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ORDER COMPARISONS ON CANONICAL ISOMORPHISMS

MITSURU NAKAI

Consider a nonnegative Holder continuous 2-f orm P(z)dxdy (z = x + iy)
on a connected Riemann surface R. We denote by P(R) the linear space
of solutions u of the equation Δu = Pu on R and by PX(R) the subspace
of P(R) consisting of those u with a certain boundedness property X.
We also use the standard notations H(R) and HX(R) for P(R) and PX(R)
with P = 0. As for X we take B to mean the finiteness of the supremum
norm \\u\\ — supΛ|%|, D the finiteness of the Dirichlet integral D(u) =

ί du Λ* du, E the finiteness of the energy integral E(u) = (d% Λ* cfot

+ u\z)P(z)dxdy), and their nontrivial combinations BD and .RE1. Let
Q{z)dxdy be another 2-form of the same kind. We say that PX(R) is
canonically isomorphic to QX(R) if there exists a linear isomorphism T
of PX(R) onto QX(R) such that % and T% have the same ideal boundary
values for every u in PX(R) in the sense that \u — 2%| is dominated by
a potential on R, i.e. a nonnegative superharmonic function whose greatest
harmonic minorant is zero. In the pioneering work [14] concerning
canonical isomorphisms, Royden proved the following order comparison
theorem: If there exists a constant c > 1 such that

(1) c~ιP(z) < Q(z) < cP{z)

on hyperbolic R except possibly for a compact subset K of R, then PB(R)
and QB(R) are canonically isomorphic. In this connection we wish to
discuss the following two questions:

1°. Is the condition (1) also sufficient for PX(R) and QX(R) to be
canonically isomorphic for X = D, E, BD, and BEΊ

2°. In the affirmative case how large can we make the exceptional
set K in (1) for X = B, D, E, BD, and BE?
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We shall actually show that the answer to 1° is affirmative. To give
the complete answer to 2° is probably very difficult. In this paper we
shall considerably enlarge the class of exceptional sets as follows. Let
W be an open subset of R with an analytic relative boundary dW and
consider the relative class HX(W dW) = {ue HX(W) Π C(R) u\R - W = 0}
for X = B,D, and BD. The Heins injection λH: HX(W dW) -> HX(R)
is given by λHu = lim^.^ H%. We say that a subset K of β is Z-negligible
(X = B9 D, and BD) if either R is parabolic or there exists a TF with
KaR-W such that JH : HX(W 3TF) -> HX(R) is surjective. We will
see that a subset Z£ of hyperbolic R is B-negligible (βD-negligible, resp.)
if and only if there exists a potential (Dirichlet finite potential, resp.)
p such that p > 1 on K. Such a simple characterization for D-negligible
sets is not available. We only know that if there exists a Dirichlet finite
potential p harmonic outside a compact set of R such that p > 1 on K,
then K is D-negligible. By these criterions we see that compact sets are
trivial examples of our negligible sets. The purpose of this paper is to
contribute to the solution of questions 1° and 2° as follows:

ORDER COMPARISON THEOREM. Let R be a hyperbolic connected
Riemann surface. If (1) is valid on R except possibly for a B-negligible
subset of R, then PB(R) and QB(R) are canonίcally isomorphic if (1) is
valid on R except possibly for a BD-negligible subset of R, then PBD(R)
(PBE(R), resp.) and QBD(R) (QBE(R), resp.) are canonically isomorphic;
if (1) is valid on R except possibly for a D-negligible subset of R, then
PD(R) (PE(R), resp.) and QD(R) (QE(R), resp.) are canonίcally iso-
morphic.

We excluded parabolic R since in such a case PX(R) = {0} for every
X = B,D,E,BD,BE and P Ξ£ 0, and HX(R) = {constants}. In nos. 1-4,
we shall prove that the theorem is true if the exceptional set in (1) is
empty. We consider canonical injections: PX(R) —> QX(R) and reduc-
tion operators: PX(R) -»HX{R) as preparations for considering canonical
isomorphisms. The notion of quasipotential will be introduced and prove
to be useful; at least it is a convenient terminolgy. In nos. 5-7, the
surjectiveness of canonical extensions PX(W dW) —> PX(R) will be dis-
cussed. After these preparations, the proof of our order comparison
theorem will be given in no. 8. Although our main concern in this paper
is the order comparisons, we will append a sketch of the other kind of
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important criterion, the integral comparisons, for the existence of canoni-
cal isomorphisms in nos. 9-10. The first integral comparison theorem
in no. 9 generalizes those thus far known. The second one in no. 10
completely characterizes the surjectiveness of reduction operators: PX(R)
-> HX(R) for X = JS, BD, and BE. Methodologically the use of the com-
pactification theory of Riemann surfaces would give more clearer geo-
metric intuitive insight to the whole discussion in this paper. However
to make the description as elementary as possible we will intentionally
avoid its use even if it is preferable.

Canonical Injections

1. It will be convenient to include disconnected but separable sur-
faces in our considerations. Therefore we assume that our Riemann
surface R is either connected or an open subset of a connected Riemann
surface. By a regular open set we mean a finite union of closure dis-
joint regular regions in R. We use the notation Ω for regular open sets.
The totality {Ω} of regular open sets Ω of R forms a directed net by
inclusions converging to R. A 2-form P{z)dxdy (z = x + iy) on R is said
to be Holder continuous if, for each parametric disk (£/, z), there exist
constant K = K(U,z)e (0, oo) and a = a(U,z)e (0,1] such that \P(z1) - P(z2)\
< K\zx — z2\

a for every pair of points zx and z2 in U. We say that
P(z)dxdy is nonnegative, P(z)dxdy > 0 or P(z) > 0 in notation, if, for
each parametric disk (U,z), P(z) > 0 for every z in U. These are well
defined since such properties are invariant under the change of local
parameters. In particular the order P(z)dxdy > Q(z)dxdy or P(z) > Q(z)
can be defined between two 2-forms by (P(z) — Q(z))dxdy > 0. The 2-form
P(z)dxdy is (identically) zero if, for each parametric disk (17, z), P(z) = 0
in U. We simply denote this by P = 0. Nonnegative Holder continuous
2-forms on R will be denoted by P(z)dxdy, Q(z)dxdy9 etc.

We denote by P£ the solution of the Dirichlet problem of the equa-
tion Δu = Pu on Ω with a continuous boundary values φ on the relative
boundary dΩ, i.e. PΩ

ψeP(Ω) Π C(fi) with PΩ

ψ\dΩ - φ, where P(Ω) is the
linear space of C2 solutions of Δu = Pu on Ω. By the limiting process
we can define PΩ even for upper- or lower- semicontinuous functions φ.
We also use the standard notation HΩ and H(Ω) for PΩ and P(Ω) with
P Ξ O . Let G0(z,ζ) be the harmonic Green's function on Ω. If Ω is
connected, then there is no question about its definition. If Ω = {Jf=1 Ω%
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with Ωι connected and Ώt Π Ώj — φ (ί Φ j), then GΩ(z,ζ) — GΩi(z,ζ) for

z, ζ e Ωi and GΩ(z, ζ) = 0 for z e Ωt and ζ e Ωs (i Φ j). Then

( 2 ) p * = ff* - J L f G( ,ζ)PΩ

ψ(QP{ζ)dξdη ,

where ζ = ξ + iη, and the Dirichlet integral DΩ(PΩ) = f dP£ Λ* c£P£ is
J Ω

given by

( 3 ) DΩ(PΩ) = Z W £ ) + - i - f Gfl(«, ζ)PΩ

ψ{z)P°(ζ)P{z)dxdyP(ζ)dξdη
ZπJΩxΩ

(cf. e.g. [9,10]). Since the energy integral E0(u) — Ep

Ω(u) = jDβ(^) +

u\z)P{z)dxdy is the variation whose Euler-Lagrange equation is Jw = P^,
J Ω

we have the so-called energy principle (Dirichlet principle):

( 4 ) EΩ{PΩ

Ψ) = m i n ( # β ( w ) %e C(Ώ) Π CW(Ω),u\dΩ = Ψ) ,

where Cw is the class of weakly differentiate functions (cf. e.g. [1]).

Another simple but important fact which will be used repeatedly is that

\u\ and u\j 0 = max(^, 0) are subharmonίc for every ueP(R). Since

Δu = Pu > 0 in {u > 0}, u I) 0 — u is subharmonic in {u > 0}, and so is

M U 0 = 0 in {u < 0}. The submean value property is clearly valid at

each point of {u = 0} for M U O . Therefore wUO and (-w) U 0 are sub-

harmonic on R, and so is \u\ = u U 0 + (—u) U 0. A potential p on R is

a nonnegative superharmonic function whose greatest harmonic minorant

is zero. If Ω c Ω'f then 0 < HΩ' < HΩ and lim^^^ HΩ is a nonnegative

harmonic function on R dominated by p. Thus lim^,^ HΩ = 0 and actually

this is the defining property for a nonnegative superharmonic function

p to be a potential. A function f on R will be referred to as a quasi-

potential if I/| is majorated by a potential p = p / 4 Clearly the class of

quasipotentials (potentials, resp.) forms a linear (additive, resp.) space.

Since \PΩ

f\ < Pff[ < PΩ < HΩ with p = pf, we have

( 5 ) limP? =limPΩ

fl = 0
Ω-*R Ω-*R

for every upper- or lower- semicontinuous quasipotential / on R. The

following fact will also be used repeatedly: If f is a quasipotential such

that I/| is subharmonic, then f = 0. This follows from (5) and the ine-

quality [/I < Hf/|β
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We denote by PB(R) the subspace of P(R) consisting of solutions u
with the finite supremum norms: ||%|| = \\u\\B — sup^ \u\ < oo. The no-
tation PD(R) is used for the subspace consisting of solutions u with the
finite Dirichlet integrals D(u) = DR(u) < oo. The subspace PE(R) consists
of solutions u such that the energy integrals E(u) = EB(u) = E%(u) < oo.
Similarly PBD(R) - P5(#) ΓΊ PD{R) and PBE(R) = PJ3(#) Π P#(#).
Contrary to PB(R) and PD(R), the scale Z? for which every solution in
PE(R) is finite varys according to P. We use the standard notations
HX(R) for PX(#) with P Ξ O (X = B, D, E, BD, BE). In this case
#(M) = Din) and thus e.g. ##(#) = HD(R). We denote by PX(R)+ the
subset of PX(R) consisting of nonnegative solutions. It is of fundamental
importance that PX(R)+ generates PX(R) for X = B,D, E, BD, and BE (cf.
e.g. [14], [7], [2]). We say that PX(R) and QX(R) (X = B,D,E,BD,BE)
are canonically isomorphic if there exists a linear isomorphism T of
PX(R) onto QX(R) such that ^ — Tw is a quasipotential for every u e PX{R).
The operator T is unique, order preserving, and isometric, and will be
referred to as the canonical isomorphism. In fact, if Tf is another such
operator, then \Tu - Tu\ <\u- Tu\ + \u - Tu\ and thus \Tu - Tu\ is
a quasipotential. Since \Tu — Tfu\ is subharmonic, Tu = Tu for every
u e PX(R). Suppose u e PX(R)+. Since Tu > u - \u - Tu\, Q£ > 0, and
Q°u = Tu, we have Tu>QS,- Q?u_Tul > - Q^Tu\ on Ω. On letting Ω-^R,
we conclude by (5) that Tu > 0, i.e. Tu e QX(R)+. For general u e PX{R),
observe t h a t \Tu\ < \u\ + \u - Tu\. Since £Γfttl < \\u\\dΩ < \\u\\, by the

maximum principle for subharmonic functions we see that \Tu\ < H°Tul <
\\u\\ + Hftt_Γα, on Ω. Again by (5) we conclude that || Tu\\ < \\u\\. Similarly
\u\ <\Tu\ + \u-Tu\ implies \u\ <H°ul < \\Tu\\+H?u_Tul and then ||u|| < \\Tu\\.
Therefore \\Tu\\ = \\u\\ < oo.

2. To study the existence of canonical isomorphism, it is convenient

to consider a canonical injection T = TQ)P of PX(R) into QX(R) (X —

B,D,E,BD,BE). It is a linear operator from PX{R) into QX(R) such

that u — Tu is quasipotential for every u e PX(R). It is actually injectίve.

If Tu = Tv, then \u - v\ < \u - Γw| + |v - Tv\ shows that the sub-

harmonic function \u — v\ is a quasipotential and hence u — v. By exactly

the same proof as in the last part of no. 2 we see that the canonical

injection is unique, order preserving, and isometric. If TP2fPl and TPztP%

exist for X, then TPs>Pl exists for Z and
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( 6) T
PatPl

 — Tp
3fP2

 o T
P2>Pl

 .

In fact, T = Γ?3)P2o TP2>Pl is a linear operator from P^iR) into P3X(R).

P2X(R)

Let w e P,X(R) and set v = TP2)Plu e P2X(R). Since \u - Γw| < |w - TP%,Plu\

+ \v — TPz>p2v\, u — Tu is a quasipotential and thus T is the canonical
injection TPz)Pl. To determine pairs (P, Q) such that Tρ,P exists is very
important but a difficult problem. For our present purpose we will
only prove that pairs (P, Q) with P > Q have this property, which is
originally obtained by Royden [14] and in abstract setting by Loeb [4]
for X = B (cf. also Maeda [5], Glasner-Katz [2]). It is convenient to
discuss first the existence of TP = TQ>P, which is in particular referred
to as the reduction operator. The term is employed by Singer [16] to
suggest that the operator TP reduces the study of the class PX(R) to
that of more manageable class HX(R). In this context, it is also im-
portant to determine P such that TP is surjective, i.e. PX(R) is canoni-
cally isomorphic to HX(R). For X — B9BD, and BE, a complete answer
is known (cf. Appendix, no. 10). For X = D and E> we only have partial
informations (cf. Singer [17], [11]). Here we only prove that the reduc-
tion operator TP always exists uniquely for every P. Let uePX(R).
If X = D or E, then D(u) < oo and the harmonic decomposition of Royden-
Brelot (cf. e.g. [1], [15]) assures that l i m ^ #£ e HD(R). If X = B, then
let u = uγ — u2 with %eP5(β) + (i = 1, 2). Since {H^} is increasing,
\H^\ < \\Ui\\, and H° = ff£ - iϊf2, we also conclude that lim^Λ Ή.Ω

U e HB(R).
Therefore the linear operator TP of PX{R) into HX(R) can be defined by

(7) TPu = limH°

for every uePX(R) (X = B,D,E,BD,BE). To see that (7) is actually
the reduction operator, let u = uλ — u2 with uίePX(R)+ (i = 1, 2). Let
hi be an arbitrary harmonic function with hi>uit By the subharmonicity
of ui9 ut < H*t < hi and thus TPUι < ht. This means that TPut is the
least harmonic major ant of ut. Therefore TPut — ut is a potential (i = 1,2)
and |% — Γp^| < \ux — Γp^l + |^2 — TP^2| and a fortiori ^ — TPu is a quasi-
potential.
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Besides (7) the following representation of TP is also useful. We
define the harmonic Green's function GR(z,ζ) on a Riemann surface R
as follows. Let R = \Jn Rn be the decomposition into connected com-
ponents Rn. Thus Rn is a connected Riemann surface. For z,ζeRn, let
GR(z, ζ) — GRn{z, ζ) the usual harmonic Green's function on Rn if Rn is
hyperbolic and GR(z, ζ) = + oo if Rn is parabolic. For zeGn and ζ e Rm

(n Φ m), we set GR(z,ζ) = 0. Therefore

Let uePX(R). Then

i - f GΛ( ,8) Γp% w +
2τr

More precisely if P φ 0 on Rn and PX(Rn) contains a nonzero function
then GΛ(s, 0 φ oo for 2 and ζ in # w . Since Pf = w, we see by (2) that

HΩ

U = u + 4-\ G0(-,Qv{QP(ζ)dξdη .

If uePX(R)+, then the integrand is increasing with respect to Ω and
therefore the Lebesgue-Fatou theorem implies that

TPu = u +
2

Since PX(#)+ generates PZ(β), we see the validity of (8). By (3) we
also have

( 9) D(u) - D(TPu) + J L f GR(z, ζ)u(zMOP(z)dxdyP(ζ)dξdv

2πJRXR

for u e PX(R) such that the integral has definite meaning. This is the
case for uePX(R)+ for every X and for uePX(R) (X = D,E); and if
uePX(R) (X = D,E), then each term in (9) is finite. By the energy
principle (Dirichlet principle)

(10) <u, uyR = f GR(z9 ζ)u(z)u(ζ)P(z)dxdyP(ζ)dξdv > 0
J RXR

as soon as the integral is definite. The quantity is referred to as the
P-Green energy and the relation (10) is known as that the Green kernel
is of positive type in the Green potential theory.
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If the canonical injection TQ>P of PX(R) into QX(R) exists, then,

since \TQ>Pu — u\ and \TQ(TQ>Pu) — TQtPu\ are quasipotentials, the inequality

I TQ(TQtPu) -u\<\ TQ(TQtPu) - TQtPu\ + I TQtPu - u\ shows that u - TQ(TQtPu)

is a quasipotential. Therefore, by the uniqueness of the reduction oper-

ator,

HX(R)

QX(R)

the linear operator TQ o TQfP from PX(R) into HX(R) must be the reduc-

tion operator TP, i.e.

(11) TP = TQo TQtP .

We also have an analogue of (7): If TQ>P for X exists, then

(12) TQtPu = lim Q°

for every uePX(R). In fact, Qf = Q°QtPU + Q£-Γ<,lP« and (5) imply the

relation. From (11) it follows that TQtP from PX(R) into QX(R) exists

if and only if

(13) TP(PX(R)) C TQ(QX(R)) ,

and in this case TQfP = TQ1 © TP. The necessity is clear by (11). Con-

versely, if (13) is valid, then the inverse T^1 of TQ from TQ(QX(R)) onto

QX(R) can be defined on TP(PX(R)). Let u e PX(R) and set v = ΓP^ and

w = TV'?; e QX(R). Then |w - Γ^ίΓpW)! = |w - w\ < \w - v\ + |w - v| =

\w — Tqiv\ + \u — Tp^| shows that w — TQ\TPU) is a quasipotential for

every uePX(R). Therefore the operator TQΎOTP is the canonical injec-

tion from PX{R) into QX(R). From this we see that if the canonical

injections TQfP and TPtQ exist for X> then they are canonical isomorphisms,

i.e. TP>Q = TQ)P and TQ>P = TP)Q. In this case, we see by (13)

(14) TP(PX(R)) = TQ(QX(R))

and

(1DJ lQiP — 1Q o lp , 1 P t Q ~ 1 p o i Q

are both surjective. Actually (14) is a necessary and sufficient condition
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for PX(R) and QX(R) to be canonically isomorphic. In particular, if TP

and TQ are surjective, then PX(R) and QX(R) are canonically isomorphic.

3. We are ready to prove that if P > Q, then the canonical injec-

tion TQtP from PX(R) into QX(R) exists (X = B,D,E,BD,BE). Since

P > Q implies u = PΩ

U < QΩ for u e PX(R)+, u<QΩ < HΩ < TPu and {QΩ}

is increasing. Therefore

Tu = lim QΩ

Ω-*R

exists and u — Tu is a quasipotential in view of \u — Tu\ — Tu — u <

TPu-u = \u- TPu\ for every u e PX(R)+. Since PX(#)+ generates PX(R),

this is also true for every uePX(R) and T is a linear operator from

PX(R) into Q(β). We only have to show that TueQX(R) in order to

conclude that T = 2\j,P. If X = 5, then |Qf | < | |^| | and TueQB(R). If

X = E, then, by the energy principle and Q < P,

EUQD < E%(u) < Ep

Ω(u) < Ep

R(u) .

Therefore, since dQ% Λ* dQ%-^ dTu Λ* dTu, the Fatou lemma yields

E%(Tu) < Ep

R(u) and Tu e QE(R). Finally let u e PD(R). We wish to show

that TueQD(R). For this purpose we may assume that uePD(R)+.

Then, by Q < P, 0 < u - PΩ

U < QΩ

U. Thus E%{QΩ

U) < E%(u) implies that

DΩ(QΩ) < DΩ(u) - ί (QΩ(z))2Q(z)dxdy + ί u\z)Q(z)dxdy
J Ω J Ω

< DΩ(u) - f u2(z)Q(z)dxdy + ί u2(z)Q(z)dxdy = Dβ(?^) .

Hence DΩ(QΩ) < DΩ(u) < DR(u) and the Fatou lemma yields DR{Tu) <

DR(u), i.e. TueQD(R). Next we prove that PX(R) and (cP)X(R) are

canonically isomorphic for every c > 0. We only have to show this

for c < 1. For, if c > 1, then (cP)X(R) is canonically isomorphic to

(c-̂ cPW-XXΛ) = PX(R) since c"1 < 1. Then, since P > cP, the canonical

injection TcPtP exists and by (13),

TP(PX(R)) C TeP((cP)X(R)) (C HX(R)) ,

and by (14) we only have to show that this inclusion is improper, i.e.

any heTcP((cP)X(R)) belongs to TP(PX(R)). Since TcP is order preserv-

ing and (cP)X(R)+ generates (cP)X(R), we may assume that h = TcPv>0

with ve(cP)X(R)+. For brevity set Q = cP. Observe that 0 < PΩ <

QΩ

υ = vy PΩ = PΩ + P°_Tφf and {PΩ} is decreasing. Thus
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0 < u = lim P° = lim Pf < v
Ω^R Ω->R

exists and ueP(R)+. By (8)

h = v + -i-
2ττ

and in particular

ί GB( ,ζ)v(ζ)P(ζ)dξdη< oo .
J R

Therefore, since Ga{ ,ζ)Pξ{Q < GR( ,ζ)v(ζ) and h = Iimβ - ΛH», by apply-
ing the Lebesgue dominated convergence theorem to

Hξ = Pξ + —I GΩ( ,ζ)Pξ(ζ)P(ζ)dξdv

as Ω —> R, we obtain

h = u + A
2ττ

If Z ^ B , then \Pξ\ < \\v\\ implies \\u\\< oo and a fortiori uePB(R)\
Since A — M is a potential, we must have TPu ~ h. If X = E, then the
energy principle implies that

Eζ(Pζ) < Eζ((cP)S) = Ep

Ω(v) < c-WΩ

p(v) < c-ΉR

p(v) .

The Fatou lemma yields E%(u) < oo and uePE(R)+. Similarly as above
h = TPu. Finally let X = D. By (9) and (10)

D(v) - D(h) + -Lf GΛ(«, ζ)v(zMOcP(z)dxdycP(ζ)dξdv

and we have (y,vy£ < oo. Thus ζu,uy% = c'XUyU}^ < c~2(v,vyc£ < oo.
Again by (9), D(w) = JD(fe) + (l/2τr)<>,^>£ < oo. Therefore w e PD(R) and
as before h — TPu. Combining two main assertions in this no., we
maintain:

PROPOSITION. // there exists a constant c> 1 such that c~Ψ<Q<cP
on R, then PX(R) and QX(R) are canonically ίsomorphic for X — B,D, E, BD,
and BE.

Proof. Since Q > c'Ψ, Tc-iPfQ exists. In view of that (c~1P)X(R)
and PX(R) are canonically isomorphic, TPtC-ip exists and therefore by (6),



ORDER COMPARISONS 77

QX(R) PX(R) PX(R) QX(R)

ϊ cP,P

(cP)X(R)

TP)Q = TPyC-xP o TC-1P>Q exists. Similarly TQ>P exists (see the above dia-
grams) and therefore PX(R) and QX(R) are canonically isomorphic.

Q.E.D.

Canonical Extensions

4. For convenience we say that an open subset W of R is normal
if each point z of the relative boundary 3W of W posesses a parametric
disk U at z such that U ΓΊ dW is a diameter of U. Hereafter we always
use W for normal open subsets of R. Consider the linear spaces

P(W dW) = {ue P(W) Π C(R) u\R - W = 0}

and

PX(W = {^ e Π - TF = 0}

for X = B, D, E, BD, and BE. A linear operator Λ = λP = λj from
PX{W 9W) into PX(R) is said to be a canonical extension if u — λu is
a quasipotential on iϋ for every uePX(W; dW). We write H(W;dW),
HX(W;dW), and ^ for P(W;dW), PX(W;dW), and JlP with P = 0. As
PZ(β), PZ(TF a^) is generated by PZ(Tf dW)+ (cf. e.g. [9]). Similarly
as in nos. 1 and 2, we see that the canonical extension is unique, in-
jective, order preserving, and isometric. We next prove that the canoni-
cal extension λP always exists for X = B,D, E, BD, and BE and for any P.
First let u e PX(W dW)\ Since u is subharmonic on R, u < PΩ

U < Pf' < H°f

for Ωcz Ω\ If X - B, then 0 < Pf < \\u\\. If X = E, then EP

Ω{PΩ

U) <

Ep

Ω(u) < Ep

R(u). lί X = D, then EP(PΩ) < Ep(u) implies that

DΩ(u) - f
J Ω

u\z))P{z)dxdy

Since (PΩ(z))2 - u\z) > 0, DΩ(PΩ) < DΩ{u) < DR(u). In the latter two
cases, the harmonic decomposition of u yields the convergence of {HΩ}.
Therefore

(16) λPu = lim
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exists and belongs to PX{R) for every uePX(W; dW)+ and hence for

every u e PX(W dW). Thus λ = λP is a linear operator from PX(W 9W)

into PX(#) (X = £, D, £7, BZ), B#). Again let % e PX(W dΐF)+ and h e H(R)

with % < h. Then u<PΩ<HΩ<HΩ = h implies that ΛHM = limΛ_ s iff < h

and thus ΛjjW is the least harmonic majorant of u. Therefore λHu — u

is a potential. Since \u — λPu\ — λPu — u < λHu — u, u — λPu is a quasi-

potential. For general u e PX(TF 3Ψ), let u — ux — u2 with w€ e PX(W 9TF)+

(i = 1,2). Then \u — λPu\ < \uλ — XPux\ + \u2 — λPu2\ shows t h a t u — λPu

is a quasipotential, i.e. λP is the canonical extension.

5. We denote by P'CR)(PW, dW), resp.) the subspace of P{R)

(P(W;dW), resp.) generated by P(R)+(P(W dW)\ resp.). Let χ = χw

be the characteristic function of W, i.e. χ\W = 1 and χ | β — W = 0. We

define an operator μ — μp ~ μ^9 which will be referred to as the canoni-

cal restriction, by

(17) μPv = limP?;n β

on W and //P^ = 0 on R — W. We use μH for μP with P ΞΞ 0. This is

a linear operator from P\R) into P W dW). To see that μP is well

defined, let v = v, - v2 with ^ e P(R)+ (ί = 1,2). Since 0 < Pf^β < ^

and P ^ β | 3 1 ^ = 0, {PJ^Ω} forms a decreasing net and thus \imΩ^RP^Ω

exists and belongs to P(W;dW)+ if it is extended to R by setting zero

on R - W. From Pf,nΰ - Pf^β - P^\ the existence of (17) in P'(W 3TF)

follows. Observe that PX(R) c P r(#) and PZ(TF 3TF) c P\W 9TF). The

merit of considering μP lies in the following relation:

(18) (μP o ̂ P ) ^ = ^

for every uePX(W;3W) (X = B9 D, E, BD, BE). To prove this, it is
sufficient to assume that uePX(W; dW)\ Since PζnΩ = PfM

nβ = u,

PXOV dW)-

μPoλP=zid. I

μp

=u + Pf(Γ/u_u). On the other hand, 0 < PfH

n/u-M) < Ku-u -* 0 as

Ω -*R. Therefore μP(λPu) = u. The relation (18) neither means that

μP(PX(R)) c PX(W dW) nor that /̂ P is injective on PX(R) unless λP is

surjective. It only means that μP{λP{PX{W dW)) = PZ(PF;3Ψ) and μP
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is injective on λP(PX(W dW)). In this sense it is interesting to determine
W such that λj: PX(W dW)-*PX(R) is surjective. Except for the case
X = B the problem seems to be very difficult (cf. [13]). Here we only
give a sufficient condition.

6. In this no, we always assume that R is connected. To discuss the
surjectiveness of λP, we introduce three kinds of negligible sets. A subset

K of R is said to be X-negligίble (X = B, D, and BD, resp.) if either R
is parabolic or there exists a normal open subset W such that KaR — W
and λH: #X(TF dW) -> flΓZ(β) (X = #, J9, and 5D, resp.) is surjective.
We shall try to restate the concept in a more intuitively understandable
term. First

A subset K of hyperbolic R is B-negligible if and only if there exists
a potential p on R such that p > 1 on K.

If λH: HB(W dW) -» HB(R) is surjective with K c R - W, then
h = μHl e HB(W; dW) 0 < h < 1, and Λ#fe = 1. Since h is subharmonic,
p = 1 — h is superharmonic. On the other hand p = 1 — h — \h — λHh\
is a quasipotential and thus p is a potential. Clearly p = 1 > 1 on Z.
Conversely assume the existence of such a p. By multiplying p by a
suitable constant and by choosing W suitably, we can assume that p > 1
on R- W. Let heHB(R)\ Then clearly μHheHB(W dW). Observe
that 0 < h - χwh < \\h\\p implies 0 < H%nΩ - H%ph° < \\h\\p. On letting
Ω —> R, 0 < h — μ̂ ft < || fe||p on W and trivially on R — W, and a fortiori
fe — ̂ fe is a quasipotential on β. By \h — λH o μHh\ < \μHh — λH(μHh)\
+ \h — μHh\ we see that the subharmonic function \h — λHoμHh\ is a
quasipotential and thus λHoμHh = h. Since HB(R)+ generates HB(R),
we conclude that λH: HB(W dW) -> HB(R) is surjective. If we use the
term of the compactification theory (cf. e.g. [1], [15]) we can restate the
above assertion as follows: K is B-negligible if and only if the closure
of R — K in the Wiener compactification of R is a neighborhood of the
Wiener harmonic boundary. Next we prove

A subset K of hyperbolic R is BD-negligible if and only if there
exists a Dirichlet finite potential p on R such that p > 1 on K.

If λH: HBD(W dW) -> HBD(R) is surjective, then h = μHl belongs
to HBD(W dW), 0 < h < 1, and λHh = 1. As above, p = 1 - h is a
potential, p = 1 > 1 on K> and D(p) = D(fe) < oo. Conversely assume
the existence of such a p on R. On replacing p by p Π 1 = min (p, 1),
we may assume that 0 < p < 1 on β and p = 1 on K. Let h e HBD(R)+.
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By the above, μHh e HB(W dW) and λH{μHh) = h. Since HBD(R)+ gener-

ates HBD{R), we only have to show that Dw(μHh) < oo. Since DB((1 — p)h)

< oo, by the harmonic decomposition of (1 — p)h (cf. e.g. [1], [15]) we

see the existence of k = lim f l_B H%!}°)h in HBD(W; dW). Observe that

0<,h-(l-p)h< \\h\\p implies 0 < H^Ω -H%!}°)h < \\h\\p and a fortiori

0<h-k< \\h\\p. Thus \k-μHh\ < \μHh -λH(μHh)\ + \\h\\p, i.e. \k - μHh\

is a quasipotential. Since \k — μHh\ is subharmonic, we conclude that

μHh = keHBD(W dW). Note that

(19) D(μHh) < D(ph) .

In terms of compactifications (cf. e.g. [1], [15]), we see that K is BD-

negligible if and only if the closure of R — K in the Royden compactifica-

tion of R is a neighborhood of the Royden harmonic boundary. From these

two characterizations and the first two trivial inclusions it follows that

{compact sets} c {Z)-negligible sets}

c {BD-negligible sets} c {B-negligible sets} .

Although we do not give explicit examples here, it is not hard to see that

the above inclusions are all strict. We are not successful in potential

term characterization of D-negligible sets and only give the following

sufficient condition:

A subset K of hyperbolic R is D-negligible if there exists a Dirichlet

finite potential p on R harmonic outside a compact set such that p> 1 on K.

The set Ktζ — {z e R GR(z, ζ) > ε > 0} for any ε is an example of a

D-negligible set since p = (GB( ,Q Π ε')/ε for large ε' is a potential as

stated above. To prove the assertion suppose that p e H(R — fl0). Since

p is a potential supB_Ωop — sup 3 β o p = c < oo. On replacing p by p Π c,

we may assume that p is bounded. On applying the regularization we can

also assume that p e C2(R) Π H(R - Ωo). Let h e HD(R)+ and hn = h A n

= the greatest harmonic minorant of h and n. Then D(hn) < D(h), hn]h,

and D(hn - h) -> 0 (cf. e.g. [15]). Let pΩ =p - HΩ

V for flD ΩQ and let

keHD(R). By the Green formula

DΩ{pΩk) = — I pΩkd*d(pΩk)
J Q

= - f pΩk2d*dpΩ - —[ dp2

Ω Λ*dk2

J ΩQ 2JΩ

= - ί pΩk2d*dp + f p\dk Λ* dk .
J Ω J Q
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By the Fatou lemma we conclude as Ω -» R that

(20) D(pk) < \\k\\*ΩoD(p) + \\p\\2D(k) .

By the second characterization above, μHhne HD(W dW). By (19) and

(20) we have

D(μHhn - μHhn+p) < D(p)\\hn - hn+p\\*Ωo + \\p\\*D(hn - hn+p) .

Therefore u = l i m , ^ μHhn e HD(W dW) and D(u — μHhn) —> 0 as n -> oo.

On the other hand, D(λHu — hn) = D(λπu — λHμHhn) < D(u — μHhn) shows that

D(λHu -fc) = 0, i.e. λHu + a = h with a constant α. Take e e HBD(W dW)

with λHe = a. Then λH(u + e) — h. Since HD(R)+ generates HD{R), we

conclude that λH: HD(W ^Tf) — HD(R) is surjective.

7. In the definition of negligible sets we presupposed that R is con-

nected. The connectedness is not an essential restriction because we only

have to consider componentwise if R is not connected. If R is parabolic,

then R itself is of degenerate character but does not quite match our

definition in terms of the surjectiveness of λH. In this case HX(R) =

{constants} and HX(W dW) = {0} for X = B, D, BD if R - W Φ φ (cf.

e.g. [15]). From (8) in no. 2, it follows that PX(R) = {0} and PX(W dW)

= {0} for X = B,D, E, BD, BE if R is parabolic and P Ξ£ 0. This un-

pleasant situation can be conventionally resolved if we includes nonnega-

tive constants into the class of potentials when R is parabolic. However,

instead of providing such an artificial convention, we would rather avoid

parabolic surfaces. The role of negligible sets is clarified by the

PROPOSITION. Let W be a normal open set in a hyperbolic connected

Riemann surface R. IfR-W is B-negligίble, then λP: PB(W d W) -> PB(R)

is surjective for every P; if R — W is D-negligίble, then λP: PX(W dW)

—> PX(R) (X = BD, BE) is surjective for every P if R — W is D-negligible,

then λP: PX(W dW) -> PX(R) (X = Dy E) is surjective for every P.

Proof. Suppose that R — W is B-negligible. Take a potential p on

R such that p > 1 on R - W. Let u e PB(R)\ Clearly μPu e PB(W dW).

Observe that 0 < u - χwu < \\u\\p on R. Thus 0 < PJfnί3 - PfJ]/3 < \\u\\p

and a fortiori 0 < u — μPu < \\u\\p, i.e. u — μPu is a quasipotential. By

\u — λPo μPu\ < \μPu — λP(μPu)\ + \u — μPu\, we see that the subharmonic

function \u — λP o μPu\ is a quasipotential and therefore λP o μPu = ^.

Since PB(β)+ generates PB(R), λP: PB(W dW) -> PB(R) is surjective.
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Next suppose R — W is BD-negligible. As in no. 6, take a Dirichlet finite

potential p such that 0 < p < 1 and p = 1 on R - FF. Let ^ e PBY(R)+

(Y = D, E). Since # - W7 is B-negligible, μPu e PB(W dW) and ΛPμPM = u.

Since PBY(R)+ generates PBY(R)y we can conclude the surjectiveness of

λP:PBY(W;dW)-*PBY(R) if we show Y(μPu)< oo (Y = D,#) . First

let uePBD(R)\ i.e. Z>(w) < oo. Observe that

GΛ(

f^ ^ntfl < GΛ( , ζ)w(ζ), and flζn» - ^ Γ p t t since

— χwTPu is a quasipotential. By the Lebesgue dominated convergence

theorem,

implies that

μPU = μaTPU - -1-f Gw(-,QμMζ)P(.ζ)dξdV

Since D(u) = D(TPu) + (l/2ττ)<>, ̂ >^ < oo, Γ P ^ β HBD(R), and a fortiori the

surjectiveness of Λ# implies that D(μHTPu) < oo. Therefore, by 0 < μPu < u,

we see that

D(μPu) = D(μHTPu)

< D(μHTPU) +

Next let ^ ί ^ ) < oo. Since D(u) < oo by the above we have D(μPu) < oo.

Therefore 0 < μPu < u implies that

Ep(μPU) - D(μPu) + ί (μMζ))Ψ(ζ)dξdV
J R

< D(μPu) + f u\ζ)P{ζ)dξdη
JR

< D(μPu) + Ep(u) < oo .

Finally suppose that R — W is D-negligible. Since PX(R)+ generates

PX(R), we only have to show that μPu e PX(W dW) and λPμPu — u for

every uePX(R)+ (X — D,E). By exactly the same proof as above we
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see that μPuePX(W; dW). In the above proof, D(μHTPu) < oo followed

from the surjectiveness of λH: HBD(W dW) -» HBD(R). In the present

case it follows from that of λH: HD(W; dW) -* HD(R). Thus we only

have to show that λPμPu — u. Set μPu = μHTPu — p, where p = (l/2π)

GV( , ζ)μPu(ζ)P(ζ)dξdη is a quasipotential since it is dominated by

(l/2τr)f GB( ,ζ)u(ζ)P(ζ)dζdη, a potential. Observe that

- # £ - ^ - ί GQ( ,QP?PU(OP(Odζdv .

Since 0 < PΩ

μpU < u and limβ_^ HΩ

V = 0, the Lebesgue dominated conver-

gence theorem yields

λPμPU = λHμHTPU - - — I
ZπJR

i.e. TPλPμPu = λHμHTPu. Since ^ : ί ί ^ T f 3TT7) -> HD(R) is surjective,

ZHVHTPU — TPu and thus TPλPμPu — Γ^^. The injectiveness of ΓP implies

that λPμPu = ^. Q.E.D.

8. We now complete the proof of our order comparison theorem

stated in the introduction. If R is parabolic, then HX{R) = {constants}

(Z = B,D,BD) (cf. e.g. [15]) and by (8) in no. 2 PZ(#) = {0} for P =έ 0

and X = B,D, E, BD and β£7. Thus the comparison question is of inter-

est only for the case R is hyperbolic. Suppose (1) is valid on R except

for a Z?-negligible set K. Let W be a normal open subset of R such

that R — W Z) K and R — W is J5-negligible. Since (1) is valid on the

whole Wy a Riemann surface, Proposition 3 assures that there exists the

canonical isomorphism T£ P of PB(W) onto QZ?(TF). By using (12), it is

not hard to see that T%tP may be considered as a linear isomorphism of

PB(W dW) onto QB(W dW). By Proposition 7, ΛQ o. TζtP oβp is a linear

isomorphism of PB(R) onto QB(R). To see that ΛQ o T%tP ° μP = TQ>P is

the canonical isomorphism of PB(R) onto QB(R), we have

; dW) ——> PB(R)

QB(W dW) ^ — > QB(R)
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to show that u — TξtPu is a quasipotential on R for every u e PB(W dW).
We may assume that u > 0. Since u — T^Pu is a quasipotential on TF,

Pu) = he HB(W 3W). Observe that

and similarly

T J > =. Λ - J - f Gw(',OTlMQQ(ζ)dξdv .

Therefore by u < λPu = v and T%tPu < λQT%iPu = w,

Gw(.,ζ){v(ζ)P(Q + w(ζ)Q(ζ))dξdη
w

2π

i _ f G(.,ζ)(v(ζ)P(ζ) + w(ζ)Q(ζ))dξdη

i.e. \u — Γ^P^I is dominated by the potential (TPv — v) + (TQw — w).
By the similar applications of Propositions 3 and 7 as above, the other
part of our comparison theorem can be proven verbatimly.

Appendix: Integral Comparisons

9. The order comparison (1) is very handy in many practical applica-
tions (cf. e.g. [8], [12]). However it is very far from being necessary.
In pursuing the complete condition for the existence of canonical iso-
morphisms it is indespensable to consider the so-called integral compari-
sons. We denote by G^(z, ζ) the Green's function of the equation Δu = Pu
on R. Hence GR(z, ζ) = G^(z, ζ) with P = 0. Let ί P b e a normal open
subset. We say that (P, Q) satisfies the condition (B) on W if

f ί G£( ,0\Q(Q-P(0\dξdη<oo,
(B) i w

GU ,Q\P(Q-Q(Q\dξdv< oo .
\ Jw

We say that {P, Q) satisfies the condition (D) on W if

f Gp

w{z, ζ) I Q(z) - P(z) I I Q(O - P(ζ) | dxdydξdη < oo ,

(D)
ί G%(z,ζ)\P(z) - Q(z)I \P(ζ) - Q(ζ)\dxdydξdv < oo .

JWXW
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Finally we say that (P, Q) satisfies the condition (E) on W if

(E) ί \P(Q - Q(ζ)\dξdη < oo .

Jw

In our former paper [8] we showed that if (P, Q) satisfies the condi-

tion (X) on R, then PBX(R) and QBX(R) are canonically isomorphic

(X = B,D,E,; BB = £>). If we use this in the proof in no. 8 instead

of Proposition 3, then we obtain:

INTEGRAL COMPARISON THEOREM 1. // R — W is B-neglίgίble and

(P, Q) satisfies the condition (B) on W, then PB(R) and QB(R) are canoni-

cally isomorphic If R — W is BD-negligible and (P, Q) satisfies the con-

dition (D) ((E), resp.), then PBD(R) (PBE(R), resp.) and QBD(R) (QBE(R),

resp.) are canonically isomorphic.

The prototypes of this theorem are found in [6], Maeda [5], Glasner-

Katz [2], etc. The integral conditions for PX(R) and QX(R) (X = D, E)

to be canonically isomorphic are not known. To find them is one of

very important open problem on canonical isomorphisms. It may be

instructive to point out that even if PBX(R) and QBX(R) are canonically

isomorphic, PX(R) and QX(R) need not be canonically isomorphic for

X = D,E (cf. Singer [17], [11]), although PBX(R) (X = D,E) are dense

in PX{R).

10. The above theorem applied to (P, 0) takes the more precise form.

First, since f G£( ,ζ)P(ζ)dξdη < 2π and G£( ,ζ) < GΛ( ,ζ), the condition
J R

(Bo) ί GB(-,ζ)P(Odξdv<™
JW

implies (B) for (P, 0) on W, the condition

(Do) ί GE(z9 QP(z)P(Odxdydξdη < oo
JWxW

implies (D) for (P, 0) on W, and condition

(Eo) ί P(Odξdη < oo

Jw

trivially implies (E) for (P, 0) on W. Thus the condition (Bo) for

^-negligible R-W implies the surjectiveness of TP: PB(R) -> HB(R).
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The condition (Zo) (Z = D, E) for BD-negligible R - W implies the sur-
jectiveness of TP: PBX(R) -> HBX(R). Conversely assume TP: PX(R) ->
HX(R) is surjective and let e = Γ^l (Z == B,BD,BE). We can choose
a normal open set PF such that

\z e R e(«) > —} c W c |z e R e(z) > — J.

By using relations

= e +
27Γ Ji?

= J - f GΛ(«, ζ)e(z)e(ζ)P(z)dxdyP(ζ)dξdy ,
2 ; r J J 2 Λ

and

we derive (Bo) ((Do), resp.) on IF if I = δ (Z>, resp.). If Z = £7, then

Ep

R{e) = D(e) + ί e\ζ)P{ζ)dξdη < oo

implies (Eo) on TF. Since p = 2(1 - e) = —[ GR(-,ζ)e(ζ)P(ζ)dξdη is a

potential and p > 1 on R - W, R - W is J5-negligible. If Z = JD or E,
then Z)(e) < oo and a fortiori J9(p) < oo, i.e. R — W is BD-negligible.
Thus we have shown (cf. [6], Glasner-Nakai [3], Glasner-Katz [2])

INTEGRAL COMPARISON THEOREM 2. The linear spaces PBiR) and
HB(R) are canonically isomorphic if and only if there exists a normal
open subset W on which (Bo) is valid such that R — W is B-negligible
PBD(R) {PBE(R)y resp.) and HBD(R) (HBD(R), resp.) are canonically
isomorphic if and only if there exists a normal open subset W on which
(Do) ((Eo), resp.) is valid such that R — W is BD-negligible.

Again the condition when TP PX(R) -> HXiR) (Z = D, E) is sur-
jective has not yet been obtained. Examples are known that TP: PBX(R)
-*HBX(R) is surjective but TP: PX(R) -> HX(R) is not for X = D,E
(Singer [17], [11]). To seek the (complete) condition for TP:PX(R)->
HX{R) (Z = D, E) to be surjective seems to be urgently important.
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