Y. Kitaoka Nagoya Math. J. Vol. 51 (1973), 79-89

TWO THEOREMS ON THE CLASS NUMBER OF POSITIVE DEFINITE QUADRATIC FORMS

YOSHIYUKI KITAOKA

0. In this note we study the estimate from above and below and the asymptotic behaviour of the class number of positive definite integral quadratic forms.

1. Let S_1, S_2 be positive definite matrices of degree m; then S_1, S_2 are called equivalent (resp. equivalent in the narrow sense) if $S_1 = {}^tTS_2T$ for some T in GL(m, Z) (resp. SL(m, Z)). By definition E(S) is the order of the unit group of S, i.e., the number of matrices in GL(m, Z) such that ${}^tTST = S$. Let m, D be natural numbers; by $H_m(D)$ (resp. $h_m(D)$) we denote the number of equivalence classes (resp. equivalence classes in the narrow sense) in positive definite integral matrices of degree m and determinant D.

THEOREM 1. Let m be a natural number larger than 2, and ε be any positive number. Then we have

$$c_1(m)D^{(m-1)/2} \leq H_m(D) \leq c_2(m,\varepsilon)D^{(m-1)/2+\varepsilon}$$

where $c_1(m)$ is a positive constant depending on m, and $c_2(m, \varepsilon)$ is a positive constant depending on m and ε . Moreover we can take 0 instead of ε if we consider cases of square-free D.

COROLLARY. For even m we have

$$h_m(D) \sim * 2H_m(D)$$
 as $D \to \infty$.

THEOREM 2. Let m be a natural number; then

$$H_m(D) \sim 2 \sum \frac{1}{E(S)}$$
 as $D \to \infty$,

Received October 30, 1972. Revised February 12, 1973.

*) $f(x) \sim g(x)$ as $x \to \infty$ means $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$

Y. KITAOKA

where S runs over a set of representatives of different equivalence classes in positive definite integral matrices of degree m and determinant D.

COROLLARY. Let m be an odd natural number. Then we have

$$\lim_{\substack{D \to \infty \\ D: \text{ odd} \\ \text{square-free}}} \frac{H_m(D)}{D^{(m-1)/2}} = \pi^{-m(m+1)/4} \prod_{k=1}^m \Gamma\left(\frac{k}{2}\right) \prod_{k=1}^{(m-1)/2} \zeta(2k) ,$$

where $\zeta(s)$ is the Riemann zeta-function.

Remark. It is possible that we obtain the similar result to Theorem 2 for the number of classes in a genus on some assumptions (for example, on the assumption that D is square-free).

2. LEMMA 1. The number of groups of finite order in $GL(m, \mathbb{Z})$ is finite up to conjugacy.

Proof. Let G be a group of finite order in GL(m, Z) and S be the positive definite matrix $\sum_{A \in G} {}^{t}AA$. Then there exists an element U in GL(m, Z) such that ${}^{t}USU$ is reduced in the sense of Minkowski and the integral orthogonal group of ${}^{t}USU$ contains $U^{-1}GU$. From Satz 4 in [8], absolute values of all entries of $U^{-1}MU(M \in G)$ are not larger than some constant depending on m.

3. Proof of Theorem 1.

Let S be a positive definite integral matrix of degree m and determinant D. Then the mass M(S) of S is by definition

$$\sum rac{1}{E(S_k)}$$
 ,

where S_k runs over the representatives of equivalence classes in the genus of S, and it is well known ([7])

$$M(S) = rac{2\Gamma(1/2)\Gamma(2/2)\cdots\Gamma(m/2)}{\pi^{m(m+1)/4}\prod_{p} lpha_{p}} \cdot D^{(m+1)/2} \qquad (m>1)$$
 ,

where $\alpha_p = \alpha_p(S)$ is the density of S at the prime p and it is defined by

$$\frac{1}{2}\lim_{\ell\to\infty} (p^{\ell})^{-m(m-1)/2} M(S\, ;\, p^{\ell}) ,$$

where $M(S; p^{\ell})$ is the number of integral matrices $T \mod p^{\ell}$ such that ${}^{t}TST \equiv S \mod p^{\ell}$.

If p does not divide 2D, then we have ([3], [7])

$$\alpha_p = \begin{cases} \prod_{k=1}^{(m-1)/2} (1-p^{-2k}) & m: \text{ odd ,} \\ \left(1-\left(\frac{(-1)^{m/2}D}{p}\right)p^{-m/2}\right) \prod_{k=1}^{(m/2)-1} (1-p^{-2k}) & m: \text{ even} \end{cases}$$

 \mathbf{If}

(1)
$$S \cong \begin{pmatrix} \mathbf{1}_{m-2} \\ \varepsilon_p \\ D\varepsilon_p^{-1} \end{pmatrix}$$
 over Z_p for $p|D$ and $p \neq 2$,

where ε_p is a unit of Z_p , then we have ([3])

$$\alpha_p = 2D^{(p)} \begin{cases} \left(1 - \left(\frac{(-1)^{(m-1)/2} \varepsilon_p}{p}\right) p^{-(m-1)/2}\right)^{(m-1)/2-1} (1 - p^{-2k}) & m: \text{ odd ,} \\ \\ \prod_{k=1}^{(m/2)^{-1}} (1 - p^{-2k}) & m: \text{ even ,} \end{cases}$$

where $D^{(p)}$ represents the *p*-part of *D*.

If 8|D, and

(2)
$$S \cong \begin{pmatrix} A \\ D \end{pmatrix}$$
 over Z_2 ,

where A is unimodular over Z_2 with determinant 1, then by the similar proof to Hilfssatz 10, 11 in [3] we have

 $M(S; 2^{\ell}) = 2^{\ell(m-1)} M(A; 2^{\ell}) M(D; 2^{\ell}),$

and so

$$\alpha_2(S) = 4D^{(2)}\alpha_2(A) ,$$

where $D^{(2)}$ represents the 2-part of D. Thus, on the assumption (2) if 8|D, we have

$$lpha_2(S)/D^{\scriptscriptstyle (2)} \leq c_1$$
 ,

where c_1 depends on only *m*. From now on, c_i represents a positive constant depending on only *m*, and $c_i(\varepsilon)$ depends on *m* and ε .

If S satisfies the above condition (1) for any odd prime p, then we have

$$\prod_{p \neq 2} \alpha_p^{-1} = \begin{cases} \frac{D^{(2)}}{D} \prod_{k=1}^{(m-1)/2} \zeta(2k) \prod_{k=1}^{(m-1)/2} (1-2^{-2k}) \prod_{\substack{p \mid D \\ p \neq 2}} 2^{-1} (1-p^{-(m-1)}) \\ \times \left(1 - \left(\frac{(-1)^{(m-1)/2} \varepsilon_p}{p}\right) p^{-(m-1)/2}\right)^{-1} & m: \text{ odd }, \\ \frac{D^{(2)}}{D} \prod_{\substack{p \mid D \\ p \neq 2}} 2 \prod_{k=1}^{(m/2)^{-1}} \zeta(2k) \cdot L\left(\frac{m}{2}, \left(\frac{(-1)^{m/2}D}{*}\right)\right) \prod_{k=1}^{(m/2)^{-1}} (1-2^{-2k}) \\ \times \left(1 - \left(\frac{(-1)^{m/2}D}{2}\right) 2^{-m/2}\right) & m: \text{ even }. \end{cases}$$

Thus on the assumptions (1), and (2) if 8|D, the mass M(S) satisfies

$$M(S) \ge c_2 D^{(m-1)/2} \prod_{\substack{p \mid D \ p
eq 2}} 2^{-1} iggl\{ \prod_{\substack{p \mid D \ p
eq 2}} igl(1 + igl(rac{-arepsilon_p}{p} igr) p^{-1} igr) & m = 3 ext{ ,} \ 1 & m \ge 4 ext{ .} \end{cases}$$

Therefore if the number of odd primes dividing D is zero or one, and S satisfies above conditions (1) and (2) if 8|D (for example, $S = \begin{pmatrix} 1_{m-1} \\ D \end{pmatrix}$), then

$${H}_m(D) \geq M(S) \geq c_3 D^{(m-1)/2} \qquad {
m for} \ \ m \geq 3$$
 .

Suppose that odd primes dividing D are $p_1, p_2, \dots, p_t (t \ge 2)$, and put the *p*-part of $D = p^{u_p}$. If there exists *j* such that u_{p_j} is odd, then for any given unit ε_{p_i} of $Z_{p_i}(i \ne j)$ there exist a unit ε_{p_j} of Z_{p_j} and a positive definite integral matrix *S* with |S| = D such that *S* satisfies the condition (1) and

$$S\cong ig(egin{array}{c} \mathbf{1}_{m-1}\ & D \end{array}ig) \quad ext{over} \ \ oldsymbol{Z}_2 \,.$$

If any u_{p_i} is even, then for any given unit ε_{p_i} of Z_{p_i} there exist a unit ε_2 of Z_2 and a positive definite integral matrix S with |S| = D such that S satisfies the condition (1) and

$$S \cong egin{pmatrix} \mathbf{1}_{m-3} & & \ & arepsilon_2 & \ & arepsilon_2^{-1} & \ & & D \end{pmatrix} \quad ext{over} \ \ \mathbf{Z}_2 \,.$$

82

Hence we obtain

and for m = 3

$$\begin{split} H_m(D) &\geq \sum_{\substack{\left(\frac{\epsilon p_i}{p_i}\right) = \pm 1 \\ i \neq j}} M(S) \geq c_2 D 2^{-t} \sum_{i=1}^{t} \left(1 + \left(\frac{-\varepsilon_{p_i}}{p_i}\right) p_i^{-1} \right) \\ &\geq c_2 D 2^{-t-1} \sum_{\substack{i=1 \\ i \neq j}} \left(1 + \left(\frac{-\varepsilon_{p_i}}{p_i}\right) p_i^{-1} \right) \\ &= 2^{-2} c_2 D \,. \end{split}$$

Thus, we have proved $H_m(D) \ge c_4 D^{(m-1)/2}$.

Let c_5 be the maximal order of groups of finite order in $GL(m, \mathbb{Z})$. Then we have

$$H_m(D) \leq c_5 \sum M(S)$$
,

where S runs over the representatives of genera of positive definite integral matrices of degree m and determinant D. This implies

(3)
$$H_m(D) \le c_6 D^{(m+1)/2} \prod_{p \nmid 2D} \alpha_p^{-1} \prod_{p \mid 2D} (\sum \alpha_p^{-1}) ,$$

where $\sum \alpha_p^{-1}$ is the sum of the inverses of densities of matrices, up to equivalence, over Z_p of degree m and determinant D. On the other hand, we have

$$\prod_{p \nmid 2D} \alpha_p^{-1} = \begin{cases} \prod_{p \mid 2D} \prod_{k=1}^{(m-1)/2} (1 - p^{-2k})^{-1} & m: \text{ odd ,} \\ \\ \prod_{p \mid 2D} \left(1 - \left(\frac{(-1)^{m/2}D}{p} \right) p^{-m/2} \right)^{-1} \prod_{k=1}^{(m/2)-1} (1 - p^{-2k})^{-1} & m: \text{ even ,} \\ \\ \leq c_7 . \end{cases}$$

Let

$$S \cong \begin{pmatrix} p^{t_1}S_1 & & \\ & \ddots & \\ & & \ddots & \\ & & & p^{t_s}S_s \end{pmatrix} \quad \text{over } Z_p , \qquad (p \neq 2)$$

where S_i are unimodular and $0 \le t_1 < t_2 < \cdots < t_s$, and put $n_i = \text{degree}$ of S_i , $m_i = \sum_{k=i}^s n_k$. Then we get

$$\alpha_p(S) = 2^{s-1} p^{\boldsymbol{w}(t_i, n_i)} \prod_{i=1}^s \alpha_p(S_i)$$
 for odd prime p ,

where $\omega(t_i, n_i) = \sum_{k=1}^{s} t_k n_k (m_k - (n_k - 1)/2)$, and the sum $\sum \alpha_p^{-1}$ in (3) is

$$\begin{split} \sum \alpha_p^{-1} &= \sum_{\substack{n_k, t_k \\ \prod k | S_k| = D/D^{(p)}}} \alpha_p^{-1} \\ &= \sum_{n_k, t_k} \frac{2^{1-s}}{p^{\alpha(t_k, n_k)}} \sum_{k=1}^s \alpha_p(S_k)^{-1} \,. \end{split}$$

We, now, estimate $\sum_{k=1}^{k} \alpha_p(S_k)^{-1}$:

$$\begin{split} \sum_{k=1}^{n} \alpha_p(S_k)^{-1} \\ &= \sum_{n_k=2} \prod_{n_k=2}^{n} \alpha_p(S_k)^{-1} \prod_{n_k\neq 2}^{n} \alpha_p(S_k)^{-1} \\ &= \sum_{n_k=2} \prod_{n_k=2}^{n} \left(1 - \left(\frac{-|S_k|}{p} \right) p^{-1} \right)^{-1} \prod_{n_k\neq 2}^{n} \alpha_p(S_k)^{-1} \\ &= \sum_{n_k=2} \prod_{n_k=2}^{n} \left(1 + \left(\frac{-|S_k|}{p} \right) p^{-1} \right) \prod_{n_k=2}^{n} (1 - p^{-2})^{-1} \prod_{n_k\neq 2}^{n} \alpha_p(S_k)^{-1} \\ &\leq \left\{ \prod_{k=2}^{m} (1 - p^{-k})^{-1} \right\}^{c_k} \sum_{n_k=2}^{n} \left(1 + \left(\frac{-|S_k|}{p} \right) p^{-1} \right). \end{split}$$

If some n_k is not 2, then we can take any unit of Z_p as $|S_k|$ for k satisfying $n_k = 2$, and $\sum_{n_{k=2}} \prod_{n_k=2} \left(1 + \left(\frac{-|S_k|}{p}\right)p^{-1}\right) = 2^{s-1}$. If all n_k are 2, then $\sum_{k=1}^{s} \prod_{k=1}^{s} \left(1 + \left(\frac{-|S_k|}{p}\right)p^{-1}\right) = 2^{s-1}\left(1 + \left(\frac{(-1)^{m/2}D/D^{(p)}}{p}\right)p^{-m/2}\right)$. This implies

$$\sum lpha_p^{-1} \leq \left\{ \prod_{k=2}^m (1-p^{-k})^{-1}
ight\}^{c_9} \sum_{n_k, t_k} rac{1}{p^{\omega(t_k, n_k)}} \qquad ext{for odd } p,$$

Put $D^{(p)} = p^{u_p}$, then $u_p = \sum n_k t_k$ and $\omega(t_k, n_k) \ge u_p$ and the equality arises if and only if $n_1 = m - 1$, $n_2 = 1$, $t_1 = 0$ and $t_2 = u_p$.

If we confine ourselves to the case of square-free D, then we have $n_1 = m - 1$, $n_2 = 1$, $t_1 = 0$ and $t_2 = u_p$ (= 1). Hence in this case, we have

$$\prod_{\substack{p \mid D \ p \neq 2}} \sum_{lpha^{-1}} lpha_p^{-1} \leq c_{\scriptscriptstyle 10} D^{\scriptscriptstyle (2)} / D$$
 .

We come back to the case of general *D*. Let β_s be the number of partitions $m = \sum_{i=1}^{s} n_i, n_i > 0$, and put $\ell = \omega(t_k, n_k) - u_p = t_s n_s (n_s - 1)/2 + \sum_{k=1}^{s-1} t_k n_k (m_k - (n_k + 1)/2)$; then in case of s > 1, we have $t_{s-1} \leq \ell$ and $0 \leq t_{s-i} \leq \ell - i + 1$. This implies that the number of systems $\{t_k\}_{k=1}^s$ such that $\ell = \omega(t_k, n_k) - u_p$ for some n_k satisfying $\sum_{k=1}^{s} n_k = m, n_k > 0$, $\sum n_k t_k = u_p$, and $0 \leq t_1 < t_2 < \cdots < t_s$ is at most $(\ell + 1)\ell(\ell - 1)\cdots(\ell - s + 3)$. Therefore we get

$$\begin{split} \sum_{i_k, t_k} p^{-\omega(t_k, n_k)} &\leq \frac{1}{D^{(p)}} \left\{ \sum_{s=2}^m \beta_s \sum_{\ell=s-2}^\infty \frac{(\ell+1)\ell\cdots(\ell-s+3)}{p^\ell} \right\} + p^{-u_p(m+1)/2} \\ &= \frac{1}{D^{(p)}} \left\{ \sum_{s=2}^m \beta_s \frac{(s-1)!}{(p-1)^s} p^2 + p^{-u_p(m-1)/2} \right\}, \end{split}$$

and finally we have

$$\prod\limits_{\substack{p\mid D\\p
eq 2}}\sum\limits_{p\,\neq\,2}lpha_p^{-1}\leq c_{10}(arepsilon)\Big(rac{D^{(2)}}{D}\Big)^{1-arepsilon}\,.$$

Now we estimate $\sum \alpha_2^{-1}$:

Let $S \cong \begin{pmatrix} S_1 \\ S_2 \end{pmatrix}$ over Z_2 and S_1 is unimodular of degree n and $S_2 \equiv 0(2)$; then from the similar proof of Hilfssatz 10, 11 in [3] it follows that

$$M(S\,;\,2^{\ell}) \ge (2^{\ell-1})^{(m-n)n} M(S_1\,;\,2^{\ell}) M(S_2\,;\,2^{\ell})$$

and so $\alpha_2(S) \ge 2^{1-(m-n)n} \alpha_2(S_1) \alpha_2(S_2)$. Let

$$S \cong egin{pmatrix} 2^{t_1}S_1 & & \ & \ddots & \ & & \ddots & \ & & \ddots & \ & & & 2^{t_s}S_s \end{pmatrix}$$
 over Z_2 ,

where S_i are unimodular and $0 \le t_1 \le \cdots \le t_s$ and put $n_i = \text{degree}$ of S_i and $m_i = \sum_{k=i}^s n_k$; then we get

$$\alpha_2(S)^{-1} \leq 2^{-(s-1)-\omega(t_k, n_k) + \sum_{k=1}^{s-1} n_k m_{k+1}} \prod \alpha_2(S_i)^{-1}$$

The number of unimodular matrices, up to equivalence, of degree $\leq m$, and the number of partitions $\sum_{i=1}^{s} n_i = m$, are finite, hence we get

$$egin{array}{l} \sum lpha_2(S)^{-1} \leq c_{11} \sum 2^{-arphi(t_k,\,n_k)} \ \leq c_{12} rac{1}{D^{(2)}} \,. \end{array}$$

From these we have

$$H_m(D) \leq c_{13}(\varepsilon) D^{(m-1)/2+\varepsilon}$$
.

4. LEMMA 2. Let L be a positive definite quadratic lattice over Z, and suppose that there is a non-trivial isometry σ of L such that σ has 1 as an eigenvalue of σ . Then there exist non-zero two sublattices L_1, L_2 such that

$$L \supset L_1 \perp L_2 \supset c_{14}L$$
 ,

where c_{14} is a natural number depending on the rank of L.

Proof. Let *n* be the order of σ . Then *n* is not larger than some constant depending on the rank of *L*. The assumption implies $\sum_{i=1}^{n} \sigma^{i} \neq 0$. Put $L_{0} = \{x \in L; \sigma x = x\}$. Then $L_{0} \neq 0$, since there exists some *x* in *L* such that $\sum_{i=1}^{n} \sigma^{i} x \neq 0$, and the rank of L_{0} is not equal to the rank of *L*. For any element *x* in *L*, $\sum_{i=1}^{n} \sigma^{i} x$ is in L_{0} , and $nx - \sum_{i=1}^{n} \sigma^{i} x$ is in L_{0}^{\perp} . This means

$$L \supset L_0 \perp L_0^\perp \supset nL$$
 .

Remark. $L \supset L_1 \perp L_2 \supset c_{14}L$ is equivalent to

$$L_1 \perp L_2 \supset c_{14}L \supset c_{14}(L_1 \perp L_2)$$
.

5. LEMMA 3. By $H^{0}_{m}(D)$ we denote the number of equivalence classes of positive definite integral matrices of degree m and determinant D which have a non-trivial unit with 1 as an eigenvalue. Then we have

$$H^0_m(D) \leq c_{15}(\varepsilon) D^{(m-2)/2+\varepsilon} \quad for \ any \ \varepsilon > 0$$
.

Proof. For m = 2, $c_{16}(\varepsilon)D^{1/2-\varepsilon} \leq H_2(D) \leq c_{17}(\varepsilon)D^{1/2+\varepsilon}$ for any $\varepsilon > 0$ is proved by Siegel. From Lemma 2 it follows

$$\begin{split} H^{0}_{m}(D) &\leq c_{14}^{m} \sum_{a=1}^{c_{14}^{2m}} \sum_{b=1}^{[m/2]} \sum_{c \mid aD} H_{b}(c) H_{m-b}(aD/c) \\ &\leq c_{18}(\varepsilon) \sum_{a=1}^{c_{14}^{2m}} \sum_{b=1}^{[m/2]} (aD)^{(m-b-1)/2+\varepsilon} \sum_{c \mid aD} c^{(2b \cdot m)/2} \\ &\leq c_{19}(\varepsilon) \sum_{a=1}^{c_{14}^{2m}} a^{(m-2)/2+2\varepsilon} D^{(m-2)/2+2\varepsilon} \\ &< c_{20}(\varepsilon) D^{(m-2)/2+2\varepsilon} . \end{split}$$

6. Proof of Corollary of Theorem 1.

Let S be a positive definite integral matrix of even degree m and

determinant D. Suppose that any matrix which is equivalent to S is always equivalent to S in the narrow sense; then the unit group of S contains a unit of whose determinant is -1. This implies that the difference $2H_m(D) - h_m(D)$ is at most the number of equivalence classes which have a unit of determinant -1. From Lemma 3 and Theorem 1 follows our corollary.

7. Proof of Theorem 2 In case of m = 2, let $S = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ and $D = ac - b^2$ and $c \ge a \ge 2|b|$. Since E(S) > 2 implies c = a or a = |2b|, the number of equivalence classes which have a non-trivial unit is at most $c_{21}(\varepsilon)D^{\varepsilon}$ for any $\varepsilon > 0$. This completes the proof in case of m = 2. From Lemma 3 it is sufficient to prove Theorem 2 that we estimate the number of equivalence classes such that they have a non-trivial unit and any non-trivial unit has not 1 as an eigenvalue. Let S be such a matrix, and L be a lattice over Z corresponding to S. We denote the orthogonal group of L (= the unit group of S) by G. From the assumption, we see that G contains a unit σ such that σ has not 1 as an eigenvalue and the order q of σ is an odd prime or 4. If q = 4, then $\sigma^2 = -1$. If $q \neq 4$, then $\sigma + \cdots$ $+\sigma^q = 0$. Hence the ring $Z[\sigma]$ is isomorphic to the maximal order O of $Q(\sqrt[q]{1})$. Since, then, L is a torsion-free O-module, from the theory of modules over Dedekind domain it follows that L is O-isomorphic to a direct sum of ideals of $Q(\sqrt[q]{1})$:

$$L\cong A_1\oplus A_2\oplus\cdots\oplus A_n$$
,

where $A_1 = \cdots = A_{n-1} = 0$, and the ideal A_n is a (fixed) representative of some ideal class. (This ideal class is uniquely determined by L.) This identification transforms S to a totally positive definite Hermitian matrix $H(S) = (h_{ij})$ with h_{ij} in $(A_i \overline{A_j} \theta)^{-1}$, where the bar denotes the complex conjugate and θ is the different of $Q(\sqrt[q]{1})$. Moreover if S_1, S_2 are equivalent and have σ as a unit and $S_1 = S_2[T]$ for some T in GL(m, Z) satisfying $\sigma T = \sigma T$, then for corresponding Hermitian forms $H(S_1)$, $H(S_2)$ there exists a matrix $X = (x_{ij})$ such that

$$H(S_1) = XH(S_2)^t \overline{X}$$
, and $x_{ij}, x'_{ij} \in A_i^{-1}A_j$,

where $(x'_{ij}) = X^{-1}$. We remark that there is a natural number c such that all entries of cH(S) are integers in $Q(\sqrt[q]{1})$, and the group $G = \{X \}$ Y. KITAOKA

 $=(x_{ij}); x_{ij}, x'_{ij} \in A_i^{-1}A_j$, where $(x'_{ij}) = X^{-1}$ and GL(n, O) are commensurable. On the other hand, any totally positive definite Hermitian matrix is equivalent (with respect to GL(n, O)) to some element in $\bigcup_{i=1}^{d} S\{X_i\}$, where S is a sufficiently large Siegel domain and X_i is a non-singular integral matrix. $(S, X_i, d \text{ depend on only } q \text{ and } n.)$ This implies that the class number of positive definite Hermitian forms with the norm of determinant $\leq D$ is at most $c(q)D^{n/2}$, where the constant c(q) depends on only q. From these it follows that the number of equivalence classes in which there is some positive definite matrix S such that S has σ as a unit and $|S| \leq D$ is at most $c_{22}D^{n/2}$. Since m > 2 implies n < m - 1, we have proved Theorem 2.

7. Proof of Corollary of Theorem 2.

It is easy to calculate the mass of square-free and odd determinant by using [3], [6]:

$$egin{aligned} &\sum_{S}rac{1}{E(S)} = rac{D^{(m-1)/2}}{4\pi^{m(m+1)/4}} \prod_{k=1}^{m} arGamma \left(rac{k}{2}
ight)^{(m-1)/2} \zeta(2k) \ & imes \left\{ (1+2^{-(m-1)/2}) \left(1+\deltaigg(rac{-1}{D}igg)^{rac{m+1}{2}} D^{-(m-1)/2}
ight)
ight. \ &+ (1-2^{-(m-1)/2}) \left(1-\deltaigg(rac{-1}{D}igg)^{rac{m+1}{2}} D^{-(m-1)/2} igg)
ight\} \,, \end{aligned}$$

where S runs over a set of representatives of classes of positive definite integral matricies of odd degree $m \ge 3$ and of square-free and odd determinant D, and $\delta = (-1)^{(n+1)(n+2)/2+((D-1)/2)n}(n = (m-3)/2)$. Corollary follows from this.

REFERENCES

- [1] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience Pub., 1962.
- [2] M. Kneser, Klassenzahlen quadratischer Formen, Jahresbericht d. DMV, 61 (1958), 76-88.
- [3] O. Körner, Die Maße der Geschlechter quadratischer Formen vom Range ≤ 3 in quadratischen Zahlkörpern, Math. Ann., **193** (1971), 279–314.
- [4] H. Minkowski, Diskontinuitätsbereich für arithmetische Äquivalenz, J. reine angew. Math., 129 (1905), 220-274.
- [5] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, 1963.
- [6] H. Pfeuffer, Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern, Jour. number theory 3 (1971), 371-411.
- [7] C. L. Siegel, Uber die analytische Theorie der quadratischen Formen, Ann. Math., 36 (1935), 527-606.

- [8] C. L. Siegel, Einheiten quadratischer Formen, Abh. Math. Sem. Univ. Hamburg, 13 (1940), 209-239.
- [9] A. Weil, Discontinuous subgroups of classical groups, Lecture at the University of Chicago, 1958.

Nagoya University