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TWO THEOREMS ON THE CLASS NUMBER OF

POSITIVE DEFINITE QUADRATIC FORMS

YOSHIYUKI KITAOKA

0. In this note we study the estimate from above and below and
the asymptotic behaviour of the class number of positive definite integral
quadratic forms.

1. Let S19S2 be positive definite matrices of degree m; then SlyS2

are called equivalent (resp. equivalent in the narrow sense) if Sλ =
 ιTS2T

for some T in GL(m,Z) (resp. SL(m,Z)). By definition E(S) is the order
of the unit group of S, i.e., the number of matrices in GL(m,Z) such
that ιTST = S. Let m,D be natural numbers; by Hm(D) (resp. hm(D))
we denote the number of equivalence classes (resp. equivalence classes
in the narrow sense) in positive definite integral matrices of degree m
and determinant D.

THEOREM 1. Let m be a natural number larger than 2, and ε be
any positive number. Then we have

c 1(m)D ( m- 1 ) ' 1 < Hm(D) < c 2 (m,ε)D ( w - 1 ) / 2 + s ,

where cx(m) is a positive constant depending on m, and c2(m,ε) is a
positive constant depending on m and ε. Moreover we can take 0 instead
of ε if we consider cases of square-free D.

COROLLARY. For even m we have

hmφ) ~* 2Hm(D) as D-*oo.

THEOREM 2. Let m be a natural number; then

Hm(D) ~ 2 Σ ^
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g(x) as x -> oo means lim lί®L = 1
*-°° g(x)
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where S runs over a set of representatives of different equivalence classes
in positive definite integral matrices of degree m and determinant D.

COROLLARY. Let m be an odd natural number. Then we have

TT (ΊΎ\ f h

D: odd
square-free

where ζ(s) is the Riemann zeta-f unction.

Remark. It is possible that we obtain the similar result to Theorem
2 for the number of classes in a genus on some assumptions (for ex-
ample, on the assumption that D is square-free).

2. LEMMA 1. The number of groups of finite order in GL(m,Z)
is finite up to conjugacy.

Proof. Let G be a group of finite order in GLim, Z) and S be the
positive definite matrix ΣAGG'ΆA. Then there exists an element U in
GL(m,Z) such that *USU is reduced in the sense of Minkowski and the
integral orthogonal group of tUSU contains U~ιGU. From Satz 4 in
[8], absolute values of all entries of U~ιMU(M e G) are not larger than
some constant depending on m.

3. Proof of Theorem 1.

Let S be a positive definite integral matrix of degree m and de-
terminant D. Then the mass M(S) of $ is by definition

Σ E(Sk) '

where Sk runs over the representatives of equivalence classes in the
genus of S, and it is well known ([7])

= 2Γ(l/2)Γ(2/2) . Γ(m/2),I ) ( m + 1 ) / 2
7 m(m + l)/4 ΓT v ^ / >

where ap = ap(S) is the density of S at the prime p and it is defined by

— lim (p*ymim-1)/2M(S p'),
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where M(S pe) is the number of integral matrices T mod pe such that

*TST = Smoάp*.
If p does not divide 2D, then we have ([3], [7])

m: odd,

(1 — p~2k) m: even .
v \ \ p i / *=i

If

ί lm-2 \

εv over Z p for p\D and p Φ 2 ,

where εp is a unit of Zv,

then we have ([3])

/(_-\γm-l)/2 \ \ (m-D/2-1

1 _ l _ y 5P_U-(—υ/2 [] (1 - P"2&) m: odd ,

m/2)-l

Π (1 — P~2Λ) m : even ,
k = l

where D(p) represents the p-part of D.

If S\D, and

( 2 ) S^ ( A ) over Z 2 ,

where A is unimodular over Z2 with determinant 1, then by the similar

proof to Hilfssatz 10, 11 in [3] we have

M(S 20 = 2e^-λ)M{A 2t)Mφ 20 ,

and so

a2(S) = AD^

where D(2) represents the 2-part of D. Thus, on the assumption (2) if

8\D, we have

where cλ depends on only m. From now on, ct represents a positive

constant depending on only m, and c^e) depends on m and ε.



82 Y. KITAOKA

If S satisfies the above condition (1) for any odd prime p, then we

have

π < =

)(2)

U

X ί 1 -
r - J V m - D / 2 .

Π
p\D
pφ2

-(rn-l)/2 m: odd ,

(m/2)-l

ΠΠ 2 *-
P\D
pφ2

x ί i -

(m/2) -1

Π (

m: even .

Thus on the assumptions (1), and (2) if 8|D, the mass M(S) satisfies

, Π i +
> - l l P\D V

p- m — 3,
Π

p\D 1 m> 4 .

Therefore if the number of odd primes dividing D is zero or one, and S

satisfies above conditions (1) and (2) if 8\D (for example, S =

then

> M(S) > c3D
(w-1)/2 for m > 3 .

Suppose that odd primes dividing D are p19p2, ,Pί(ΐ > 2), and put
the p-part of D = pUp. If there exists j such that uPj is odd, then for
any given unit εPi of ZPi(i Φ j) there exist a unit εp of Zp and a posi-
tive definite integral matrix S with |S| — D such that S satisfies the
condition (1) and

^ / l w . i

~ \ D over Z ? .

If any uPi is even, then for any given unit εPi of ZPt there exist a unit
ε2 of Z2 and a positive definite integral matrix S with |S| = D such that
S satisfies the condition (1) and

•l m-3

over Z,.

D
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Hence we obtain

Hm(D) >

and for m = 3

Hm(D) >

iφj

~~ 2

Π
ί 1

for m > 4 ,

= 2~2c2D .

Thus, we have proved Hm(D) > c4D
(m"1)/2.

Let c5 be the maximal order of groups of finite order in GL(m9Z).

Then we have

Hm(D) < cδ Σ M(S),

where S runs over the representatives of genera of positive definite

integral matrices of degree m and determinant D. This implies

Hm(D) < cQD^> Π < Π (Σ O ,
pl[2D p\2D

( 3 )

where Σ a~vλ ̂ s ^ e s u m °f the inverses of densities of matrices, up to

equivalence, over Zv of degree m and determinant D. On the other

hand, we have

π < -
\2D

( m l ) / 2

Π Π (1 - v~2k)~ι

p)[2D & = 1

m: odd,

/ / 1 W 2 Π \ \ ( / )

Π 1 - Γ Lf)p-m/A Π d - P " 2 * ) " 1 m: even,

Let

Q /—' over Z p , 2)

p' S,
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where St are unimodular and 0 < tx < t2 < < ts, and put Ui — degree

of Sif nii = 2]*-ί w* Then we get

αp(S) = 2'-y ( ί<'n ί ) Π ocP(Si) for odd prime p,
ί = l

where &(£<,%<) = £ ] | β l tknk(mk — (% — l)/2), and the sum 2 a;1 in (3) is

Σ* -1 V V sv-1

•βp — 2-k 2-ί ap
t ά S

We, now, estimate

Σ Π ̂ (S,)-1

- Σ Π ̂ (S*)-1 Π ^
2 2

= Σ Π (i - ί ^ 1 ) ? - 1 ) Π

= Σ Π (i + (^^W- ] ) Π α - v-2)-1 Π
w*=2 \ \ p I I nk=2 Φ

< j Π (l - ί>-*)-4C8Σ Π (i +
U 2 J 2 \njc=2

If some nk is not 2, then we can take any unit of Zv as \Sk\ for k

.satisfying nk = 2, and Σ Π (l + ( " - ^ W 1 ) = 2 s ' 1. If all nk are 2,
nk=2 \ \ p I I

s I I I Of ι\ \ / / f 1 W 2 Π / Γ ) W \ \
then Σ Π [1 + I ' *'IP"1) = 2s"1 1 + C-D i>//> \ p - ^ \ T h i g i m _

*-i \ \ p I I \ \ p I I
plies

for odd 39,

Put D ( p ) = pw2», then up = 2 nΛίfc and ω(tk,nk) > up and the equality arises

if and only if nx = m — 1, n2 = 1, ^ = 0 and ί2 = up.

If we confine ourselves to the case of square-free D, then we have

nx = m — 1, 2̂ = 1, ίj — 0 and t2 = up ( = 1 ) . Hence in this case, we

have

p |
pΦ2
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We come back to the case of general D. Let βs be the number of

partitions m = Σ ? = i ^ , % > 0, and put £ — ω(tk,nk) — up = tsns(ns — l)/2

+ Σil'Λ tknk(mk — (nk + l)/2); then in case of s > 1, we have t8^ < £

and 0 < ts_i < & — % + 1. This implies that the number of systems {tk}'ksal

such that £ = ω(tk,nk) — uv for some nk satisfying 2] |=i% = m9nk> 0,

2 nktk = tip, and 0 < tx < t2 < -. < ί, is at most (£ + Y)i{& — 1) -

{£ — s + 3). Therefore we get

V (̂  + ΐ)£• (I — s + 3)) _j_ ̂ _W2,

and finally we have

ΠΣ<<C1 0(ε)(^V
P\D \ D Ip\D
PΨ2

Now we estimate 21 aΐ1:

( S \1 Q over Z2 and ASJ is unimodular of degree n and S2 = 0(2)

then from the similar proof of Hilfssatz 10, 11 in [3] it follows that

M(S; 20 > (2£-iym-n)nM(S1;2
£)M(S2;2

£)

and so a2(S) > 21-^m-n)na2(S1)a2(S2). Let

S ^ over Z 2 ,

where Si are unimodular and 0 < tλ < < ts and put w4 = degree of

St and ra$ — Σ?ksti nk then we get

A^GS)-1 < 2- (- 1 )- ( t* n*)+»5ίn*m»+1 Π ^(Si)-1.

The number of unimodular matrices, up to equivalence, of degree < m,

and the number of partitions 2]?=i nι — m> a r e finite, hence we get

Σ ^(S)-1 < cn Σ 2-̂ »*>

— 12
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From these we have

Hm(D) < c13(ε)D^-»'2+*.

4. LEMMA 2. Let L be a positive definite quadratic lattice over Z,

and suppose that there is a non-trivial isometry σ of L such that σ has

1 as an eigenvalue of σ. Then there exist non-zero two sublattices L19L2

such that

L 3 Lx J_ L2 3 cuL ,

where cu is a natural number depending on the rank of L.

Proof. Let n be the order of σ. Then n is not larger than some

constant depending on the rank of L. The assumption implies Σi=iσί

Φ 0. Put LQ — {xeL σx = x). Then Lo Φ 0, since there exists some x

in L such that Σ"-i aιx Φ 0, and the rank of Lo is not equal to the rank

of L. For any element x in L, 2]?=i °iχ is i*1 Lo, and nx — Σι=iσίχ * s

in L^ . This means

Remark. L D Lx _L L2 3 c14L is equivalent to

Lλ _|_ L2 3 c14L 3 c14(L! _L L2).

5. LEMMA 3. By H°m(D) we denote the number of equivalence classes

of positive definite integral matrices of degree m and determinant D

which have a non-trivial unit with 1 as an eigenvalue. Then we have

H°m(D) < c15(ε)Dim-2)/2+ε for any ε > 0 .

Proof. For m = 2, c16(ε)D1/2~ε < H2(D) < c17(ε)D1/2+ε for any e > 0 is

proved by Siegel. From Lemma 2 it follows

H°m(D) < c^ΣΣΣ Hb(c)Hm_b(aD/c)
a = l & = 1 c\aD

cIf[m/2] ( m _ δ _ 1 ) / 2 + ε ( 2 δ - m ) /2

a=l δ = l c\aD

^ O (A S^1 /γ(m-2)/2 + 2εΓ)(m-2)/2 + 2e

6. Proo/ of Corollary of Theorem 1.

Let S be a positive definite integral matrix of even degree m and
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determinant D. Suppose that any matrix which is equivalent to S is
always equivalent to S in the narrow sense; then the unit group of S
contains a unit of whose determinant is —1. This implies that the
difference 2HJJD) — hm(D) is at most the number of equivalence classes
which have a unit of determinant —1. From Lemma 3 and Theorem 1
follows our corollary.

7. Proof of Theorem 2

In case of m = 2, let S = (? b) and D = ac - b2 and c > a > 2|6|.
\0 C]

Since E(S) > 2 implies c = a or a = |26|, the number of equivalence
classes which have a non-trivial unit is at most c21(ε)Dε for any ε > 0.
This completes the proof in case of m = 2. From Lemma 3 it is suf-
ficient to prove Theorem 2 that we estimate the number of equivalence
classes such that they have a non-trivial unit and any non-trivial unit
has not 1 as an eigenvalue. Let S be such a matrix, and L be a lattice
over Z corresponding to S. We denote the orthogonal group of L (= the
unit group of S) by G. From the assumption, we see that G contains
a unit σ such that σ has not 1 as an eigenvalue and the order q of σ
is an odd prime or 4. If q = 4, then σ2 — —1. If q Φ 4, then σ +
+ σq = 0. Hence the ring ZW is isomorphic to the maximal order 0 of
Q(jV 1). Since, then, L is a torsion-free 0-module, from the theory of
modules over Dedekind domain it follows that L is O-isomorphic to a
direct sum of ideals of Q(\/Ύ):

where A1— = An_λ = O, and the ideal An is a (fixed) representative
of some ideal class. (This ideal class is uniquely determined by L.) This
identification transforms S to a totally positive definite Hermitian matrix
H(S) = (hij) with hij in (A^Ajθ)'1, where the bar denotes the complex
conjugate and θ is the different of Q(ΛΠΓ). Moreover if S19S2 are equiva-
lent and have σ as a unit and S1 = S2[T] for some T in GL(m, Z) satis-
fying σT = αT, then for corresponding Hermitian forms H(S^)9 H(S2) there
exists a matrix Z = (a^ ) such that

H(Sd = XmSJ'X, and st,, a^ e A^A,,

where (x^) = X"1. We remark that there is a natural number c such

that all entries of cH(S) are integers in Q(Λ/T), and the group G = {X
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= (Xij) xij9 x'ij e A^Aj, where {xf

i3) = X'1} and GL(n, 0) are commensu-
rable. On the other hand, any totally positive definite Hermitian matrix
is equivalent (with respect to GL(n,O)) to some element in U?-i {̂-3̂ },
where S is a sufficiently large Siegel domain and Xt is a non-singular
integral matrix. (S9Xi9d depend on only q and n.) This implies that
the class number of positive definite Hermitian forms with the norm of
determinant < D is at most c(q)Dn/2, where the constant c(q) depends on
only q. From these it follows that the number of equivalence classes in
which there is some positive definite matrix S such that S has σ as a
unit and \S\ < D is at most c22D

nβ. Since m > 2 implies n < m — 1, we
have proved Theorem 2.

7. Proof of Corollary of Theorem 2.

It is easy to calculate the mass of square-free and odd determinant
by using [3], [6] :

1 Γ)(ra-l)/2 m / L. \ (m-l)/2

? J1Γ(!) Jl

X j(l + 2-<*-»'*)(l +

where S runs over a set of representatives of classes of positive definite
integral matricies of odd degree m > 3 and of square-free and odd
determinant JD, and δ = ( - I ^ + I K ^ ^ - K C Z ? - ! ) / ^ = ( m _ s)/2). Corollary
follows from this.
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