F(z)\-1'n).

If j is chosen sufficiently large we see that the two values must be

distinct. Thus g(z) is not entire. This proves that hx{z)F{z) — p(g) is

impossible and completes the proof of the Theorem.

THEOREM 2. One may construct h(z) as in Theorem 1 with all of

the zeros of h(z) lying asymptotically on a ray arg z = θ0, unless for

each positive integer n there exists an open sector containing arg z = θ0

on which znF(z) is bounded.

Proof. Using zn+2F(z) for F(z)9 where znF(z) is not bounded on any

open sector containing arg z — 0O, we may go through the above proof
def.

using in the n-th. step M(r) ~ max{\Fn(reίθ)\\θ0 - 1/n < β < βQ + 1/n}
Θ

instead of M(r) for Fn(z). The only properties of M(r) which were

needed in the proofs of Lemmas 1 and 2 were monotonicity and (if r

was sufficiently large) that M(r) > r2. This proves Theorem 2.

III. Primeable Functions and Main Results.

THEOREM 3. Let f be a transcendental entire function with 3(0,

f — h) = 1 for some entire function h(z) of order less than that of f's.

Then f is primeable.
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EXAMPLE. Let p19 p2, p3 be polynomials with p2 Έ£ constant. px -φ 0.

Then pxe
P2 + p3 is primeable.

Proof of the Theorem. First of all, we note that under the hy-

potheses of the theorem / is pseudo-prime. This is an extension of a

result of Goldstein's [4], and its proof can be obtained by adopting the

argument used in [6]. Thus, if £(0,/ — h) = 1 for some entire function

h of order less than that of / , we have, for any entire function g(^ 0)

of zero order, δ(09 gf — gh) = 1. Therefore, gf is also pseudo-prime.

Now choose g as in Theorem 1 such that gf is not a periodic function

and can not be expressed as k{q) or q(k) where k is transcendental and

q is a polynomial of degree at least two. Thus we have shown gf is

£J-prime and therefore is prime.

Along similar lines we have the following result.

THEOREM 4. Let p be a nonconstant polynomial, and f be an entire

function of finite order with δ(0, f(z) — CL(Z)) == 1 for some entire function

a(z) of zero order. Then p(f) is primeable.

THEOREM 5. Let F be an entire function of order p. Assume that

p is finite and Φ | . Suppose there exists a real number a such that

for any δ > 0, all but a finite number of zeros of F lie in the angle

|arg£ — a\ < δ, then F is primeable.

Proof. We deal the case p > \ first. According to a result of

Baker's [1] F is pseudo-prime and so is q(z)F{z) for any polynomial

q(z)(^Ξ 0). Now as shown in the previous section that one can always

find a α e C such that F(a) Φ 0, a Φ 0 and z(z — a)F(z) may not be

written as g(p) where p is a polynomial of degree larger than one.

Now suppose that z{z — a)F(z) = p(g) and P(z) has two distinct roots.

Then the order of g is at most 1/2 (for the proof we refer the reader

to [3]). Therefore the order of F will be < J, giving a contradiction.

Then p has to be a monomial. But a is a simple zero of z(z — a)F(z)

and hence p has to be a linear function. It follows that z(z — d)F{z)

is prime.

The case when p <\ can be proved by combining Theorem 2 and

the preceding argument. Thus the theorem is proved.
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