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STOCHASTIC INTEGRALS IN ABSTRUCT WIENER

SPACE II: REGULARITY PROPERTIES

HUI-HSIUNG KUO*

Introduction

This paper continues the study of stochastic integrals in abstract
Wiener space previously given in [14]. We will present, among other
things, the detailed discussion and proofs of the results announced in
[16]. Let H c B be an abstract Wiener space. Consider the following
stochastic integral equation in if c B,

(1 ) X{t) = x + ΓA(S, X(s))dW(s) + Γ<7(s, X(s))ds ,
Jo Jo

where W(t) is a Wiener process in B. Under certain assumptions on A

and σ we showed in [14] that (1) has a unique non-anticipating continuous

solution and that this solution is a Markov process. If A and σ are

differentiate in the second variable we can differentiate the above equa-

tion "formally" with respect to the starting point x to obtain the formal

operator-valued stochastic integral equation

( 2 ) Y(t) = I + [tAx(sfX(s))Y(s)dW(s) + [tσx(sfX(s))Y(s)ds ,
Jo Jo

where Ax and σx are derivatives of A and σ in the second variable, re-
spectively. (2) is a linear integral equation and obviously has a unique
solution which qualifies to be called the derivative of X(t) in some sense.
If A and σ are furthermore twice differentiate we can differentiate (2)
formally in the same manner to obtain another stochastic integral equa-
tion whose solution is the second derivative of X(t). Thus roughly speak-
ing, the solution X(t) of (1), regarded as a function of its starting point,
is as smooth as A and σ.

Let / be a real-valued continuous function in B. Let θ(x) =
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Ex[f(X(t))]. If / is differentiate then formally by the "chain rule" we

have θ'(x) = Es[Y(t)*(f'(X(t)))]9 where Y(t) is the solution of (2) and *

denotes the adjoint of operators of H. If / is twice differentiate then

so is θ and a formal expression for θ"(x) can be written by using also

the second derivative of X(t). Thus if A and σ are C°°-functions then θ

is as smooth as /. Furthermore, if f"(x) is a Hilbert-Schmidt operator

then θff(x) is also a Hilbert-Schmidt operator.

The above approach of discussing the regularity properties of X(t)

and θ(x) was first introduced by Gikhman [3; 4]. It was carried over to

infinite dimensional Hubert spaces by Dalec'kii [1;2]. See also[18;23].

We generalize it to Banach spaces (§2) and, furthermore, study the

related operator-valued stochastic integrals and prove the corresponding

versions of Ito's formula and Girsanov-Skorokhod-McKean's formula (§ 1).

In case A and σ are time-independent we show in the end of the paper

that X(t) generates a semi-group on the Banach space of bounded con-

tinuous functions on B vanishing at infinity. The proof is due to K. Ito.

Recently, Kannan and Bharucha-Reid [10 11] have defined several

operator-valued stochastic integrals and proved some generalizations of

Ito's formula. However, there is no apparent relation between their

work and ours.

This paper is closely related to Pieeh's. In a series of papers [19

20 21 22] she studies the corresponding parabolic equation of (1) with

σ = 0 and A satisfying stronger assumptions. In particular, A is non-

degenerate. She constructs a fundamental solution {qt(s,dy)} which is

related to the process X(t) by f f(y)qt(x, dy) = Ex[f(X(t))1 for bounded

Lip-1 functions / [17]. Her conclusions about the regularity properties

of the function θ(x) = Ex[f(X(t))] are stronger than ours in this parti-

cular case.

Notation

1. E expectation

2. H c B abstract Wiener space

3. B* (ZH aB (through identifications)

4. I I Jϊ-norm (see 7)

5. || || β-norm (see 8)

6. Ln(X Y) continuous n-linear maps from XχXχ - χ Z into Y

n times
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norm of Ln(H R)

norm of Ln(B R)

Hilbert-Schmidt operators of H (see 12)

norm, inner product of Li2%H;H). (see 13)

1 \X) — 1 \X, > > v 1 t L \Λ. , it), 1 G iv̂ A , Li \Λ. , iΐj,;

(cf. 33).

Hilbert-Schmidt type w-linear forms of H.

norm, inner product of L?2)(J? R)

So}T, Se Ln(X R), Te L(X X) SojT e L«(X R).
(Q! n T ί v . . . /»• . . . /y ^ QΓ^v» TT . . . /»• ̂ ^
\AJ v j x V ^ U > "/^> 9 ^n) ^ V ^l? 9 •*• **/J9 9 "̂ W//

norm of L(X;X).

Wiener process in B.

σ-field generated by {W(s) s < t)

18. ^[LQ^H R)] non-anticipating stochastic processes ξ with state
space L?2)(H;R) such that [TE\ξ(t)fdt< oo for each

Jo

finite T. (see 20)
19. J*?[LW(B β)]
20. J^[Z] non-anticipating stochastic processes f with state

space X such that ^|f(ί)|^-dί < oo for each finite τ.
Jo

21. ^(Jf ct) trace-class type bilinear form from / x / into JΓ.

22. TRACE S trace of Se^ (JP JΓ).

23. Δ a) TeLn(H;R), S e L(Ln-\H R) \ Ln~\H R))

SATeLn(H;R).

c) SeLn(H;R), T e L(Ln'ι(H\ R); R); S Δ Γ eί ί .

7.
8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

l l
ll ll
Lm(H;H)

1 l». < . >«
°̂

II IU

24.
25.

26.

27.

28.

29.

30.

L.iH H)
X,(t)

MS-Cn

H

δZ, δnZ

trace class operators of iϊ.

diffusion process starting at x.

^-smooth functions in ίf-directions.

square integrable random variables taking values in
D. (cf. 20)

MS-ίf-derivative of a random variable ξ at x.

MS-w-smooth random variables in iϊ-directions.

MS-ίf-derivative of a diffusion process Z.
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3 1 . Λ SeLn(H;R), SeLn~\H;H)

32. : TeLXH R), S e Ln(H R) S: T e Ln+1(H R).
(S: T(h19 K - - , Λ», fe»+i) = Γ(Λi, S(fe2, • , K), hn+ι)).

33. v SeLn(H;R), S e L(H Ln~KH R))
S S(., •,..., fe)). (c/. 11)

1. Operator-Valued Stochastic Integrals

Let H c Z? be an abstract Wiener space. | | and || || denote the H-
norm and S-norm, respectively. We will regard B* c H* « H c B in
the natural way. As in [14] we assume that there is a sequence Qn of
finite dimensional projections such that (i) Qn(B) c B* and (ii) Qw con-
verges strongly to the identity both in B and in H. Furthermore, we
will assume that there exists an orthonormal basis {en} of H such that
Σn=i ll̂ nll2 < °° This additional assumption is satisfied by all of the
presently known abstract Wiener spaces.

Notation:

( i ) Ln(X Y) = the Banach space of all continuous w-linear maps from

Xn into Y, where X and Y are Banach spaces. L1 will be written as L.

(ii) Ln'KX;X*) S Ln(X;R)

(iii) || || and | | denote the norms of Ln(B R) and Ln(H R), respectively.

Clearly Ln(B R) c Ln(H, R) and | | is dominated by || -1| with some con-

stant depending on n.
(iv) Lm{H\H) ( = L2

(2)(H;R)) denotes the Hubert space of all Hilbert-
Schmidt operators of H with iϊ-S-norm | |2 = < , }l/2. It can be shown
easily that |S|2 < (Σ; = 1 ||e,||2)1/2||S|| for all SeL2(B;R), where {e,} is given
in the additional assumption. Thus we have U(B R) c L\2)(H;R).
(v) Let T e Ln(X R). Define f e L(X Ln~ι(X R)) by f (a?) - Γ(a?, , ,

•• , ).
Now we want to define inductively a sequence of Hubert spaces

Lf2)(ff;β), t ι > l , with L\2)(H;R) = H by convention and L\2)(H;R) given
above.

DEFINITION 1. Let T e Ln{H R), n>3. T is said to be of Hilbert-
Schmidt type if (i) f(H) c L^\H R) and (ii) Γ is a Hilbert-Schmidt op-
erator from H into L^ι(H\R).
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Let L?2)(H R) denote the space of all Hilbert-Schmidt type w-linear

forms of H. It is a Hubert space with the inner product <S, T}2 = the

Hilbert-Schmidt inner product of S and T, S, TeL^iH R). Clearly,

< S , T > 2 = Σii,h,..;in

s(vii> vh> -•-> vJT(vil9 v u , , vίn) ,

where {vk} is any orthonormal basis of H. Let |S|2 = <S, S)>J/2. Note

that we have used the same notation | |2 and <, >2 to denote the norm

and the inner product of L?2)(H R) for all n > 2 since there is no con-

fusion. For example, the meaning of the following equality is clear,

when S,Te L?2)(# R),

(3) <s,r)2 S

LEMMA 1.1. (a) |S | < |S|2 for all S in L^iH R).

(b) |Γ|2 < cn||Γ|| for all T in Ln(B;R), where c is a constant. Thus

we have the relation Ln(B;R) c L^iH R) c Ln(H;R), n>l.

(c) Ln(B;R) is dense in L^H R).

Proof. Let {Vj} be an orthonormal basis of H. Then

Sih,, h2, , hnf = {ΣJ(K VJ)S(VJ, K , hjf

K , hnY}

<\Kf\h2f - \hnf Σή,i,,-,i.s(v{lth, • • ,viny,

whence (a) follows. To prove (b) and (c) let {Qn} and {ek} be given in

the beginning of this section. Then

Moreover, if U e LfoίH R), let Ό, = U(Qj(-), Q/ ), , Qjί ϊ). Then

Uj e Ln{B R) and | U} - U\> -» 0.

EXAMPLE 1. Let H = L2(0,1) (real-valued). Suppose φ is a meas-

urable function on (0,1)" such that

X j j ^ ' iίiί2' • 'dtn

Define K:Hn->R by
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K(fuft, Λ ) = Γ Γ f V * " *»'•••'*«)/i«i)/ι(*«) -MtJdtidt,- - d t n .
Jojo Jo

Then if is a Hilbert-Schmidt type w-form on iϊ and |X|2 =

EXAMPLE 2. Let C consist of all real-valued continuous functions

on [0,1] which vanish at the origin. C is a Banach space with the sup

norm. Let C = {feC f is absolutely continuous and /'eL2(0,1)}. C"

is a Hubert space with the inner product </, g} = f'(f)g'(t)dt. C c C
Jo

is an abstract Wiener space [5; 6 pp. 388-390]. Define K: C'n->R by

Then 1£ is a Hilbert-Schmidt n-form on C and it can be checked easily

that \K\2 — n~ι/2. However, K can not be extended to Cn. This example

shows that Ln(C R) Q Lf2((C7 JB).

Notation. Let X be a Banach space. Let S e LW(Z R) and

Γ e L ( X ; X). Define the composition SojT of S and T in the /-th factor

by: SOJT(X19X2, -,xj9 ,a;n) = S(x1,x2, - - , Γ ^ , ••-,»„), ̂ e l , fc = 1,2,

•. ,ra. Thus S o , Γ e LW(Z R). \\T\\X denotes the operator norm of T.

LEMMA 1.2. (a) \\SojT\\<\\S\\\\T\\B,SeLHB;R),TeL(B;B).

(b) iSojTlKlSlWTW^SemH RXTeUH H).

(c) // SeL^(H;R) and Te L(H H) then SojTe L?2)(H R) and

Proof, (a) and (b) are trivial. We use induction to prove (c). The

cases with n = 1, 2 are well-known. Assume we have the lemma for

n-l. LetSeLl)(H;R)tindTeL(H;H). Clearly (So jT)~(h) = S~(h)o s_xτ

for j — 2,3, n. Hence by induction S os T e Lf2)(£Γ R), j = 2,3, , n.

Furthermore, let {vk} be an orthonormal basis of H;

< Σ I S~(v.) i IIT\\l by induction
k
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It remains to show the conclusion for SotT. But (So1ϊ
1)"' = S~ΌT.

Thus (SOlTΓGff) c S~(ίf) c L^CH" R). Moreover by definition \So1 T\2 =

the ίf-S-norm of (So.TΓ = the iϊ-S-norm of S~oT < the product of ίf-

S - n o r m of S~ a n d \\T\\H = \S\2\\T\\ff. H e n c e | S O l Γ | 2 < \S\2\\T\\H.

We have now various spaces Ln(B R), L?2)(H R) and Ln(H;R)9

n > 1. Each such space has three topologies, namely, the uniform

topology, strong topology and weak topology. However, it can be shown,

by a similar argument used in [9], that these topologies generate the

same Borel field. Thus we do not need to specify the Borel field cor-

responding to a particular topology when we talk about the measur-

ability of a random variable with values in those spaces.

Let W(t) be a Wiener process in B. Let Jίt be the α -field generated

by {W(s) 0 < s < t}. A stochastic process ζ(£, ω), 0 < t ann ω e Ω, is non-

anticipating if it is (£, ω)-jointly measurable and ζ(t, •) is ^£-measurable

for each ί. Let ^[L^2)(H R)] denote the space consisting of all non-

anticipating stochastic processes ξ(t) with state space L?2)(H R) such that

E\ζ(t)\ldt < oo for each 0 < τ < oo. We will define a linear operator

/ from ^[Lf2)(J? R)] into se[L^\H R)], n>3. (The cases n = 1, 2 have

been defined in [14], L°i2)(H R) = R by convention). In order to do this,

we prove first a lemma about the space ^[Ln(B R)] consisting of all

non-anticipating stochastic processes ζ(t) with state space Ln{B R) such

that Γ# ||ζ(£)||2 dt<o° for each 0 < τ < oo. By Lemma 1.1 £>[Ln(B R)]

C j^[L°?2)(iϊ; #)]. Moreover, Se\L\B\ R)] is dense in &[Lfa(H R)] in the

following sense:

f

LEMMA 1.3. // ξ e ^[L^iH R)] then there exists a sequence ξne

B #)] such that [E \ξn(t) - ξ(t)gdt->0 as n->oo /or each 0 < τ < oo.

LEMMA 1.4. If ζ e S£\L\B β)]

(a) /or 3 < ί, £?|ζ(s)(TF(ί) - W(s))\l =
(b) /or s < ί < π < v, £?<ζ(s)(TF(O - T^(s)), ζ(^)(TF(^) - W(u))}2 = 0.

Remark. The special cases w = 1, 2 appeared in [14].

Proof. Let {Qfc} be the projections given in the beginning of this

section. Let

φ = \ζ(s)(W(t) - W(s))\l
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and

Since Qk converges strongly to the identity in B, φk-+ φ almost surely.

Furthermore,

Φ* < c2n \\ζ(s)(Qk(W(t) - W(s)))\γ by Lemma 1.1,

<c2n\\&s)\?\\Qk{W{t)- W(s))\\2

< c^\\ζ{s)f\\Qk\fB\\W{t) - W(s))\\>

< constant || ζ(s) ||2 \\W(t) - W(s)\\2 .

Recall that supA | |Q fc | | | < oo by the Uniform Boundedness Principle. But

since ζ is non-anticipating,

E(\\ζ(s)\\2\\W(t) - W(s)\\2) = E(\\ζ(s)\\2)E(\\W(t) - W(s)\\2) '

= E(\\ζ(s)\\2)(t - \\
B

where pt is Wiener measure with variance parameter 1. Therefore, by

the Lebesgue dominated conyergence theorem,

(4) E\ ζ(s)(W(t) - W(s)) \l = limE\ ζ(s)(Qk(W(t)

Without loss of generality, we may assume that Qk is the orthogonal

projection onto the span of {fj j = 1,2, , fc}, where {fj} is an ortho-

normal basis of H. Then

\ζ(s)(Qk(W(t) - W(s)))\l

= ΦXQk(W(t) - W(8)))> ί(s)(Qk(W(t) - W(s)))>2

- Σ (Wit) - W(s),fj)(W(t) - W(s),fmKζ(s)(fj), ζ(s)(/TO)>2 .
y,7»=i

Recall that ζ is non-anticipating and also that E(W(t) - W(s),fj)(W(t) -

W(s),fm) = it — s)δJm. Hence we have

(5) E\ ζ(s)(Qk(W(t) - W(s))) B = Σ (* - *)# I C(β)(Λ) I'

It follows from (4) and (5) that

E\ζ(sXW(t) - W(s))\l = Σ (* - s)E\ζ(s)(fj)\t

= (t-s)E\ζ(s)\l by (3).

Clearly, (b) can be shown in the same way.
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Now, we are ready to define the linear operator / from J*?[L?2)(iϊ R)]

into SflLfcKH R)]. Let ξ e S£\L\B R)] be simple with jumps at 0 < tx

< t2 < . . . < tk. Define, if tj < t < tj+1, 0 < j < k,

jξ(t) = ΣJ=i i(U)(W(tul) - w(tt))

+ ζ(tj)(W(t) - W(tj)) .

Here ί0 = 0 and tk+1 = oo by convention. Clearly Jζ β <£\Ln-\B #)] c

JPlLfaKHi -B)] Without loss of generality we may assume that £ = ^

for some y. Thus

Hence

μf(t)β = 1
i,l = O

It follows immediately from Lemma 1.4 that

(6)

Moreover, it is easy to see that

( 7) E(Jξ(t) I Jίs) = Jζ(s) s < t .

From Lemma 1.3, (6), (7) and a standard argument in stochastic

integral, we have

PROPOSITION 1.1. There exists a linear operator J from ^[L^2)(H R)]

into se[lΛτι(H #)1, denoted by Jξ(t) = Γf(s)dT7(s), such that
Jo

(a) /^ has continuous sample paths,

(b) Jζ is a martingale,

(c) prob { sup \Jξ(t) \2>δ}< δ~2E \Jξ(τ) g,
(d) EJζ(t) = 0 and E \Jζ(t)\l = E Γ|£(β)g ds.

Jo

DEFINITION 2. Let Jf and JΓ be two Hubert spaces. A continuous

bilinear map S from / x / into X is said to be of trace-class-type if

(i) for each x e Jfy Sx is a trace class operator of X, where Sx( , ) =

<S( , )>#Xr and (ii) the linear functional #-» trace.*, S^ is continuous.
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Notation, The definition implies obviously that there exists a unique

element, denoted by TRACE S, of X such that <TRACE S, x>x = trace*, Sx

for all x e X. Sf(2tf X) will denote the vector space of all trace-class-

type bilinear maps from 2tf into X.

PROPOSITION 1.2. (a) If Se Sf{2/e X) and {φk} is an orthonormal

basis of 2tf then Σlk=iS(φk,φk) converges in X to TRACES,

(b) IfSe Sf{& X) and T,Ue L{2? stf), V e L(X X) then So[TχU]

and VoS belong to ^(J^ X) and TRACE VoS^ F(TRACE S),

(c) L\B L»(B R)) c S?(H L?2)(# R)).

Proof, (a) and (b) appeared in [15] in a similar form, (c) follows

from the fact that L\B R) « L(B £*) c L&H H), the Banach space of

all trace class operators of H with the trace class norm | |lβ Actually,

\Sl < \\S\\ f \\x\\2p1(dx) for all SeL2(B;R).
JB

Notation. 1) If TeLn(H;R) and S e L(Ln-\H R) Ln~\H JB)) we

define the composition S Δ T of S and T to be an element of Ln(H R)

b y (SΔTΓ = So f. T h u s S Δ T(h19 h2,---, hn) - S{T(hx))(h2, , &n).

2) If S e Lw(iϊ R) and Γ e L(Ln-\H ;R);R) we define S Δ T to be an

element of H by: < S Δ Γ, fe> = T(S(h)), heH. Of course if S e L?8)(J3" iί)

and T e LJ^CH R) then define <S Δ T, fe> = <Γ, S(fe)>2.

Remarks. (1) If Γ e L?a)(H i2) and LfcKH i2) is invariant under

S then S*TeLfo(H;R).

(2) For the case n = 2 in Notation 2, it is easy to see that S &h =

S*fe, keif.

In [14] we proved an infinite dimensional analogue of well-known

Ito's formula [8]. This formula was used in [17] to show the relation

between the work of [14] and that of [19]. Later, in [15] we proved

another version of Ito's formula and used it to construct diffusion pro-

cesses in a Riemann-Wiener manifold. We will give three versions of

Ito's formula for stochastic processes with state space Ln(H;R), n>2.

Let &[Ln(H;R)] consist of all non-anticipating processes ζ(ί) with state

space Ln(H;R) such that Γtf|ζ(t)]2dί<oo for each 0 < τ < oo.
Jo

THEOREM 1. (Ito's formula). Let Θ be a twice Frechet differentiate

map from Ln(H R) into itself such that for all S e Ln(H R) (i)

ΘXS)(L?2)(H R)) c Lfo(H R), (ii) Θ"(S)(L?2)(H R) x Lfo(H R)) c Lf2)(H R)
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and (iii) 0"(S) e sr(Lfo(H R) L?2)(H # ) ) . If Φ(t) = ΦQ + Γ
Jo

Γζ(s)ds, wftere f e ^[L^\H #)] and ζ e &[Ln{H #)] . Then
Jo

TRACE W e ) ) o [|(s) x |(s)]j ds .

Proof. Kunita-Watanabe's method [12 13] can be employed here.

We will sketch the outline only. Let ε > 0 and {σ3} be an increasing

sequence of stopping time converging to oo such that σ0 = 0 and for as < s,

t < σJ+1, we have

I Γf (τ)dW(τ) < e/2
\J S 2

and

e/2 .

Thus, whenever σ, < s,t < σJ+1

\Φ(t) - Φ(s)\ < ε .

Because θ is twice Frechet differentiable, we have, whenever x and y are

near in Ln(H;R),

θ(x) - θ(y) = θ\y)(x -y) + W(y)(x - V> % - v) + o(\x - yf) .

Time parameter will be also subscribed from now on. Let τό( = t A σό.

Thus

θ(Φ(t)) - Θ(ΦO) - Σ7=l

i θf\ΦτjJ{Φτj - Φτj.l9 Φτj - ΦτjJ

+ o(\ΦTJ - Φτj_J) .

Putting Φτ. — Φτ._x — ζ(s)dW(s) + S ζ(s)ds into the above equation,
J τj-i J τj-i

we see that to finish the proof it is sufficient to show the following two

equalities:
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( 8 ) Θ'{ΦS) (§ξ(τ)dW{τ)) = JY(ΦS) Δ ξ(r)dW(τ)

(9) e'X0s)(j^

= ['TRACE Θ"(ΦS) O [f (r) X |(r)]dr

Js

(8) is easily checked, while (9) follows from the following observation:

If s < u < v then

EΘ"{Φs){ξ{u){W{v) - W{u)), ξ(u)(W(v) -

= {v - u)E TRACE θ"(Φ(s)) o [f (M) X

If s < u < v < u' < v' then

Eθ"(.Φs)(ξ(u)(W(v) - W(u)), ξ{u')(W{v') - W(u'))) = 0 .

THEOREM 2 (Ito's formula). Lei Γ be a twice differentiable map

from Ll^H R) into itself such that Γ"(β) e ^(L^iH R) L^iH R)). If

φ(t) = Φo + ϊίξ(s)dW(s) + Γζ(s)cZs, where ξ e ^[L^iH R)] and ζ e S£

[L?2)(H R)]. Then

ξ(s)dW(s)

+ Πr'(Φ(s))(ζ(s) + i TRACE r'(Φ(s)) o [|(s) x |(s)]jcίs .

THEOREM 3 (Ito's formula). Let f be a twice Frechet differentiable

function from Ln{H R) (resp. L%{H R)) into R. If Φ(t) = Φ0+ {^(s)dW(s)
JO

+ \ ζ(s)ds, where ξ and ζ are same as Theorem 1 (resp. Theorem 2).
Jo

Then

fiΦit)) - /(Φo) + fW> A / ' ί ^ ) ) ' d W 7 ^ )

Jo

f + J trace//;(Φ(s))o[f(s) x |

Remark. The proof of the above theorems goes in the same way as

that of Theorem 1. We point out that ξ(s) Δ f'(Φ(s)) (see Notation 2)

following Proposition 1.2) is a non-anticipating process with state space

H and the stochastic integral f (£(s) A /'(Φ(S)), dW(s)) was defined in the
Jo
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previous paper [14]. Furthermore, f"(Φ(s)) o [ξ(s) x |(s)] is a non-anti-
cipating process with state space L^H; H), the Banach space of all trace
class operators of H. To see this, note that if S e L\Ln(H ;R);R) and
TeL^KH R) then So[f x f] is a trace class operator of H.

THEOREM 4 (Girsanov-Skorokhod-McKean's formula). Suppose ξeSe
[L\2){H)K)\ and η e £>[L2(H R)] and with probability 1, {f(t)(aθ, η(t);
0<t<oo,xeH} forms a commutative family of operators of H(L2(H R)
S L(H iϊ)). Tfee^ ίfee solution of

(10) Γ(ί) - / + Γγ(s)o3f(s)*dT7(s) + f
Jo Jo

can be represented by

(11) Y(t) - exp j|V(β)dW(β) + £(?(*) ~ JTRACE Λ O [|(s) X

where K is the map from L(H H) X L(ίf iϊ) into L(H ίί) given by
κ(S,T) = SoT.

Remark. We will discuss stochastic integral equation below. More-
over, in [16] we define, for S e L(H H) and T e L\H #), S Δ T e L3(iϊ jβ)
by (SΔ Γ)~(a?) = So(f(x)), xeH. It is easy to see that SΔ Γ is nothing
but To3S*. Thus equation (10) is the same as the equation in §4 of [16].

Proof. As in one dimensional case, we can solve (10) directly by
using log function. Here, we prove this theorem in the reverse direc-
tion. Theorem 5 below implies that (10) has a unique solution. Thus
it suffices to check that (11) satisfies (10). Consider the function θ{x) =
exp(#), xeL(H; H). θ is a C^-function from L(H;H) into itself satisfy-
ing the hypothesis of Theorem 1 and, in particular, if x and y commute
we have θ\x)y = exy and θ"(x)(y9 y) = exy2. Let

φ(fi) - ['ξ(β)dW(s) + ΓfoGO - i TRACE *o[|(s) x ξ(s)]}ds .
Jo Jo

Then Y(t) = exp {Φ(t)}. By stochastic differentiation given in Theorem 1,
we have

dY(t) = θ%Φ(t))Aξ(t)dW(t) + θ'(Φ{t)){η{t)

(12) - \ TRACE JC o [|(ί) x ξ(f)])dt

+ i TRACE θ"(Φ(t)) o [ξ(t) x |
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Recall the notation 1) following Proposition 1.2. Let hu h2, h3eH

, h3) by commutativity assumption,

2,fe3>

dh, Y(t)*h3y

= ξ(t)°3Y(.t)*(huhz,h3) .

Therefore, we have

(13) θ\Φ{t)) A ξ(t) = ξ(t) °3

Clearly,

(14) θ'(Φ(t))(v(t)) = Y(t)

Moreover, it can be checked easily that

(15) θ'(Φ(t))(κ o [f (ί) x |(ί)] = θ"{Φ{t)) o [ξ{t) x |(ί)] .

Putting (13), (14), and (15) into (12), we obtain

dY(t) = ξ(t)°,Y(t)*dW(t) + Y(ί)ojβ)dt,

or

Γ(ί) = /

THEOREM 5. Let f and g be maps from [t0, oo) x Ln(H R) x Ω

(tQ>0,n>2) into L^^iH R) and Ln(H;R), respectively. Assume that

f and g satisfy the following conditions:

(a) for each SeLn(H; R)9 f( ,S, •) and g( ,S, •) are non-anticipat-

ing,

(b) there is a constant c such that with probability 1,

) - f(t,T)\2 + |flr(ί,S) - g(t,T)\ <c\S-T\,

and

for all t e [t0, oo) and S,Te Ln(H R).
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Let ζ e J?[Ln(H R)] have continuous sample paths. Then the Ln(H R)-

valued stochastic integral equation

Y(t) = ζ(ί) + Γ f(s, Y(s))dW(s) + f g(s, Y(s))ds
J to J to

has a unique continuous solution Y e J?[Ln(H R)]. Moreover, Y(t) is a

Markov process if ζ(t) is so.

Proof. We may assume that t0 < t < tλ < oo. Let 2ί be the Banach

space of all non-anticipating processes Y(t) in Ln(H R) with norm

H i r i l l =

Clearly, ^[Ln(H R)] c 2T. Define a map Φ in 21 by

Φ(Y)(ί) - ζ(ί) + Γ /(β, Y(s))dW(s) + Γ ^(s,
J to J to

It is easy to see that Φ is a map from 21 into itself and Φ(Y) has

continuous sample paths. Furthermore,

(16) EI Φ(Y)(t) - Φ(Z)(t) |2 < a Γ £71 Y(s) - Z(β) |2 ds ,
J to

where a is a constant depending only on c, ί0 and tx. (16) implies that

there exists an N such that whenever m > N,

< i\\\Y - Z\\\ .

The rest of the proof goes in the same way as Theorem 5.1 of [14].

THEOREM 6. In the hypothesis of Theorem 5 replace Ln(H R) by

L?2)(H;R) and Ln(H;R)-norm | | by Lγ3)(H R)-norm | . |2. Then the

Lf2)(ίί; R)-valued stochastic integral equation

Z(t) = C(t) + Γ/(β,Z(8))dTF(s) + [g(89Z(8))d8
J to J to

has a unique continuous solution Z e J?[L?2))H R)]. Z(t) is a Markov

process if ζ(t) is so.

Remark. Theorem 5 with n = 2 and Theorem 6 with n > 3 will be

used in the next section. Proof of Theorem 6 is obvious.
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2. Regularity Properties

We assume that A and a satisfy the following conditions:
(A - 1) A is of the form A(t, x) = C + K(t, x), where C e L(B B) and
K is a continuous map from [0, co) x B into L{2)(H H),
(A — 2) There is a constant f such that for all t > 0 and #,2/ e B,

\K(t,x)-K(t,y)\2<γ\\x-y\\ and |£(ί,a?)|2 < γ(l + \\x\\) ,

Ox — 1) σ is continuous map from [0, oo) x B into B such that for all
t> 0 and x,yeB, \\σ(t,x) - σ(t,y)\\ < γ\\x - y\\ and ||<Kί,aO|| < rO + \\x\\).

Although the above conditions are weaker than those in Theorem 5.1
[14], it is easy to see that the proof there goes in the same way to
conclude that under (A — 1),(A — 2) and (σ — 1) the stochastic integral
equation (1) has a unique non-anticipating continuous solution. More-
over, this solution is a Markov process. In the sequel, we denote this
solution by Xxit), where x is the starting point.

DEFINITION 3 [7]. A map / from B into a Banach space D is said
to be Frechet differentίαble at x in H-directions (briefly, iί-diίferentiable
at x) if there exists a linear operator T e L(H D) such that \\f(x +h) —
fix) — T(h)\\D — o(\h\), heH. T is easily checked to be unique and will
be denoted by fix), called the fl-derivative of / at x. f is said to be
Cι

H if fix) exists for all x e B and f is continuous from B into L(ίf; D).
Inductively, we can define w-th ίf-differentiability and C£.

Notation. Let D be a Banach space. ^f(D) will denote the Banach

space of square integrable random variables taking values in D. Note

that in Section 1 we used J?[D] to denote the space of all non-anticipat-

ing processes ζ such that E ||ζ(t)||ϊ> dt < oo for each 0 < τ < oo.
Jo

DEFINITION 4. A function ξ from B into f̂CD) is said to be mean-
square differentiate at x in H-dίrectίons (briefly, MS-fl-differentiable
at x) if there is θ e seihiR D)) such that E \\ξ(x + h) - ξix) - θ(h)\fD =
oi\h\2), heH. θ is unique and will be denoted by δξX9 called the MS-H-
derivative of ξ at x. MS-iϊ-diίferentiability and MS — C% in> 1) are
defined in an obvious way.

DEFINITION 5. A transformation Z from B into ^[D] is said to
be MS-H-differentiable if there is a transformation Y from B into
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&[L(H;D)] such that for each ί > 0, Y(t) is the MS-#-derivative of Z(t).
Y is unique and will be denoted by δZ. Higher order MS-ίf-derivatives
will be denoted by δnZ, n>2.

EXAMPLE 1. Let X(t) = x + Wit), where W is Wiener process start-
ing at the origin. Then δXx(f) = / for all x and δnXx(t) = 0, n > 2.

EXAMPLE 2. Consider the Langevin equation dϋit) = dT^(ί) — U(t)dt.
Its solution Z7(ί) is called Uhlenbeck-Ornstein process. We have δUx(t)
= e-*I for all x, δnϋx{t) = 0, w > 2.

EXAMPLE 3. Let KeLi2)(H;H), TeL(B;H) and α0 e ff Π ker T*,
where * denotes the adjoint of operators of H. Consider the equation
dXit) = (/ + X)dW(ί) + /(|ΓZ(ί)|2)^0dί, where / is a real-valued diflferen-
tiable function with compact support. We have δXx{t) = eζχ(t\ where

ζxeJ?[L(H;H)] is given by ζx{t) = 2^f(\TXx(s)fχT2Xx(s)> .>(teja?o.

Remark. Two transformations ^ and Z2 from B into «£?[D] have
the same MS-iϊ-derivative if and only if there exists ξe3f[D] such that
Zx — Z2 = f. Moreover, if f is an M/S-ίf-differentiale function from β

into j2f(D) then f̂ +Λ - fΛ = f^+^Wdτ, a; e B and fee if.

PROPOSITION 2.1. Suppose ξ e se\U$\H\ #)], n > 0.

= 2 fi7[|Je(e)Blf(e)B]de + 4 P#|f(sW,(s)|2<te.
Jo Jo

Remark, ξ ΔJ$ e J?[H]. See Notation 2) following Proposition 1.2.

•

Proof. Apply Ito's formula in Theorem 3 to the function f(x) —

|x|42, x e L?2)(jy i?) and to the process Je(t) = Γf(s)d^(s), £ e ^[L^Cff R)l

Note that /'(a?) = 4|ajg<a;, >2 and f"(x) = 4|a?g< , >2 + 8<z, >2<^, >2.

Hence we have

= Γ(f (s) Δ fXJξ(έ))9 dW(s))
Jo

+ I Γtrace//Λ(/€(s))o[|(s) X
Jo

After taking expectation, we get

(17) E \Jξ(t) \t = i Γί? trace / ^ ( s ) ) ° ίl(β) X
Jo
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Let {e4} be an orthonormal basis of H, then

trace |/,(8)B<f (β), !(«)>,

(18)

and

trace </,(«), &«)>,</,(«), #(«)>,

α 9 )

Combining (17), (18), and (19), we obtain the conclusion.

PROPOSITION 2.2. Suppose ξ e &[Ly;\H R)], n>0. Then E\Jξ(t)\\

<36ί

Proof. First note that from the previous proposition £?|Jf(t)g is an
increasing function of t. Hence

Now, recall that for S e LftKH R) and T e L^(H R), S A T is an element
in H defined by <SΔ T, h> = <Γ,S(Λ)>,. Thus we have |SΔ T\ < \T\,\S\2.
So,

Therefore, by the previous proposition

and

Notation. 1) Let S e Ln(H R). Se Ln~ι(H H) is defined by <S(K
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h2, , hn_^, hy = S(ft, fex, fe2, , Λn_!). Note that for n = 2, S = S, while
S = S*.

2) Let Γ e U(H Λ) and S e Ln(H Λ). Define S: T e L*+ 1(# Λ) by
S : T(hί9h2, - -,ΛΛ,Λβ+1) - Γ(^,S(fe2, ,Λn),Λn + 1). Note t h a t if Γ e L \ 2 )

(H R) and SeL?2)(H;R) then SiTeL^KH R) and |S: Γ|8 < |S|2 |Γ|2.
But for n = 2, |S : Γ|a <

Remark. If TeU(H R), SeU(H R) and f(Λ) commutes with S
for all keff. Then S: Γ = Γ o3S.

THEOREM 7. Assume A and σ satisfy (A — 1), (A — 2), O — 1) and
the following conditions:
(A — 3) K(t, x) is C2

H in x variable with K'(t, x) eL%}(H;R) and
K"(t,x) eL\2)(H; R). K'( ,*) and K"(-, ) are bounded continuous maps
from [0, τ) X B into L\2)(H R) and L\2)(H;R), respectively, for each τ.
(A - 4) for all t and xy K'(t, x) e L\2)(H R) and K"(t, x) e L\2){H R) are
symmetric in the first two components,
(σ — 2) σ(t, x) ir C2

H in x variable with σ'(t, x) e L(H H) and σ"(t, x) e
L\2)(H;R). σ'(-, •) and α ̂ ί , •) are bounded continuous maps from [0, τ)
X B into L(H H) and L\2){H R) respectively, for each τ. Then the diffu-
sion process given by the solution of the stochastic integral equation

(20) X(t) - X(0) + P A ( S , X ( S ) W ( S ) + Γσ(s,
Jo Jo

is twice MS-H-diff'erentiable. The first derivative at x is given by the
solution of the operator-valued stochastic integral equation

(21) Y(t) = / + fV(s): K'{s, Xx(s))dW(s) + fV(β, Xx(s)) ° Y(s)ds .
Jo Jo

The second derivative at x is given by the solution of the ^-form-valued
stochastic integral equation

(22) Z(t) - φit) + [tZ(s):K/(s,Xx(s))dW(s) + Γ
Jo Jo

where

φ(t) - ['K'^X^s^oΛdXMΨdWis) + \σ"(8,XM)°lδXχ(8) X
Jo Jo

Furthermore, 3XX e if [L(H H)] and δ2Xx e £ΎL\2)(H R)].
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Proof. We need to show that E\\Xx+h{t) - Xx(t) - Y(t)h\\2 = o(\hf),
heH. But it is easy to see that Xx+h(t) — Xx(t) is in H. Thus we will
show below a stronger statement, namely, E\Xx+h(t) — Xx(t) — Y(t)h\2 =
o(\h\2), heH. Assume 0 < t < τ. Let ψh(t) = Xx+h(t) - Xx(t). Then

(23) ψΛ(ί) = h + ΓfΛ(s)(ψft(s))dTF(s) + ΓcΛ(
Jo Jo

where ξh(s) and ζh(s) are given by

(24) fΛ(s) - [A'(8,XM + τψh(s))dτ = ί V ( s , Z
Jo Jo

(25) ζΛ(β) = Γσ'(s, Xβ(β) + τ
Jo

On the other hand,

(26) Y(t)h = h+ Γz'(s, Xx(s))(Y(s)h)dW(s) + ΐσ'is, XM)(Y(s)h)ds .
J J

Here we have used the condition (A — 4) to bring h into the integral
sign.

Now, it can be shown with some computation that

E |?ΛGO(ψΛ(*)) - K'(s, Xx(s))(Y(s)h)B

<

and

- ι/(s, Zβ(s))(Γ(s)Λ) I2

< CxS|ψΛ(s) - Y(s)h\2 + cJEUMϊ\Y(s)h\2) ,

where cx and c2 are constants independent of s and t. From (23)-(28),
we obtain for all 0 < t < τ,

E\ψh(t) - Yα)fe|2 < cjLQi) + c4 fs|ψΛ(s) - Y(s)h\2ds ,
Jo

where cz and c4 are constants independent of t, and

• -ί(Λ) == \TE\ψh(s)\2\Y(s)h\2ds.
Jo

Hence by GronwalΓs Lemma,

0 < t < T .
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But λ(h) <\h\2\ E\ψh(s)\2 \\Y(s)\\2

Hds, hence we are remained to prove that
Jo

(29) lim [E I ψΛ(β) |21| Y(s) \\2

H ds - 0 .
I h 1-0 JO

By a complicated computation using Proposition 2.2 and GronwalΓs

Lemma, we have

E\ψh(t)f < constant \h\* , 0 < t < τ ,

and

E\\Y(t)\\\j < constant , 0 < t < τ .

Hence (29) is evident and, in particular, we have also that Y e J£[L(H H)].

We should not try to prove the second assertion. But we will show

that φ given in (22) is in £?[L\2)(Ή\ #)] . φ is clearly non-anticipating.

(30)

Apply

\φίt)

Proposition

E

2 ^
2 - ^

+

1.1

2IJ
to

—

xx V."? "^ t V"/

V(s,Zβ(8))

get

,Z s ( s ) )o 4 [^

1 IT7 1 TffUo V

ίx(s)2]*d\

x(s)o4[δΆ

2
2]*dW^(s)

2

X δXx(s)]ds2

2

F(s)2

2

- aΛ"/ J 2 ^ "

(31)
"{s, Xx{s))

where α = supo<s<r>a,βJJ|ίC"(s, *)|1 < oo.

On the other hand,

E [tσ"(s,Xx{s))o[δXx{s)
Jo

X

(32)
x δXx(s)]\lds

ft£?|<j"(s,Zs
Jo

8ί Γ# iiazs(
Jo
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where β = supo<:^Tfa.eB|<;//(s,Za.(s))|| < oo.

Note that we have used the property that if S e L\2)(H R) and

T e L(H H) then S o [ T x T] e L\2)(H R) and \S o [ T x T]\2 <\S\2\\T\\2

H. T h i s

can be seen by observing that §o[T x T] = (So1Γ)o22
11 and then applying

Lemma 1.2. (30), (31) and (32) clearly show that [E\ό(t)\ldt< oo for each
Jo

0 < T < oo. Hence φ e Se\L\2)(H #)].

THEOREM 8. Assume A and a satisfy (A — 1), (A — 2), (σ — 1) and

the following conditions:

(A - 3)* K(t, x) is Cn

H in > 2) in x variable with K{j)(t, x) e L\^\H R),

j = 1,2, , n. K(j) is bounded and continuous from [0, τ) X B into

L{^\H R) for each 0 < τ < oo, j = 1,2, , n.

(A — 4)* for all t and x, K(j)(t, x) e LffiiH R) is symmetric in the first

two components, j = 1,2, , n.

(σ — 2)* σ(t, x) is C# (n >2) in x variable with σr(t, x) e L(H H) and

σ(j)(t, x) e LffiiH R), j — 2,3, , n. σf and σ{j) are bounded, continuous

from [0, τ) X B into L(H H) and L{^\H\ R), respectively, for each 0 < τ

< oo, j — 2,3, . . , n .

/&£ diffusion process X(t) given by the solution of the equation

X(t) - X(0) + f A(s,Z(s))dϊF(8) + Γσ(s,
Jo Jo

is n-th MS-H-dίfferentίable. Furthermore, δX e se[L(H Jϊ)] α^d δjX e

THEOREM 9. Suppose A and σ satisfy the conditions (A — I), (A—2),

(A - 3)*, (A - 4)*, (σ - 1) and (σ - 2)*. Let X(t) be the diffusion process

given by the diffusion coefficients A and σ. If f is a Ck

H-function in B

with bounded derivatives, 0 < k <n, then the function θ(x) — Ex[f(X(t))]

is also CH- Its first two H-derivatives are

(33) θ\x) - E[δXx(t)*(f(Xx(t)))] ,

(34) ff\x) - E{δ2Xx(tr(f'(Xx(t))) + ff(Xx(t)) o [δXx(t) x δXx(t)]} .

Moreover, θ"(x) is a Hilbert-Schmίdt operator of H for all xeB if f"

is so.

Notation. If SeLn(H;R) then SΓ e L(H Ln~\H R)) is defined to

be S(h) = S(', -, , , h). Note that if S e L?a)(ff R) then S(h) e Lfa\H R)
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and /§ is a Hilbert-Schmidt operator from H into L^\H\R).

Proof. Let ψA(ί) = Xx+h(t) - Xx(t). Then

f(Xx+h(t)) - f{XM)

nXx{t) + rψΛ(ί)), ψft(

Hence

/(xx+h(t)) -

= Γ</'(*β(*) + τψft(ί)) - f'(Xx(t)),fh(.φdτ
Jo

+ </'(Xβ(t)),ψΛ(t) - δXx{t)K) = a(h) + β(h) .

Obviously, E\β(h)\= o(\h\) since f is bounded and X(t) is MS-ίZ"-differ-

entiable.

On the other hand,

E\a(h)\ < [lE\f'{Xx(t) + τψΛ(ί)) - /7(^x(i))11ψΛ(ί)I dr
Jo

< {ί iψ.α)!2}1/2 Γ{ί7|r(Z,(0 + rψA(ί)) - nXx{t))\ψ2dτ
Jo

< c\K\\§E\f'(Xx{t) + rψΛ(t)) - /(Z^)) | 2 dr) V 2 ,

where c is a constant independent of h. Apply Lebesgue's dominated

convergence theorem to conclude that E\a(h)\ — o(\h\). Therefore,

E\f(Xx+h(t)) - f{XM) ~ <βXM*mXM))> Λ>| = o(|Λ|) , heH.

This proves (33). (34) can be proved in a similar way. Furthermore,

θ{j)(x) (3 < j < k) can be expressed by using the first j-th. derivatives of

/ and X(t). Finally θ"(x) is a Hilbert-Schmidt operator by the remark

in Notation above and by the property: if S e L\2)(H R) and T e L(H H)

then So[T x TjeL^H E). In fact, S o [ T χ Γ] = (S O l T)o 2 Γ, hence

|So[Γ x T]\2 < \S\2\\T\\2

H by Lemma 1.2

To finish this paper, we consider the homogeneous case, i.e. A and

σ are independent of t. A and σ satisfy (A — 1), (A — 2) and (σ — 1). In

this case X(t) generates a semi-group {Pt t > 0}, Ptf(%) = EJ.f(X(f))].

Let Co be the Banach space of bounded continuous functions on B vanish-

ing at infinity. Co has the sup norm. Assume the B-norm || ||2 is C2

H
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such that its second iϊ-derivative has bounded range in L^H H).

THEOREM 10. The operators Pt, t > 0, form a strongly continuous

contraction semi-group on Co.

Proof*. Pt9 t > 0 are obviously strongly continuous and contractive.

We need only to show that PJ e Co whenever / e Co.

Let θ(x) = log(l + ||a;H2), xeB. θ is C2

H with \ff(x)\ < Cλ\\AU + II«II2)"1

and ||θ"(x) \\x < C2(l + H^H2)"1, where Cλ and C2 are two constants inde-

pendent of x and || \\x denotes the trace class norm. Apply Ito's formula

(Theorem 4.1 [14]) to the function θ and the process X{t)9

X(t) = x + ίA(Z(s))dPF(s) + Γ<7(Z(s))ds .
Jo Jo

θ(X(t)) = θ{x) + [\A*(X(S)W(X(S))9 dW(s))
Jo

+ Γ[MX(s)), σ(X(s))) + i trace A*(X(s))θ"(X(s))A(X(8))]d8 .
Jo

It follows easily that

EiθiXit)) - θ(x))2 < constant = a ,

or

Now, let / eCQ and g = Ptf. Let ε > 0 be given and N be large enough

that

|/O) | < e/2 whenever ||a?|| > N .

But

flr(a ) - E{um>N}f(X(t)) + E{um^

Hence,

\g(x)\ < β/2 + II/IL prob {||Z(ί)|| <

and

We learn the proof from Professor K. Ito through a private conversation.
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prob log \\x(t)\?
1 + \\x\\*

x g i o g

Thus for large \\x\\ we have |#O0| < e/2 + ε/2 = ε. Therefore #G CO.

Appendix

It is a pleasure to thank Professor Loren Pitt for pointing out the
fact that Pt, t > 0, being strongly continuous (Theorem 10) is not obvi-
ous. We present a proof as follows.

LEMMA A.I (GronwalΓs inequality). If his a non-negative integrable
function in [0, a], a < oo, satisfying

hit) < git) + a [Chis)ds ,
Jo

where a > 0 and g is integrable in [0, α]. Then

hit) < git) + a [tea't-s)gis)ds .
Jo

Proof. We can prove inductively that

hit) < git) + a (ΊΣ[«(* ~ s)V/kUgis)ds
JoU=i J

+ a Γ&(s)[α(ί - s)]n/n! ds .
Jo

The conclusion then follows from Lebesgue's dominated covergence theo-
rem.

LEMMA A.2. EX \\X(t) - x\f < cί(l + \\x\f) for all 0 < t < 1 and all
x e By where c is a constant independent of t and x.
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Proof. We use the letter c to stand for any constant independent

of t and x. Let 0 < t < 1.

X(t) = x+ PA(X(S)W(S) + P
Jo Jo

= x + CWiβ) + Γ
Jo

Hence

( 3 6 )

\\X(t) -x\\2

K(X(s))dW(s)

(Recall that || || is dominated by | |).

Thus after taking expectation (36) becomes

E\\X(jb) - x\\2 < c(ί

\\X{s)\f)ds + c

cjί + c

Hence by Lemma A.I we have

E\\X(t) -xf< ct(l + 11*11*) + c fV(ί-s)cs(l + \\x\\2)ds
Jo

< ctd + INI2) + c ίV«
Jo

= eta + \\x\\2)h + e Γec«-S)

< eta + \\x\?) •

Now let / e Co be also uniformly continuous. A close examination of

the proof of Theorem 10 shows that given ε > 0 there exists N independ-

ent of t, 0 < t < 1

\Ptf(x)\ < e/2 whenever \\x\\> N .



STOCHASTIC INTEGRALS 115

We may as well assume that

| /O) | < ε/2 whenever \\x\\> N .

Thus we have for all 0 < t < 1

(37) \Ptf(x) - /(a?)I < ε whenever | |α|| > N .

On the other hand, let δ > 0 be such that

\\x - 2/II < δ implies \f(x) - f(y)\ < ε/2 .

Then for | |α|| < N,

\PJ(x) - f(x)\ < Ex\f(X(t)) - f(x)\

< ε/2 + 2 II/IU prob {\\X(t) - x\\ > 3} .

But

p r o b {\\X(t) - x\\>δ} < δ~2E \\X(t) - x\\2

< δ~2ct(l + \\x\\2) by L e m m a A . 2

< δ~2ct(l + N2) .

Therefore we can choose t0 small enough such that whenever t < t0

(38) \Ptf(x) - f(x)\ < e for all \\x\\ < N .

Clearly (37) and (38) yield that

\\Ptf - /lU < ε whenever t < t0 .

This establishes the strong continuity of Pt9 t > 0.

REFERENCES

[ 1 ] Yu. L. Dalec'kii, Differential equations with functional derivatives and stochastic
equations for generalized random processes (English translation), Soviet Math.
Dokl., 7 (1966), 220-223.

[ 2 ] , Infinite-dimensional elliptic operators and parabolic equations connected
with them (English translation), Russian Math. Surveys, 22 (1967), 1-53.

[ 3 ] I. I. Gikhman, On the theory of differential equations of random processes (in
Russian), Ukr. Matem. Zhurn., 2 (1950), 37-63.

[ 4 ] , On the theory of differential equations of random processes II (in Russian),
ibid. 3 (1951), 317-339.

[ 5 ] L. Gross, Abstract Wiener spaces, Proc. 5th Berkeley Sym. Math. Stat. Prob., 2
(1965), 31-42.



116 HUI-HSIUNG KUO

[ 6 ] , Measurable functions on Hubert space, Trans. Amer. Math. Soc, 105
(1962), 372-390.

[ 7 ] , Potential theory on Hubert space, J. Func. Anal. 1 (1967), 123-181.
[ 8 ] K. Ito, On a formula concerning stochastic differentials, Nagoya Math. J., 3

(1951), 55-65.
[ 9 ] a n (i M. Nisio, On the convergence of sums of independent Banach space

valued random variables, Osaka J. Math., 5 (1968), 35-48.
[10] D. Kannan, An operator-valued stochastic integral II, Ann. Inst. Henri Poincare,

Section B, 8 (1972), 9-32.
[11] and A. T. Bharucha-Reid, An operator-valued stochastic integral, Proc.

Japan Acad., 47 (1971), 472-476.
[12] H. Kunita, Stochastic integrals based on martingales taking values in Hubert

space, Nagoya Math. J., 38 (1970), 41-52.
[13] and S. Watanabe, On square integrable martingales, Nagoya Math. J., 30

(1967), 209-245.
[14] H.-H. Kuo, Stochastic integrals in abstract Wiener space, Pacific J. Math., 41

(1972), 469-483.
[15] , Diffusion and Brownian motion on infinite dimensional manifolds, Trans.

Amer. Math. Soc, 169 (1972), 439-459.
[16] , On operator-valued stochastic integrals, Bulletin Amer. Math. Soc, 79

(1973), 207-210.
[17] , and M. A. Piech, Stochastic integrals and parabolic equations in abstract

Wiener space, Bulletin Amer. Math. Soc. (to appear).
[18] H. P. McKean, Stochastic integrals, Academic Press, New York-London (1969).
[19] M. A. Piech, A fundamental solution of the parabolic equation on Hubert space,

J. Func. Anal., 3 (1969), 85-114.
[20] , A fundamental solution of the parabolic equation on Hubert space II: The

semi-group property, Trans. Amer. Math. Soc, 150 (1970), 257-286.
[21] , Some regularity property of diffusion processes on abstract Wiener space,

J. Func. Anal., 8 (1971), 153-172.
[22] , Diffusion semigroups on abstract Wiener space, Trans. Amer. Math. Soc,

166 (1972), 411-430.
[23] A. V. Skorokhod, Introduction to the theory of random processes (English trans-

lation), Saunders Company, Philadelphia-London-Toronto (1969).

Department of Mathematics
University of Virginia
Charlottesville, Va., U.S.A.




