S. M. Bhatwadekar Nagoya Math. J. Vol. 50 (1973), 217-225

ON THE GROBAL DIMENSION OF ORE-EXTENSIONS

S. M. BHATWADEKAR

Introduction. Let S be a ring and d be a derivation of S. The Oreextension S(X, d) is the ring generated by S and an indeterminate X satisfying the ralation Xa - aX = da for all a in S.

It can be deduced from [3, Theorem 2] that if S is a commutative noetherian ring and d is a derivation of S, such that there exists a maximal ideal m of S with (i) $d(\mathfrak{m}) \subset \mathfrak{m}$ (ii) gl. dim $S = \operatorname{gl.dim} S_m$, then l.gl. dim $S(X, d) = 1 + \operatorname{gl.dim} S$. In §1, we prove the converse of the above proposition (see theorem 1.1) if S is a Dedekind ring containing field Q of rationals. This is a generalization of theorem of Rinehart [5, Propsition 2].

In §2 we compute the l.gl. dim of S(X, d) when S is a commutative noetherian ring containing Q and d is a derivation of S, such that $1 \in d(S)$ and for every $a \in S$ there exists an integer $n \ge 1$ such that $d^n(a) = 0$.

My sincere thanks are due to Professor R. Sridharan for helpful suggestions.

§1. In this section we prove the following.

THEOREM 1.1. Let S be a Dedekind ring which contains Q. Let d be a derivation of S, such that for every maximal ideal m of S, dm $\not\subset$ m. Then

l.gl. dim
$$S(X, d) = 1$$
.

For the proof of the theorem, we need two lemmas. We start with

LEMMA 1.2. Under the hypothesis of Theorem 1.1, for every maximal ideal m of S, Rm (resp. mR) is a maximal left (resp. right) ideal of R, where R denotes S(X, d).

Proof. Let I be a left ideal of R such that $R\mathfrak{m} \subset I \subset R$, where \mathfrak{m}

is a maximal ideal of S. Suppose $I \neq R$. Then we will show that $R\mathfrak{m} = I$.

For, if not, then there exists $f \in I$ such that $f \notin R\mathfrak{m}$. Consider an element g of I of smallest degree and not belonging to $R\mathfrak{m}$. Without loss of generality we can take g to be of the form $g = X^k + \sum_{0 \le i \le k-1} X^i a_i$, $k \ge 1$.

Since $d\mathfrak{m} \not\subset \mathfrak{m}$, there exists $b \in \mathfrak{m}$ such that $db \notin \mathfrak{m}$. Consider $g' = X^{k}b - bg$. It is easy to see that $g' \in I$ and $g' = X^{k-1}(kdb - ba_{k-1}) + \sum_{0 \leq i \leq k-2} X^{i}a'_{i}$. This shows that $g' \in R\mathfrak{m}$. Therefore $kdb - ba_{k-1} \in \mathfrak{m}$, i.e. $kdb \in \mathfrak{m}$. But $db \notin \mathfrak{m}$ and k is a unit in S. Hence we get a contradiction. Therefore $R\mathfrak{m} = I$.

This completes the proof of lemma 1.2.

LEMMA 1.3. Let S and R be as given in Theorem 1.1. If J is a nonzero projective left ideal of R and $J_1 = J + R\phi$ for some $\phi \in R$ such that $m\phi \subset J$ for some maximal ideal m of S, then J_1 is also a projective ideal of R.

Proof. $\mathfrak{m}\phi \subset J$ implies that if $J \neq J_1$ then $J_1/J \simeq R/R\mathfrak{m}$. Also $J_1 \neq J$ implies that $\operatorname{Hom}_R(J_1, R) \xrightarrow{\operatorname{Hom}(i, R)} \operatorname{Hom}_R(J, R)$ is not a surjective map, where $i: J \to J_1$ inclusion map.

For, if Hom (i, R) is a surjective map, then Hom_R $(J_1, F) \xrightarrow{\text{Hom}(i, F)}$ Hom_R (J, F) is surjective for every finitely generated free left module F of R.

Let $p: F_0 \to J$ be a surjection from a finitely generated free module F_0 on to J. Consider the commutative diagram

$$\begin{array}{ccc} \operatorname{Hom}_{R}\left(J_{1},F_{0}\right) & \xrightarrow{\operatorname{Hom}\left(i,F_{0}\right)} & \operatorname{Hom}_{R}\left(J,F_{0}\right) \\ \operatorname{Hom}\left(J_{1},p\right) & & & & & \\ \operatorname{Hom}_{R}\left(J_{1},J\right) & \xrightarrow{\operatorname{Hom}\left(i,J\right)} & \operatorname{Hom}_{R}\left(J,J\right) \end{array}$$

Since J is a projective module, we get Hom (J, p) to be a surjection. Hence Hom (i, J) is a surjective map. This implies that J is a direct summand of J_1 . Since $J \neq 0$ and $J \neq J_1$, this gives a contradiction. Thus Hom (i, R) is not a surjective map.

Assume $J \neq J_1$. Consider the exact sequence

$$0 \longrightarrow J \xrightarrow{\imath} J_1 \longrightarrow J_1/J \longrightarrow 0 \ .$$

This gives rise to an exact sequence of right R-modules

GLOBAL DIMENSION

$$\operatorname{Hom}_{R}(J_{1},R) \xrightarrow{\operatorname{Hom}(J_{1},R)} \operatorname{Hom}_{R}(J,R) \longrightarrow \operatorname{Ext}_{R}^{1}(J_{1}/J,R) \\ \longrightarrow \operatorname{Ext}_{R}^{1}(J_{1},R) \longrightarrow 0 .$$

 $J_1/J \simeq R/R\mathfrak{m}$ implies that $\operatorname{Ext}^1_R(J_1/J, R) \simeq \operatorname{Ext}^1_S(S/\mathfrak{m}, S) \otimes_S R$ as right *R*-modules. But $\operatorname{Ext}^1_S(S/\mathfrak{m}, S) \simeq S/\mathfrak{m}$. Therefore $\operatorname{Ext}^1_R(J_1/J, R) \simeq S/\mathfrak{m}$ $\otimes_S R \simeq R/\mathfrak{m}R$. By Lemma 1.2, $R/\mathfrak{m}R$ is a simple right *R*-module. Also, Hom (i, R) is not a surjective map. Hence we get an exact sequence

 $\operatorname{Hom}_{R}(J_{1}, R) \to \operatorname{Hom}_{R}(J, R) \to \operatorname{Ext}_{R}^{1}(J_{1}/J, R) \to 0$.

This shows that $\operatorname{Ext}_{R}^{1}(J_{1}, R) = 0$. By a 'direct sum' argument, we can show that $\operatorname{Ext}_{R}^{1}(J_{1}, F) = 0$ for every finitely generated free left module F of R.

Let *M* be a finitely generated left module of *R*. Let $0 \to C \to F \to M \to 0$ be an exact sequence of left *R*-modules where *F* is free module of finite rank.

Then we get an exact sequence

$$0 = \operatorname{Ext}^{1}_{R}(J_{1}, F) \to \operatorname{Ext}^{1}_{R}(J_{1}, M) \to \operatorname{Ext}^{2}_{R}(J_{1}, C)$$

But we know that l.gl. dim $R \leq 2$. Also, since R is not semisimple, from [1, Theorem 1] it follows that

l.gl. dim
$$R = 1 + \sup_{I} hd. I$$
.

where I ranges over all left ideals of R.

Therefore hd. $I \leq 1$ for every left ideal I of R. This gives $\operatorname{Ext}_{\mathbb{R}}^{2}(J_{1}, C) = 0$. Therefore $\operatorname{Ext}_{\mathbb{R}}^{1}(J_{1}, M) = 0$. Thus for every finitely generated R-module M we get $\operatorname{Ext}_{\mathbb{R}}^{1}(J_{1}, M) = 0$. This proves that J_{1} is a projective left ideal of R.

If $J = J_1$ then there is nothing to prove.

Thus the proof of Lemma 1.3 is complete.

Proof of Theorem 1.1. Let R denote S(X, d). From [1, Theorem 1] it follows that it is enough to prove that every left ideal of R is projective.

Let I be a left ideal of R. For any integer $k \ge 0$ let

 $I_{k} = \left\{ a \middle| \substack{a \in S, \text{ such that } a \text{ is leading coefficient} \\ \text{of some element of } I \text{ of degree } k } \right\}.$

Then it is easy to see that we get an increasing sequence $I_0 \subset I_1 \subset I_2 \cdots$

of ideals of S. Let m be the least integer such that $I_m = I_n$ for $n \ge m$. Let k_0 be the least integer such that $I_{k_0} \ne 0$. Let $(b_k^1, \dots, b_k^{n_k})$ be a set of generators of I_k for $k_0 \le k \le m$. By definition of I_k , there exist elements $(f_k^1, \dots, f_k^{n_k})$ of I such that f_k^i is of degree k and with leading coefficient b_k^i for every $i, 1 \le i \le n_k$.

Let $J_k = \sum R f_l^i$, $1 \leq i \leq n_l$, $k_0 \leq l \leq k$. Then we get an increasing sequence $0 \neq J_{k_0} \subset \cdots \subset J_m$ of left ideals of R such that $J_m = I$. It is easy to prove that $J_0 \simeq R \otimes_S I_{k_0}$ as left ideals of R.

Let $r = m - k_0$. We will prove the result by induction on r.

If r = 0, then $I = J_m = J_{k_0} \simeq R \otimes_S I_{k_0}$. Since S is a Dedekind ring, I_{k_0} is a projective ideal of S. This shows that I is a projective left ideal of R.

Assume the result for $r-1 \ge 0$. Then by induction hypothesis J_{m-1} is a projective left ideal of R. Since $I_{m-1} \ne 0$, there exists an increasing sequence

 $I_{m-1} = \mathscr{B}_0 \subset \mathscr{B}_1 \subset \mathscr{B}_2 \cdots \mathscr{B}_p = S$ of ideals of S such that $\mathscr{B}_i / \mathscr{B}_{i-1} \simeq S / \mathfrak{m}_i$ for some maximal ideal \mathfrak{m}_i of S, $1 \leq i \leq p$.

Therefore $\mathscr{B}_i = \mathscr{B}_{i-1} + S\theta_i$ for some $\theta_i \in S$. We can take $\theta_p = 1$. Then there exists a maximal ideal \mathfrak{m}_i such that $\mathfrak{m}_i \theta_i \subset \mathscr{B}_{i-1}$. Let $\mathscr{A}_i^j = J_{m-1} + R(f_m^1, \dots, f_m^{i-1}) + R\theta_1 f_m^i + R\theta_2 f_m^i + \dots + R\theta_j f_m^i, 1 \leq i \leq n_m, 1 \leq j \leq p$. Then $\mathscr{A}_i^j \subset \mathscr{A}_l^k$ if either $i \leq l$, or i = l and $j \leq k$. Also $\mathscr{A}_{n_m}^p = J_m$. From the definition of \mathscr{A}_i^j it follows that either $\mathscr{A}_i^j = \mathscr{A}_i^{j+1}$ or $\mathscr{A}_i^{j+1}/\mathscr{A}_i^j \simeq R/R\mathfrak{m}$ for some maximal ideal \mathfrak{m} of R. Also, either $\mathscr{A}_1^1 = J_{m-1}$ or $\mathscr{A}_1^1/J_{m-1} \simeq R/R\mathfrak{m}$. Since J_{m-1} is R-projective by our assumption, by using Lemma 1.3 step by step, we get J_m (=I) is a projective left ideal of R.

This proves theorem 1.1.

Remark. Theorem 1.1 shows that if S is a Dedekind ring containing Q and d is a derivation of S then

l.gl. dim. S(X, d) = 2 = 1 + gl. dim. S iff

there exists a maximal ideal \mathfrak{m} of S such that $d\mathfrak{m} \subset \mathfrak{m}$.

§2. In this section we prove the following theorem.

THEOREM 2.1. Let S be a commutative noetherian ring of global dimension $n < \infty$, such that $Q \subset S$. Let d be a derivation of S such that $1 \in d(S)$ and for every $a \in S$ there exists an integer $k \ge 1$ such that $d^{k}(a) = 0$ then

l.gl. dim
$$S(X, d) = n$$
.

First we state a lemma. [4, p. 78].

LEMMA 2.2. Under the hypothesis of Theorem 2.1, if d(b) = 1 for $b \in S$, then the mapping

$$\chi: S \to (S/Sb)[Y]$$

 $\chi(a) = \overline{a} + \overline{da}Y + \overline{d^2a} \quad Y^2/2! + \overline{d^3a} \quad Y^3/3! + \cdots$

is an isomorphism of rings, where $\overline{d^i a}$ denotes the image of $d^i a$ in S/Sb under the canonical mapping $\eta: S \to S/Sb$.

Moreover, if D is the S/Sb-derivation of S/Sb[Y] given by DY = 1, then χ is an isomorphism of differential rings.

This shows that it is sufficient to prove the theorem if S = A[Y]where A is a commutative noetherian ring of finite global dimension which contains Q and d is the A-derivation of S given by dY = 1. Also it is easy to see that it is enough to prove the result in case A is a local ring.

So we prove the following theorem.

THEOREM 2.3. Let A be a commutative noetherian local ring of global dimension $n < \infty$ such that $\mathbf{Q} \subset A$. Let S = A[Y] and d be the A-derivation of S given by dY = 1. Then

l.gl. dim
$$S(X, d) = n + 1$$
.

Before proceeding further we will give some definitions and results which can be found in $[7, \S 15]$.

Let B be a ring, not necessarily commutative. Let T be a multiplicatively closed subset of B such that $1 \in T$.

DEFINITION. T is called right (resp. left) permutable if given $a \in B$ and $t \in T$, there exist $b \in A$ and $s \in T$ such that tb = as (resp. bt = sa).

DEFINITION. T is called right (resp. left) reversible if ta = 0 (resp. at = 0) with $t \in T$, $a \in B$ implies as = 0 (resp. sa = 0) for some $s \in T$.

DEFINITION. A right (resp. left) ring of fractions of B with respect to T is a ring $B[T^{-1}]$ (resp. $[T^{-1}]B$) and a ring homomorphism $\phi: B \to B[T^{-1}]$ (resp. $\psi: B \to [T^{-1}]B$) satisfying

i) $\phi(s)$ (resp. $\psi(s)$) is invertible for every $s \in T$.

ii) every element in $B[T^{-1}]$ (resp. $[T^{-1}]B$) has the form

 $\phi(a)\phi(s)^{-1}$ (resp. $\psi(s)^{-1}\psi(a)$) with $s \in T$.

iii) $\phi(a) = 0$ (resp. $\psi(a) = 0$) iff as = 0 (resp. sa = 0) for some $s \in T$. Some results concerning $B[T^{-1}]$.

(a) If $B[T^{-1}]$ exists, it is unique up to isomorphism.

(b) $B[T^{-1}]$ exists iff T is right permutable and right reversible set.

(c) $B[T^{-1}]$ is B-flat as a left B-module.

(d) If both $B[T^{-1}]$ and $[T^{-1}]B$ exist, they are isomorphic.

We have similar results for $[T^{-1}]B$.

DEFINITION. A ring B is said to be *left coherent* if every finitely generated left ideal of B is finitely presented.

Let w.gl. dim B denote the weak global dimension of B. If B is left noetherian then l.gl. dim B = w.gl. dim B. [2, Chapt. VI].

The proof of Theorem 2.3 depends upon the following proposition.

PROPOSITION 2.4. Let $(T_i)_{i \in I}$ be a finite family of multiplicatively closed subsets of a ring R such that

(i) Each T_i is right permutable and right reversible.

(ii) For every family $(t_i)_{i \in I}$ of elements of R with $t_i \in T_i$ we have $\sum_{i \in I} t_i R = R$.

(iii) Every R_i is R-flat as a left R-module and as a right R-module, where $R_i = R[T_i^{-1}]$

(iv) w.gl. dim $R < \infty$

(v) R is left coherent.

Then w.gl. dim $R \leq \sup_{i \in I}$ w.gl. dim R_i .

For a proof, see [6, Proposition 1].

Proof of Theorem 2.3. Let R denote the ring S(X, d). Then under the hypothesis of Theorem 2.1, R is nothing but the A-algebra $A\{X, Y\}$ in two variables X and Y and with the relation XY - YX = 1.

Let m be the maximal ideal of A. Let $T_1 = A[X] - m[X]$ and $T_2 = A[Y] - m[Y]$ be two multiplicatively closed subsets of R.

Since S(X, d) is without proper divisors of zero T_1 and T_2 are right as well as left reversible.

To prove that T_1 is right permutable it is enough to show that given f in T_1 and Y^n there exist g in T_1 and h in S(X, d) such that $Y^n g = fh$. Taking $g = f^{n+1}$ we see that $Y^n f^{n+1} = \sum_{0 \le i \le n} {}^n C_i d^i (f^{n+1}) Y^{n-i}$. But

 $d^{i}(f^{n+1}) = fh_{i}$ for some h_{i} in A[X]. Therefore $Y^{n}f^{n+1} = fh$ where $h = \sum_{0 \le i \le n} {}^{n}C_{i}h_{i}Y^{n-i}$.

Similarly we prove that T_1 is left permutable and T_2 is right and left permutable. This shows that $R[T_i^{-1}]$ is *R*-flat as a right *R*-module as well as left *R*-module for every i = 1, 2.

Since R is left noetherian and l.gl. dim $R \leq n+2$ we see that all the conditions of the previous proposition except the second condition are satisfied.

Assume for the time being that the second condition is also satisfied. Then

w.gl. dim
$$R \leq \max_i$$
 w.gl. dim R_i

when $R_i = R[T_i^{-1}]$.

Let d be the A-derivation of A[Y] given by dY = 1. If S' is the localization of A[Y] with respect to the prime ideal $\mathfrak{m}[Y]$ and d' is the derivation of S' induced by d then $R[T_2^{-1}]$ is nothing but the Ore-extension of S' with respect to d'. Hence w.gl. dim $R[T_2^{-1}] = 1$.gl. dim $R[T_2^{-1}] \leq 1 + \text{gl. dim } S'$. But gl. dim S' = n. Therefore w.gl. dim $R[T_2^{-1}] \leq n + 1$. Similarly we can show that w.gl. dim $R[T_1^{-1}] \leq n + 1$.

Hence w. gl. dim $R \leq n + 1$. But we already know that $n + 1 \leq$

l.gl. dim R = w.gl. dim R.

Hence the equality.

The lemma given below shows that T_1 and T_2 satisfy the second condition of the proposition.

LEMMA 2.5. Under the hypothesis of Theorem 2.3, if $f \in T_1$ and $g \in T_2$ then fR + gR = R.

Proof. We will prove the result by using induction on the global dimension of A.

If gl. dim A = 0, then A is a field of char = 0. The result in this case is proved in [6, p. 25-26].

Assume the result for n-1. Let gl. dim A = n. If $\mathscr{B} = fR + gR$ then by our induction hypothesis there exists an integer $r \ge 1$ such that $\mathfrak{m}^r \subset \mathscr{B} \cap A$, where \mathfrak{m} is the maximal ideal of A. (Since for every prime ideal \mathfrak{p} of A other than $\mathfrak{m}, \mathscr{B}_{\mathfrak{p}} = R_{\mathfrak{p}}$.) We will prove that $A \subset \mathscr{B} \cap A$ by proving that $\mathfrak{m}^{r-1} \subset \mathscr{B} \cap A$.

Let $a \in \mathfrak{m}^{r-1}$. We can write $f = f_0 + f_1$ and $g = g_0 + g_1$ where all

the coefficients of f_1 and g_1 are in m and all nonzero coefficients of f_0 and g_0 are units in A. Because of the choice of f and g we get $f_0 \neq 0$, $g_0 \neq 0$.

Since $\mathfrak{m}^r \subset \mathscr{B} \cap A$, $f_1 a \in \mathscr{B}$ and $g_1 a \in \mathscr{B}$. This shows that $f_0 \cdot a \in \mathscr{B}$ and $g_0 \cdot a \in \mathscr{B}$. We will prove $a \in \mathscr{B}$ by showing that $f_0 R + g_0 R = R$.

Let \hat{A} be the completion of A with respect to the m-adic topology. \hat{A} contains a subfield k isomorphic to A/\mathfrak{m} .

We can regard f_0 and g_0 as elements of k[X] and k[Y] respectively. Since char $k \neq 0$, there exist h_1 and h_2 in $k\{X, Y\}$ such that $f_0h_1 + g_0h_2 = 1$. This shows that $f_0\hat{R} + g_0\hat{R} = \hat{R}$ where $\hat{R} = \hat{A} \otimes_A R$.

Let $\mathscr{A} = f_0 R + g_0 R$. Since \hat{A} is faithfully flat over A, and since we have $R/\mathscr{A} \otimes_A \hat{A} = \widehat{R}/\mathscr{A} = 0$, we get $R/\mathscr{A} = 0$, i.e. $f_0 R + g_0 R = R$. Therefore $a \in \mathscr{B} = fR + gR$. This shows that $A \subset \mathscr{B} \cap A$ i.e. $\mathscr{B} = R$. This completes the proof of Lemma 2.5.

The proof of Theorem 2.4 is complete.

COROLLARY 2.6. Let $A_n(S) = S\{X_1, \dots, X_n, \partial/\partial X_1, \dots, \partial/\partial X_n\}$ be the Weyl algebra of index n with coefficients in S, where S is a commutative noetherian ring which contains Q. Then

$$\operatorname{gl.\,dim} A_n(S) = n + \operatorname{gl.\,dim} S$$
 .

Proof of Corollary 2.6. We will prove the result by induction on n. Theorem 2.3 proves the result when n = 1. Assume the result for n - 1.

Let $A_n(S) = S\{X_1, \dots, X_n, \partial/\partial X_1, \dots, \partial/\partial X_n\}$. We can assume without loss of generality that S is a regular local ring with maximal ideal m. Let $T_1 = S[X_n] - \mathfrak{m}[X_n]$ and $T_2 = S[\partial/\partial X_n] - \mathfrak{m}[\partial/\partial X_n]$ be the multiplicatively closed sets satisfying the conditions of the Proposition 2.4.

If $B = S\{X_1, \dots, X_n, \partial/\partial X_1, \dots, \partial/\partial X_{n-1}\}$, then T_1 consists of central elements of B. Therefore the S-derivation of B given by $\partial/\partial X_n$ can be extended to a derivation d' of $B[T_1^{-1}]$. Since $A_n(S)$ is the Ore-extension of B with respect to derivation $\partial/\partial X_n$, $A_n(S)[T_1^{-1}]$ is the Ore-extension of $B[T_1^{-1}]$ with respect to the derivation d'. Therefore l.gl. dim $A_n(S)[T^{-1}] \leq 1 + 1$.gl. dim $B[T_1^{-1}]$.

But $B[T_1^{-1}] \simeq S'\{X_1, \dots, X_{n-1}, \partial/\partial X_1, \dots, \partial/\partial X_{n-1}\}$ where S' is the localization of $S[X_n]$ with respect to T_1 . Therefore by induction hypothesis l.gl. dim $B[T_1^{-1}] = n - 1 + \text{gl. dim } S' = n - 1 + \text{gl. dim } S$. This shows that l.gl. dim $A_n(S)[T_1^{-1}] \leq n + \text{gl. dim } S$. Similarly we prove that

l.gl. dim $A_n(S)[T_2^{-1}] \leq n + \text{gl. dim } S$. Therefore by Proposition 2.4 we get that l.gl. dim $A_n(S) \leq n + \text{gl. dim } S$. But we already know that l.gl. dim $A_n(S) \geq n + \text{l.gl. dim } S$. Hence the equality.

Remark. Theorem 2.3 is a generalization of a Theorem of Rinehart [5, Proposition 2].

Remark. Corollary 2.6 is a generalization of a Theorem of Roos [6, Theorem 1].

References

- M. Auslander, On the Dimension of Modules and algebras (III). Global dimension, Nagoya Mathematical Journal, 9, 67-77 (1955).
- [2] Cartan, H. and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
- [3] N. S. Gopalakrishnan and R. Sridharan, Homological Dimension of Ore-extensions, Pacific J. Math., 19, 67-75 (1966).
- [4] Y. Mouaze and P. Gabriel, Idéaux Premiers de l'Algebre Enveloppante d'une Algèbre de lie Nilpotente, J. of Algebra, 6, 77-99 (1967).
- [5] Rinehart, G. S., Note on the Global Dimension of certain rings, Proc. Amer. Math. Soc., 13, 341-346 (1962).
- [6] M. Jan-Erik Roos, Dètermination de la dimension homologique globale des algèbres de Weyl, Comptes Rendus, Séries A, 274, 23-26 (1972).
- [7] Bo Stenström, Rings and Modules of Quotients, Springer, Berlin, 1971.

School of Mathematics

Tata Institue of Fundamental Research