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CONTRACTED IDEALS FROM INTEGRAL

EXTENSIONS OF REGULAR RINGS

M. HOCHSTER1

0. Introduction. The purpose of this paper is to consider the fol-
lowing question: if R is a regular Noetherian ring and S 3 R is a
module-finite B-algebra, is R a direct summand of S as β-modules? An
affirmative answer is given if R contains a field, and it is shown that
if the completions of the local rings of 5 possess maximal Cohen-
Macaulay modules in the sense of § 1 of [6] then the conclusion is valid
in this case too. Hence, if Conjecture E of [6] is true then the question
raised here has an affirmative answer without further restriction on the
regular Noetherian ring R, and it will be shown here that only a greatly
weakened version of Conjecture E is needed.

It follows from our results on direct summands that if R contains
a field, its local rings are regular, and S is an extension algebra integral
over R, then every ideal of R is contracted, i.e. if / c R then IS Π R = 7.
In fact, we prove the direct summand result by proving first that certain
key ideals I of a regular local ring have this property. In the final
section of the paper we consider briefly some propositions about the
class of domains such that every ideal is contracted from every integral
extension.

Throughout this paper, all rings are commutative, with identity, all
modules are unitary, and ring homomorphisms are assumed to preserve
the identity.

1. Regular rings. Our first reductions in the problem are conse-
quences of the following:

LEMMA 1. Let R c S be rings and assume that S is finitely presented
as an R-module. Then R is a direct summand of S if and only if for
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each maximal ideal P of R, Rp is a direct summand of Sp.
Moreover, if T is a faithfully flat R-algebra then R is a direct

summand of S if and only if T — R ®R T is a direct summand of S ®Λ T.

Proof. Consider the exact sequence

0 _* R _* S -> S/R -> 0 .

To ask whether R is a direct summand of S is the same as to ask
whether

Horn* (S/R, S) -> Hom^ (S/R, S/R)

is surjective. This map is surjective if and only if for each maximal
ideal P of R9

^ (S/R, S) ®B RP -> HomΛ (S/R, S/R) ΘR RP

is surjective, and since S (and hence S/R) is finitely presented, we have
the commutative diagram:

Λ (S/R, S) <g)Λ RP ^ H o m Λ p (SP/RP, SP)

ϊ I
Λ (S/R, S/R) <g)Λ RP ^ H o m Λ p (SP/RP, SP/RP).

The first part of the theorem follows at once.
For the second part we note that since T is faithfully flat

(S/R, S) -> Horn* (S/R, S/R)

is surjective if and only if

Hom^ (S/R, S)®RT-+ Hom^ (S/R, S/R) <g)Λ T

is surjective, and since S,S/R are finitely presented and T is flat we
have the commutative diagram:

Horn* (S/R, S)®BT ^ HomΓ (S ® Γ/i2 ® Γ, S ® Γ)

Horn, (S/Λ, S/Λ) ®^ T = HomΓ (S ® Γ/Λ (g) Γ, S ® Γ/β ® Γ)

and so the second part follows.

Remark 1. The criteria of Lemma 1 apply to determine whether
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an arbitrary short exact sequence of finitely presented i?-modules is
split, not just

0 _> R _> s -> S/R -> 0 .

This is evident from the proof.

PROPOSITION 1. // R c S are rings such that R is a direct summand
of S then for each ideal I of R, IS Ω R = /.

Proof. See [7], Proposition 10.
The condition that R be a direct summand of an extension ring S

is equivalent, in the terminology of [7], to the existence of a Reynolds
operator from S to R. The consequences of the existence of a Reynolds
operator are discussed in detail in [7] Propositions 9-12. Such operators
occur frequently in invariant theory over fields of characteristic zero.

We note that if R is a domain which is a direct summand of every
module-finite extension, then R is integrally closed. For if b,a Φ 0 are
in R and b/a is integral over R, then since R[b/a] is module-finite over
R we have b e (aR[b/aJ) ΓΊ R = aR and b/ae R.

The following two results show that if R contains the rationale
integral closure is also sufficient. The next result is well known but
we include a short proof for the sake of completeness.

LEMMA 2. // R is an integrally closed domain which contains the
rationals Q and S is an integral extension domain of R of finite degree,
then R is a direct summand of S.

Proof. There is no harm in enlarging S. Hence, we might as well
assume that S is the integral closure of R in a finite normal field ex-
tension L of the fraction field K of R. Let d=[L:K]. Then (1/d) ΎrL/κ

retracts S onto R. In fact, if r e R (or K) ΎvL/κ (r) = dr. On the other
hand, the trace of an integral element is integral and every element of
K integral over R is in R.

Lemma 2 shows that the hypothesis of regularity is much more
than sufficient in case R contains the rationals. To dispel the idea that
anything much weaker than regularity might be enough in characteristic
p we give an example.

EXAMPLE 1. Let K be an algebraically closed field of characteristic
2. Let u, v, x, t, and z be indeterminates. Let D ~ K[u2, v2, u3 + vz] c
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K[u, v\. The K-homomorphism from K[x, y, z] onto D which takes x,y,z
to u2, v2, u3 + v3, respectively, has as its kernel the principal ideal (x3 +
y3 + z2), so that D is Gorenstein (and, in fact, a complete intersection),
and it is easy to see that D is integrally closed in its fraction field. In
D, u3 + v3&(u2,v2)D, but in K[u,v], which is integral over D, u3 + v3 e
(u2,v2)K[u,v]. Thus, (u2, v2) is not contracted from K[u,v], and it follows
that D is not a direct summand of its integral extension K[u,v], by
Proposition 1. The essential properties of this example are preserved
by localizing at the maximal ideals ((u, v) Π D and (u, v)) and even by,
furthermore, completing the resulting local rings. Hence, even an ana-
lytically normal Gorenstein algebro-geometric local ring fails to be a
summand of all of its module-finite extensions in characteristic p. The
author has not found any natural condition weaker than regularity
which suffices (although regularity is not necessary).

The next lemma shows that we only need to look at domain extensions.

LEMMA 3. Let R be a domain and S an integral extension of R.
Then there is a prime P of S such that P Π R = (0), and if R is a
direct summand of S/P (under the induced inclusion), then R is a direct
summand of S.

Proof. Since R — {0} is a multiplicative system in S we can take P
to be any ideal of S maximal with respect to disjointness from R — {0}.
We have a commutative diagram:

S

R 9 onto9

S/P

and is follows that if f:S/P-+R is an β-module retraction then fg:
S —> R is an β-module retraction.

Suppose we are given, now, a regular Noetherian ring R and a
module-finite β-algebra S D R, and we want to decide whether R is a
direct summand of S. By using the first part of Lemma 1 we can
reduce to the case where R is local, and by using the second part to
the case where R is complete, taking T = R, the completion of R. Using
Lemma 3 we can reduce to the case where S is a domain. However,
for the moment, we shall not make all of these reductions but we give
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instead a criterion for R to be a direct summand of S when R is a
regular local ring and S is module-finite over R.

THEOREM 1. Let (R, P) be a regular local ring and let x19 , xn be a

regular system of parameters for R (i.e. dim R = n and P = (x19 , α?n)#).

Let R a S, where S is a module-finite R-algebra. Then R is a direct

summand of S if and only if for every positive integer k,

Proof. Let Ik = (a f, , x%)R. Since R is regular and #f, •••,#* is

a system of parameters, i?fc = R/Ik is Gorenstein and zero-dimensional:

let Pk = P/Ik. Then A n n ^ P * will be isomorphic to a single copy of

R/P, and every nonzero ideal of Rk will contain AτmBkPk. It is quite

easy to see, in fact, that AnnRkPk is generated by the residue class

modulo Ik of uk — (xx *xn)
k~ι. It follows that every ideal of R strictly

larger than Ik contains uk.

Now, if R is a direct summand of S then every ideal of R will be

contracted. Since uk+1g Ik+1R, we will then have uk+ί&Ik+ιS, which is

precisely the condition asserted in Theorem 1.

To prove the converse, assume that uk+1zIk+1S, all k. Let R be

the completion of R. By the second statement of Lemma 1, it suffices

to show that R is a direct summand of S®RR, which is a module-finite

extension algebra of R. Since R is faithfully flat over R, S®RR is

faithfully flat over S. Then uk+1e(Ik+}(S®RR)) Π R, because if it did,

we would have uk+ι e ((/ fc+i(S®Λ R)) Π S) Γ\ R and since S(S)RR is faith-

fully flat over S, (Ik+1(S®RR)) Π S = Ik+1S and uk+1 e (Ik+1S Π R) f] R =

(Ik+1S) Π R, contradiction. Hence, we may assume without loss of gen-

erality that R is complete.

Since the ideals Ik are cofinal with the powers of P and R is complete,

( * ) Hom^ (S, R) = lim HomΛ (SΛ, βΛ)

where >Sfc = S/IkS. We also note the isomorphisms

Horn, (S t, Rk) s HomΛ l (S t, βfc) .

Now, 7fcS Π R = Ik, because if J = IkS Π R and / 2 Jfc, then ^fc e /, and

this contradicts our hypothesis. Hence, the inclusion R —> S induces an

inclusion Rk —> Sk for each k. Since i?fc is a zero-dimensional Gorenstein
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ring, it is injective as an 72^-module, and it follows that for each k,

the inclusion 72̂  —> Sk splits, i.e. 72fc is a direct summand of Sk. For

each k, let hk:Ή.omR(Sk,Rk) -> Rk by hk(φ) = φ(lk) where lk e Rk c Sk

is the image of l e 7 2 c S , and let ft: HomΛ OS, 72) -> 72 by ft(0) = 0(1).

Then 77fc = hk\l) (respectively, 77 = ft"!(l)) is the set of splittings of

72fc —> Sk (respectively, 72 —> S) and the inverse limit relation (*) induces

<**) 7 7 - Iim77fc.

Here 77*. (respectively, 77) is a coset (or translate) of a submodule of

Hom^ OS, Rk) (respectively, Hom^ OS, 72)) and the maps are restricted

module homomorphisms. All we need to show to complete the proof is

that Ή. Φ φ. Since each 72fc is a summand of Sk9 each 77fc Φ φ. But an

inverse limit of nonempty cosets in Artinian modules is nonempty. To

see this, note that for each k the decreasing sequence of nonempty sub-

cosets Im (Hi+k —> Hk) of Hk stabilizes, since their lengths must stabilize.

Denote this subcoset of Hk by Ek. Then the Ek form a subsystem of

nonempty subcosets and surjective maps so that

φ Φ lim E c H .
— k

This completes the proof.

Remark 2. Theorem 1 generalizes in various ways. We indicate a
number of these generalizations. First, it is not necessary to assume
that S is an 72-algebra. Assume that 72 is regular, as before, let x19 , xn

be as before, and let E be a finitely generated 72-module. Let e e E be
such that Ann^ e = (0), i.e. 72 —> E by r H-> re is a monomorphism.
i2e is a direct summand of E if and only if for every integer k > 0,

The proof is essentially the same.
Moreover, it is not necessary to assume that 72 is regular. Let

{72, P) be any local ring, and let {7fc} be a sequence of irreducible P-primary
ideals cofinal with the powers of P. (If 72 is Gorenstein and x19 , xn

is any system of parameters, we can take Ik to be (atf, ,α£).) Let
ukeR generate the minimum nonzero ideal of 72/7fc modulo Ik. (Note that
a P-primary ideal 7 is irreducible if and only if 72/7 is a 0-dimensional
Gorenstein ring.) Let E be a finitely generated 72-module and e e E be
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such that Ann# e = (0). Then Re is a direct summand of E if and only

if for every integer k > 0.

uke & lkE.

(If R is Gorenstein, x19 -,xn is a system of parameters, and Ik =

(#ϊ> * •>**)> we may always take uk+ι = (av #J f c^i). The proof of this

result follows precisely the lines of the proof of Theorem 1.

Remark 3. We also note the following result. Let R be a regular

local ring and x19 , xn a regular system of parameters. Let E be a

finitely generated R-module. Then E has a direct summand isomorphic

to R if and only if Ann^ E = 0 and for every integer k > 0,

{x^-.XnYEςt (xϊ+\ - , x*+1)E .

To see why this is true let

Ek = (sf+1, , x*+1)E: (x, xnYR c E .

Then {Ek} is an increasing sequence of submodules of E and we can

choose k such that Ek = Ek+1 = . Then Ek Φ E. Also, if T =

{β e £7: for some r eR — {0}, re = 0}

then Γ is a proper submodule of E. Hence, E Φ Ek U T, and we can

choose e not in Ek or T. Then Re ^ i? is a direct summand of £7, by

the first part of Remark 2.

We now are ready to handle the "geometric case."

THEOREM 2. Let R be a ring which contains a field and suppose

that for every prime P of R, RP is a regular local ring. Let S D R

be an R-algebra which is finitely presented as an R-module. Then R is

a direct summand of S.

Hence, if R is a regular Noetherίan ring which contains a field and

S is a module-finite extension algebra, then R is a direct summand of S.

Proof. We note that the second statement follows from the first

simply because a finitely generated module over a Noetherian ring is

finitely presented.

As for the proof of the first statement, we first handle the trivial

ease where R contains a field of characteristic zero. By Lemma 1, we
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can assume that R is local, by Lemma 3 we can assume that S is a

domain, and the result follows at once from Lemma 2.

Now assume that R contains a field of characteristic p > 0, so that

for every t the map ht: S —> S by ht(τ) = τ(pt) is a ring homomorphism.

As above, we can assume that R is local, and from the second part of

Lemma 1 we can assume that R is complete. From Lemma 3 we can

also assume that S is a domain. Thus, S will also be a complete local

domain (module-finite over R). Let Xι,-"9xn be a regular system of

parameters for R. To complete the proof we need only show that there

is no relation of the form

where the st e S, by Theorem 1. We shall give two different proofs that

(#) is impossible. The first is more elementary but the second yields

somewhat more information.

For the first proof, we note that since S is a domain, it is torsion-

free over R, and consequently can be embedded in a free β-module.

Hence, there is an β-homomorphism g: S -»R such that a = g(ΐ) ψ 0.

It follows that we can choose t so large that a & Ppt. We can raise both

sides of (#) to the pύ power to obtain:

( * ) (Xi Xn)
kpt 1 = Σ 8fxϊ*t + pt

i = l

Apply g to both sides:

where V — kpι and rt = g(Sipt) e R. Hence, in the regular ring R,

and since x19 , xn is an B-sequence it follows that this colon of ideals

can be computed precisely as though x19 , xn were indeterminates over

Z (see [3] or [9]), so that

ae(xf, ••.,<) czPv',

a contradiction. This completes the proof of Theorem 2.

Before giving the second proof of the impossibility of (#), we discuss
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briefly the problem of proving Theorem 2 without the hypothesis that R
contains a field. We reduce at once to the case where R is a complete
local ring and S is a domain module-finite over R, and all we need to
show is that (#) cannot hold. Since xu , xn is a system of parameters
of S (S is local because R is complete) all we need is the following:

CONJECTURE 1. // S is any local ring and xl9 , xn is a system of
parameters for X, then for every integer k > 0,

Evidently, if we give a proof of this conjecture when S contains a
field of characteristic p > 0, then we have a new way of completing the
last part of the proof of Theorem 2.

Note that in Conjecture 1, if S is a counterexample, so is S, its
completion, and if P is a prime of S of coheight dim S = dim S, then
S/P is a complete local domain which is a counterexample.

We now give a proof of Conjecture 1 when S contains a field of
characteristic p > 0 which differs from the earlier argument in the proof
of Theorem 2. It is based on:

PROPOSITION 2. // y19 , yn is a system of parameters for the local
ring (S,P) and N is any sufficiently large positive integer, then the
system of parameters xx = τ/f, , xn = yζ satisfies the conclusion of Con-
jecture 1.

Proof, We can assume that S is complete. Then n = dim S, and
H%(S) φ 0, where E.l

P denotes the ith local cohomology module with re-
spect to the maximal ideal P of S. (See Part 4 of Proposition 6.4 of
[4].) By Theorem 2.3 of [4], Hp(S) can be interpreted as a direct limit
of Koszul homology modules, and in the special case at hand we obtain

where the map

is induced by multiplication by (2/r •!/«)*. Since HP(S) φ 0, we can
choose NQ such that if N > No
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Hence, if N > No the image of 1N in S/(y?+i, , yξ+i) is nonzero for
every i > 0, where 1^ is the residue of 1 modulo (y?, ,yζ). But this
says that for N > No and every i > 0,

In particular if i — Nk we have that

for all k and iV > No, which is just what we wanted to prove.
Thus, the nonvanishing of local cohomology in dimension n is rele-

vant to our problem.
We now give our second method for completing the proof of Theorem

2. If S contains a field of characteristic p and y19 , yn is a system of
parameters such that

(2/i •!/»)* = Σ*i»i*+ 1

i-l

choose N of the form p* as in Proposition 2. Raising both sides to the
Nth power gives:

contradicting Proposition 2.
We have shown that Conjecture 1 holds if S contains a field of

characteristic p > 0. We now prove it if S contains any field, by work-
ing backwards from Theorem 2.

PROPOSITION 3. If S is a local ring which contains a field and xl9 , xn

is a system of parameters for S9 then for every integer k > 0,

Proof. We can assume without loss of generality that S is a com-
plete equicharacteristic local domain, so that S is module-finite over its
subring R = K[[xu ,#J], where K is a coefficient field for S. Then
(x*+1, , ̂ n+1)^ is contracted from S, by Theorem 2 and Proposition 1,
and since (xx #n)* € (αsf+1, , xk

n

+1)R, we also have that (x1 a?n)
fc £

(#f+1, , ̂ ^+1)>S, as required.
We next give a discussion of the relevance of Cohen-Macaulay mod-

ules. The following proposition is the key:
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PROPOSITION 4. Let S be a local ring and y19---,yn a system of

parameters for S. Suppose that there is a (possibly non-Noetherίan)

module E over S such that

1) (y19 - ,yn)EφE

2) The first Koszul homology module

H1(E;yί, . ,yn) = 0

((2) is satisfied if yu •• ,yn is an E-sequence.) Then for every integer

k > 1,

Proof. Let Z be the integers, let x19 , xn be indeterminates over

Z, let B = Z[x19 ,xn] and make S into a 7?-algebra by mapping xi to

Vu 1 <i < n. We can think of Z — B/(x19 ••-,#„) as a B-module, and

then

Hι{E\yι,...,yn) g* Tor? (Z,E).

Let / = (xϊ, >-,xk

n) c B and let / = (xk

19 , a*, fe -^) f e + 1) c β. It is

easy to see that J/I ^ Z.

Let Io be any ideal of B generated by monomials in x19 , #w which

contains a power of each α ,̂ 1 < i < n. We shall show that B/IQ has a

filtration in which all the factors are copies of Z. In fact, it is easy to

see that if /0 Φ B, there is a monomial u & Io such that xxu, , #w% e 70,

that (70 + uB)/I0 = ^, and the result follows from Noetherian induction

on 70, since /0 + S is a larger ideal of the same form.

Since 2) yields that Torf (Z, £7) = 0, we see that for 70 as above,.

Tor? (B/IQ, E) — 0. Hence, since 0 —> 70 —> B —> β/70 —> 0 is exact, so is

and hence IQ®BE ^ 70̂ 7. Thus, I®BE ^IE and J®BE ^ JE. Now

we have the exact sequence:

and //7 ^ Z. Applying ®5£? and recalling Torf (Z, £7) = 0, we have

0--* IE -* JE -+ Z ® E -» 0

is exact, and Z®BE ^ -S/(?/!, , 2/J2? ̂  0, by 1), so that IE Q JE. But

then IS C JS, and so (yr τ/Jfc e d/*+1, • • •, ̂ + 1 ) .
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THEOREM 3. Let R be a ring such that RP is a regular local ring

for each maximal ideal P of R, let S be an extension ring such that S

is finitely presented as an R-module, and suppose that for each maximal

ideal M of S and each system of parameters y19 , yn of M, there is

an S-module E such that

2) H1(E;y1, ..,yn) = 0.

Then R is a direct summand of S.

Proof. Let P be a maximal ideal of R. It suffices to show that

RP is a direct summand of RP (x) S for each such P. Thus, we can

reduce to the case where R is local. Let y19 -,yn be a regular system

of parameters for R. Since S is module-finite over R, there is a maxi-

mal ideal M of S lying over P such that dim SM — dim RP, and it follows

that yu - ,yn is a system of parameters for SM. Hence, by Proposition

4, yu 9 Vn have no relation like (#) in SM9 and hence no such relation

in S. The result now follows from Theorem 1.

Remark 4. Suppose that for each maximal ideal M of S, the com-

pletion of SM possesses a Cohen-Macaulay module whose dimension is

equal to that of SM. Then this module certainly satisfies the require-

ments of Theorem 3. Moreover, it is not known whether every complete

local ring possesses a maximal Cohen-Macaulay module (this is Conjecture

E of [6]). Thus, Conjecture E implies Conjecture 1 here, and also implies

that the restriction that R contain a field can be removed from the

hypothesis of Theorem 2.

Remark 5. Conjecture 1 is equivalent to a superficially stronger

statement, Conjecture 1° below. If (a) = (alf , α j is an w-tuple of

nonnegative integers and x = (x19 9xn) is an n-tuple of elements of a

ring S9 let x(a) = αf1- -x\\\ Write (α) > (6) if at > bi9 l<ί< n. Then:

CONJECTURE 1°. If S is a local ring and x19 >9xn is a system of

parameters, then x(a) e (x(bt): 1 < t < m)S if and only if for some t9

(a) > (bt).

To see that Conjecture 1° follows from Conjecture 1, suppose 1°

fails and

<*) x(a) = ΣiStx
(bt\steS .
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Choose (a/) > (α) with all entries of (α/) equal, say (α') = (k, , k). If
we multiply both sides of (*) by χ(α/)-(α) we obtain a contradictory ex-
ample in which the left hand side is (av 'Xn)

k. (For each ty (a) ̂  (bt)
implies that (α/) ̂  (bt) + (α/) — (α)). Hence, we can assume without loss
of generality that (a) = (k, , k). Now (fc, , k) ^ ibt) implies that
some entry of bt is at least k + 1, and hence (x{bt): 1 < t < m)S c
(xk+1, , <+1)>S, and (^ . xn)

k e (xk+1, , x*+1)S, contradicting Conjec-
ture 1.

Conjecture 1° is known if the monomials involved all have the same
degree [10], Theorem 21, p. 292. This result is used to prove the
analytic independence of a system of parameters, and is really a some-
what stronger and more general statement. Hence, Conjecture 1 (or 1°)
is quite a bit stronger than the analytic independence of a system of
parameters.

Remark 6. Theorem 21 of [10] has a module-theoretic extension
which is quite easy to prove. It is worth noting this extension, and
also that the corresponding extension of Conjecture 1° fails.

The module-theoretic extension of Theorem 21 of [10] is as follows:
Let x(a),xibl\ >,x{bm) be distinct monomials of the same degree d in a

system of parameters x19 , xn of a local ring S, and let E be an

S-module of dimension n, so that x19 , xn is a system of parameters

for E. Then

x{a)E ςt (£ ( δ l ), , xib^)E .

To prove this, let Ne be the number of monomials of degree e in

xu ••-,#„. If e > d, then (x19 -,xn)
eE is c (Se)E, where Se is the set

of monomials of degree e which are not multiples of x{a\ so that Se has

Ne — Ne_d elements. Hence, Ee — (x19 , xn)
eE/(x19 , xn)

e+1E has a fil-

tration whose factors are Ne — Ne_d homomorphic images of E/(x19 ,

xn)E9 and £(Ee) < b(Ne - Ne_d), where b = £(E/(x19 > ,xn)E). It follows

at once that the degree of the Hubert polynomial f(e) of E (which
agrees with £(E/(x19 , xn)

eE) for large e) is equal to the degree of
Ne9n — 1, when it should have degree n.

To see that this does not generalize to the context of Conjecture 1°,
note that if dim S > 2, x19 x2 is part of a system of parameters, and E
is the ideal (x\9 xl)S, then
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x\x\E c (x\, xl)E .

Remark 7. Conjecture E is known for local rings of dimension < 2.
Hence, Conjectures 1 and 1° hold in dimension < 2, and the hypothesis
that R contains a field can be dropped in Theorem 2 if dim R < 2.

2. Ideally integrally closed domains. Call a domain D ideally integrally
closed (or IIC) if for every integral extension ring S of D and every
ideal / of D, IS ΓΊ D = I. Thus, every ideal of D is contracted from
every integral extension. In this section we briefly explore this notion.
We begin with some rather straight forward observations:

A. An IIC domain D is integrally closed. (For if b/a is in the
integral closure S of D, b is in (aD)R Π D — aD, and b/a is in D.)

B. To determine whether D is IIC it suffices to consider only domains
S integral over D. Hence, it suffices to consider the integral closure S
of D in an algebraic closure of the fraction field of D. (For if IS Π
D — J, and / properly contains /, we can choose a prime P of S maximal
with respect to disjointness from the multiplicative system D — {0}, and
then I(S/P) Π D contains /.)

C. It suffices to consider only module-finite domain extensions of
D, since each domain integral over D is a directed union of these. Like-
wise, it suffices to consider only finitely generated ideals of D. Hence,
Prϋfer domains are IIC.

D. If D is IIC, then so is T~ιD for any multiplicative system T
in D. (For if S is integral over T~ιD and / is an ideal of T~ιD such
that IS Π T~ιD = J properly contains /, then if So is the integral closure
of D in S, it is easy to see that ((/ Π D)SQ) Π D — J Π D properly con-
tains / Π D.)

E. If for each maximal ideal M of the domain D the domain DM

is IIC, then D is IIC. (For suppose S is a domain integral over D and
IR Π D = / properly contains /. Choose a maximal ideal M of D which
contains /: / in D. ((IDM)(D — M)"1^) Π DM contains JDM which properly
contains IDM.)

F. // D is a domain which is a directed union of IIC domains,
then D is an IIC domain. In fact, it suffices that each subdomain of D
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which is finitely generated over the prime subdomain Do of D be con-

tained in a subdomain of D which is IIC. (For suppose je(i19 ',in)D

but S is a domain integral over D such that J = Σt stit, steS for each

t. Clearly, we can choose a ring Dλ c D finitely generated over Z)α

which contains j , i19 ,in and sufficiently many elements so that r19 , rn

are integral over Dλ. Then we can choose an IIC subdomain D2 of D

with A c D2. Let R2 = D2[r19 , r j . Then y g fo, , in)D2, but e (iu

• , ΐn)/?2> contradiction.)

G. If D is a domain such that every module-finite extension domain

S of D has D as a direct summand (as a D-module), then D is IIC.

(This is immediate from Proposition 1.)

H. If D is a domain which contains the rationals, Q, then D is

IIC if and only if D is integrally closed. (This is immediate from A.,

G., above, and Lemma 2.)

I. // D c R, R is an IIC domain, and for every ideal I of D,

IR Π D = /, then D is IIC. In particular, if R is IIC and faithfully

flat over D, or if R is IIC and D is a direct summand of R, then D is

IIC. It follows that if the completion D of a Noetherian local domain

D is an IIC domain, then D is an IIC domain. (Let L be an algebrai-

cally closed field which contains R. If C is a domain integral over Dr

there is a copy of C in L, and R[C] is a domain integral over R. Hence,

for any ideal / of D, we have IC Π D a (IR[C]) Π (R Π D) = (IR[C] Π R)

n D = (iR) n D = /.)
Let us say that a proper ideal / of a commutative ring R is big

if it is not an intersection of properly larger ideals. Thus, I is big if

and only if there exists xel such that x is in every ideal properly

larger than /. Obviously, / is big if and only if (0) is big in R/I. By

a trivial application of Zorn's lemma, every proper ideal of a commuta-

tive ring is an intersection of big ideals. Hence:

J. A domain D is IIC if and only if for every module-finite domain

extension S of D and every big ideal I of D, IS Π D = I.

It is easy to show that if R is Noetherian then / c: R is big if and

only if / is primary to a maximal ideal and irreducible. Thus, (0) is

big in R if and only if R is a zero-dimensional Gorenstein local ring.
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K. A Gorenstein local domain (D,P) is IIC if and only if for every

module-finite domain extension S of D, D is a direct summand of S.

Moreover, if {Ik} is a sequence of P-primary irreducible ideals of D

cofinal with {Pk}, then D is IIC if and only if for every module-finite

domain extension S of D, each Ik is contracted. (It suffices to show

that if each Ik is contracted from S then D is a direct summand of S.

See the second paragraph of Remark 2.)

L. Let (D,P) be a two-dimensional Gorenstein local domain and let

x19x2 be a system of parameters. If (x19x2) is contracted from every

module-finite extension domain S of D, then D is IIC. (Let u generate

(x19 x2): P modulo (x19 x2). If suffices to show that we cannot have

x\x\u = sAfc+1 + s2x2

k+1. Let S' be the integral closure of S. Then S'

is Noetherian [8], Theorem (33.12), p. 120, and semilocal, and x2 is not

a zerodivisor modulo xβ', for S' is integrally closed and dim S' = 2, so

that S' is Cohen-Macaulay. Since x19x2 is an ^-sequence, we must

have that x\ divides s2 in S', and that x\ divides sλ in S'. Hence,

x\x\u = x%+1x%s[ + xlxl+1s'2, s[, s'2 e S', and u — xxs[ + x2s
f

2, so t h a t (x19 x2)D

is not contracted from Dtsί,^]? a contradiction.)

This completes our list of observations about IIC domains. A some-

what more interesting result (although the real work was done in the

proof of Theorem 2) is:

PROPOSITION 5. Let D be a domain such that for each maximal ideal

M of D, DM is a regular local ring, and suppose that D contains a field.

Then D is IIC.

Proof. This follows at once from observations E. and G. and

Theorem 2.

The following proposition shows that there are interesting non-

regular examples of IIC domains in characteristic p.

PROPOSITION 6. Let k be any field and let x19 , xn be indetermi-

nates over k. Let m be a set of monomials (expressions of the form

xί1- a£») in x19 , xn such that the subring D = k[m] c k[x19 , xn] is

integrally closed (in the fraction field of D). Then D is IIC.

Proof. We use the results of [5]. By Proposition 1 of [51, the

fact that Mm] is normal implies that m generates a normal semigroup
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© of monomials and hence that © is isomorphic to a full semigroup X

of monomials (possibly in different indeterminates). But then k[X] is a

direct summand of a polynomial ring, by Lemma 1 of [5], and it

follows from Theorem 2 here and observation I. that k[m] ~ k[X] is ΠC.

The rest of this paper is devoted primarily to a discussion of open

questions and examples.

Example 1, revisited. The ring D of Example 1 is an integrally

closed Gorenstein ring which is not ΠC. D has, moreover, a module-

finite extension which is ΠC.

QUESTION 1. Is there some nice class of domains which have mini-

mal or minimum ΠC extensions (analogues of integral closures)?

In connection with this we note that the intersection of a decreasing

sequence of ΠC domains need not be ΠC. In Example 1, D is countable,

and hence has only countably many height 1 primes: say P19P2,PZ, •••

is an enumeration of them. Let Γ< = D - ((J*β l Pt) and let Dt = T^D.

Then Di is an integrally closed semilocal domain of Krull dimension 1,

and hence Όt is ΠC by Remark 7. But D = p|< Dt.

However, I do not know the answer to

QUESTION 2. If D19D2 are ΠC subdomains of D, is D1 Π D2 IIC1

Some other obvious lines of inquiry are:

QUESTION 3. If D is ΠC, is D[x] ΠCΊ Is D[[x]] IICΊ Here, x is

an indeterminate.

QUESTION 4. If D is finitely generated over a field, is

{PeSpecD: A P is ΠC}

Zariski open in SpecD?

QUESTION 5. If Dί and D2 are IIC domains finitely generated over

an algebraically closed field k, is Dι ®k D2 HCΊ (If D2 = k[x\, Question

5 becomes a special case of Question 3.)

EXAMPLE 2. An interesting example of UFD which is not ΠC comes

out of invariant theory. We first need:

PROPOSITION 7. // D is local and HC and R is a module-finite

equίdimensίonal extension of D which is Cohen-Macaulay, then D is

Cohen-Macaulay.
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Proof. Let x19 -,xn be a system of parameters for D. It follows

easily that x19 -,xn is an β-sequence in R. But then, since D is //C,

x19- -9xn is an β-sequence in D, for if e£xfc+1 e (xl9 , £fc)Z), then de

(x19 , #*)# ί l f l = (x19 , xfc)Z).

Now let K be a field of characteristic 2 and let Rλ = K[x1,x2,x3,xi].

Let # be the Z-automorphism of Rx such that g(x4) = x4 while g{x^ =

%i + Xi+u i= 1,2,3. Let G be the cyclic group of order 4 generated

by g, so that we have an action of G on Rλ. The ring of invariants Όx

is a graded if-algebra which is known [1] to be a non-Cohen-Macaulay

UFD of dimension 4. Let D,R by the localizations of Dλ,Rι at their

respective irrelevant maximal ideals. Since R is module-finite over D

and Cohen-Macaulay (in fact, regular) while D is not Cohen-Macaulay,

it follows from Proposition 7 that D is not IIC.

On the other hand we note:

PROPOSITION 8. If G is a finite group acting on an IIC domain D

and the order d of G is invertible in D, then the ring of invariants

DG = {reD: g(r) = r for all geG}

is IIC.

Proof. The map h:D->DG by

/Σ
geG

is a JD^-module retraction of D onto DG.

EXAMPLE 3. Proposition 6 provides a number of interesting ex-

amples of non-regular IIC domains in characteristic p > 0. One example

is the usual homogeneous coordinate ring for a multiprojective space

PH x . . . x Ptn

namely, the Segre product (see [2] and [7], § 13) of n polynomial rings

in tλ + 1, , t n + 1 variables, respectively. A particularly simple case

is P1 x P 1 where the homogeneous coordinate ring is

D = k{xλyu x<y2, x2y19 x2y2]

^ k[p,q,r,s]/(ps-qr)

Another example is the homogeneous coordinate ring for Pn~ι spanned
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by all forms whose degree is a multiple of d in k[x19 , xn]. The

simplest case is

D = k[x2,xtj,y2] ^ k[p,q,r]/(pr-q2)

Finally, we note that some of the. examples above have an invariant-

theoretic flavor, and we raise the following question:

QUESTION 6. If k is an algebraically closed field of characteristic

p and G is a connected linear algebraic group acting rationally on an

^-dimensional vector space V, so that the symmetric algebra R = S(V)

^ k[x19 -,xn], then is the ring of invariants RG of the induced action

of G on R ΠCt More generally, if R is an IIC domain and D is

integrally closed in R, is D HCt
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