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DEDEKIND SUMS FOR A FUCHSIAN GROUP, I

LARRY JOEL GOLDSTEIN*

§ 1. Introduction

The well-known first limit formula of Kronecker asserts that

2 \m + nz\~2s -
(TO, n ) * (0,0)

- 2π(C - log 2 -

where z = x + ίy is contained in the complex upper halfplane H, C =
the Euler-Mascheroni constant, and η(z) is the Dedekind eta-function
defined by

φ = eπίz/12 Π (1 - e2πίnz) (zeH) .
n=l

It is a simple matter to deduce from the first limit formula that

I°*+J>) = , VSΓ+^fe) , (a b\ e SL{2, Z) ,
\ cz + dl \c dl

where |ε| = 1, ε — ε(a,b,c,d). It is possible to calculate ε explicitly, as
was first accomplished by Dedekind [1], who proved that if all branches
of the logarithm are taken with respect to the principal branch,1 then

logvl
az + b) - log η{z) + 1 log {cz + d) + πiS(a, 6, c, d) ,
\ cz + d I 2

where

S(α, 6, c, d) = SL±A - A ^ _ s(c, d) ,
12c 4 \c\

and where s(c, d) is a so-called Dedekind sum which has the following
elementary expression:
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* Research supported by National Science Foundation Research Grant GP-31820X.

1 That is, the branch for which — π > arglogz < π.
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|c|// \\|c|.

Here ((#)) — % — [x] — £, [x] = the largest integer < x.1

It is our purpose, in the following paper, to construct a generali-
zation of the Kronecker first limit formula which leads to generalizations
of all the above classical facts. The main observation is that the sum
on the left hand side of the Kronecker first limit formula is, apart from
a simple factor, the Eisenstein series (in the sense of Selberg) associated
to the cusp at infinity for the classical modular group. In this paper,
we will exhibit a corresponding limit formula for any Eisentein series
and any cusp of a Fuchsian group of the first kind Γ—that is, Γ is a
discrete subgroup of SL(2, R) with finite invariant volume. If K is a cusp
of Γ9 then the limit formula for the pair (Γ,κ) will lead to an every-
where non-zero automorphic from of weight 1/2 which is the analogue
of the classical function η(z). In analogy with the classical theory, we
will derive a transformation law for our generalized ^-function. And
this law of transformation will lead to generalized Dedekind sums. We
work out the theory explicitly for the principal congruence groups Γ(N)
(N > 1) defined by

Γ(N) = Ua J)L Ξ d ΞΞ 1 (modΛO, b = c ΞΞ O(modiV)}

and we find explicit formulas for the Dedekind sums in this case. It
appears that these generalized Dedekind sums have interesting arithmetic
properties connected with reciprocity laws in certain abelian extensions
of the rationals, but this topic will not be taken up in this paper.

The author would like to thank Dr. John Fay for suggesting the
problem which initiated the research in this paper and he would also
like to thank Drs. T. Kubota and D. Niebur for a number of valuable
conversations.

§ 2. The Fourier expansion of the Eisenstein series at a cusp

Throughout this paper, let Γ denote a discrete subgroup of SL(2, R) /{± 1}

having a fundamental domain of finite invariant measure. Then Γ acts

discontinuously on the complex upper half-plane H. Let H = H U {oo}
1 For x an integer, set ((a?)) = 0.
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and let the action of Γ be extended to Ή in the usual manner. Further,

let κl9 ,/ch be a complete set of inequivalent cusps of Γ. Choose

Gi e SL(2, R) so that

where Γt = {σ e Γ \ σ(κd = κt} = the Γ-stabilizer of κ%. For z = x + iy e H9

let τ/(z) = y. Then the Eisenstein series1 for the cusp κt is defined by

Ei(z, s) = Σ Viβ^σz)9 (Re (s) > 1, « e ff) . ( 1 )

This series converges absolutely and uniformly for s in a compact sub-

set of Re (s) > 1. Moreover, one of the fundamental theorems in the

theory of Eisenstein series asserts that Ei(z9s) has an analytic continu-

ation in s, namely:

THEOREM A. Et(z, s) can be analytically continued to a meromorphic

function in the entire s-plane and the only poles of the continued function

are simple and lie in the interval [0,1]. Moreover, E\(z9s) always has

a pole at s = 1.

As a function of z, Et(z9 s) is an automorphic function for Γ—that is,

Ei(σz9 s) = Ei(z9 s) (σ e Γ) .

Moreover, Ei(z9s) is an eigenfunction of the Laplace-Beltrami operator

( 2 )
dχ2 dy2

for the symmetric space H:

DElz, s) = 8(8 - DE^z, 8). ( 3 )

Because of the property (2), Ex{z9 s) can be expanded in a Fourier series

in a neighbourhood of the cusp κ5. Elementary computations suffice to

show that this Fourier series is of the form [3, p. 28].

Et(σjZ, s) = f] ^ , m ( s , y)e(mx) , (z = x + iy) , ( 4 )
7 7 1 = - o o

where e(x) = exp (2πix), and where
1 All ficts about Eisenstein series which are} cited here can be found in the excel-

lent monograph [3].



24 LARRY JOEL GOLDSTEIN

au.nXv, s) = 2πs\mrιms)-1y1/2Ks_υ2(2π\m\ y)φυ,m(s) (m ψ 0)
(5)

+ φij&y1-* (m = 0) ,

where

(6)

ίc>0, dmodc, (* *) eσϊΨσλ

Ks_1/2(u) - 2 - V |^|1/2-Γ(s) Γ ; ( " ^ dt (w > 0) ( 8)
J-oo (1 + £2)*

Moreover, it is fairly easy to show that aijj0(s, y) has a pole at s — 1,
whereas aijjΊn(s, y) is continuous at s = 1 for m Φ 0. Thus, it is fairly
easy to see that

lim lEiiσμ, s) - aiJtQ(y, s)l = Σ ' α^,m(ί
s-l L J m=-oo

where Σ 7 denotes a sum which excludes the term for m = 0. Let us
first make the formula (9) somewhat more explicit. It is immediate from
definitions that

α<;,«(y, 1) = 2π\m\vγ<2Kι/2(2π\m\y)φiJima) (m Φ 0) , (10)

e(-2π\m\ty)dt

(t

Therefore, by (6), (10) and (11),

aij,m(y> V = π exp (-2π\m\y)φij<m(l) (m Φ 0) (12)

where

1 ^
= lim

\c\2s ύ

ί O O , d(modc), Γ Ί eσ^Γσλ .
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§ 3 . The formal limit formula

In this section, we will prove a formal Kronecker limit formula for

the Eisenstein series Ei(z,s).

From equations (9)-(13), we see that

lim [Eiiojiz), s) — ai} 0(y, s)]

"*' -π ~' ex -2π m x 2πimx 1 ( 1 4 )

m=-°o

Let z = x + iy e H, and let q = eπiz. Then, from (14), we see that

lim [Etiσjiz), s) - aiJi0(y, s)]
(15)

= ^ Σ Φij,mO)Qm + π Σ Φijt-mQ)Q'm >
m = l w = l

where qr — e~2πί2. However, an easy computation implies that

for any s for which the Dirichlet series φiJtm(s) converges. Therefore,

by analytic continuation,

Φij,-m(X) = Φίj,τrSX)

Therefore, from (15), we have

lim [Eifajiz, s) - aiJ9θ(y, s)]

~ m _ (16)
Σ Φij
m = l

Let us investigate the structure of aijyQ(y9 s) somewhat more closely.

Equation (5) implies that in a neighborhood of s = 1, we have

&U oθi> S) = CiJ + dtj + higher order terms ,
s — 1

where ctj and dtj do not depend on s. Let us find formulas for ctJ and

dij. We know that in a neighborhood of s = 1, we have

0^ 0(s) = _ ^ — + jS^ + higher order terms .
s — 1

However,

yι~s = 1 + (s — 1) log (y1) + higher order terms
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Γ ( S ~ 1 / 2 ) = VΊΓ(1 - (21og2)(β - 1) + •)

(For the latter expansion, set [5, p. 15]). Therefore, by equation (7),

we see that

ai)t0(y,8) = π^y1- Γ ( s ~ * / 2 ) φij>0(s) + δuy*
Γ(s)

= πI/2(l + (s - 1) log (ί/"1) + •) ( v T - 2V^Γlog 2(s - 1) + •)

S — -L

Therefore, by Cauchy multiplication of power series, we see that

*tU8> y) = — ° 1 L τ + dv +

s ~ 1

where

c€i = πai3 (18)

rfϋ = irtfo + *tj log ί?/"1) - 2atj log 2} + 3 ^ . (19)

Combining (17)-(19) with (16), we derive that

s — 1

= π{βtJ + aί} log (y-1) - 2atJ log 2} + δtJy (20)

Let us rewrite (20) as follows:

)
2(s —

= Ij9« - ai} log 2 + ati { i log (ϊ/"1) + ~—δi} (21)

+ «r/ Σ ^«,*(i)ί* + «r/ Σ ^ .
m = l m = l

We will prove below that ai} is real, so that (21) can be rewritten as

lim Γ—Et(σjZ, s) - —*« 1
- i L 2π J 2(s - 1) J
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= ~βu - «« log 2 + - ^ log
Δ Δ

+ a,"/ Σ Φu.JXXT
l

, Λ Γ &J + a,/ Σ
4TΓV —l-OCij m=l

1 4τrv — l^i j ^ = 1

Let us denote au by α4 and βu by j8t , and let us define log 37^(2) by

z) = -• * - a? Σ Φutm0-)Qn > Q = e2πίz ,
4π\—loci m=i

where the logarithm is taken with respect to the principal branch. It

is clear that log ηΓ,i(z) is analytic for zeH, so that ηΓ>i(z) is analytic

and non-zero throughout the upper half-plane H. Moreover, from (22)

we have

limf—ί^tos) ^ 1
-1 L2ττ 2 0 - 1)J

^ l o g f e / 1 ) - log5Γf<(«) - \ogηΓti(z)
Δ Δ

= -ίft - α, log 2 - at log li/'V.iWI
Δ

Thus, summarizing our results thus far, we have

THEOREM 3-1. Let Et(z, s) be the Eίsenstein series at the cusp κt

for the Fuchsian group Γ, and let φu^(s) be the Dίrίchlet series appear-

ing in the constant term of the Fourier expansion of Ei(z, s) about K^

Assume that

s — 1

in a neighborhood of s = 1. Then

= ±βt - ^ log 2

where

log ?/.,<(*) - - . / % - - αΓ1 Σ Λi.md)^ , Q -
47ΓV— \θti m=l
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Next, let us explore the analytical properties of the function ηΓti(z).
Our main result will be

THEOREM 3-2. Let σsσ^Γσi. Then

log 9r>(«)) - log ηr^z) + ~ log (cz + d) + W = Ϊ S Γ > ) , σ = (
2 \c d

where SΓyi(σ) is real and depends only on Γ,ί and σ and not on s.

Theorem 3-2 is a generalization of the classical transformation formula
for log 37(2) and the quantities SΓti(σ) are generalizations of the classical
Dedekind sums. We will call the quantities SΓyί(σ) the Dedekίnd sum
attached to Γ and, i.

Proof. By Theorem 3-1 and the facts that (i) Et(z, s) is automor-
phic in z, (ii) at and β{ do not depend on z, we see that

= log I^V.iί*)2! (*)

However, y(σ(z)) = y/(\cz + df), so that

log \y(σ(z)y/2

Vr^σ(^y\ = log t n - log\cz + d\ + log|?Γ>(z))|2 . (**)

From equations (*) and (**), we have

log|5?r,iOO))| = log 157̂ (2)I + i\og\cz + d\ .

Therefore, the function F(z) defined by

F(z) = logηΓti(σ(z)) - \ogηΓίί(z) - I log (cz + d) ,

where all logarithms are taken with respect to the principal branch, has
a real part identically zero. Thus, F(z) is identically constant and this
constant must be purely imaginary, depending only on Γ, i and σ.

Next, let us give a complement to the Kronecker limit formula of
Theorem 3-1 by providing a geometric interpretation of the constant
otij. It is well-known that dxdy/y2 is an invariant valume element on
the upper half-plane H. If D is a fundamental domain for Γ, then by
hypothesis, D has finite invariant volume which does not depend on the
choice of D. Let us denote the volume of such a fundamental domain
by vol (H/Γ). Then we will prove

THEOREM 3-3. Suppose that φ^is) = a^jis — 1) + βtj + . Then
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π vol (H/Γ)

To prove Theorem 3-2, we require some preliminaries. Let Y be a
positive real number, which will be chosen large. Let us define the
compact part E((z, s) of E^z, s) by

Ef (z, 2) = £7,(2, 8) - α<if0(s, l/G^Os))) if ί/fô O*)) > Γ

= 2^(2, s) otherwise .

Then it is known that EJ(z,s) belongs to L2(H/Γ) where integration is
taken with respect to the invariant volume element dxdy/y2. Moreover,
the following inner product formula is a consequence of the so-called
Maass-Selberg formula [3, Theorem 2.3.2]:

i Eγ(z,s)EJ(z,s') dxdy

H/r y2

S + S' - 1
(23)

s — s s — s

where the formula is valid for Re (s) > 1, Re OO > 1, s Φ s'.
Let us fix a fundamental domain D for Γ and let us define Dγ by

k

Dγ = D — 0 Dγ ,

where

From the definition of EJ(z,s) and the Fourier expansion of Ei(z,s)
about the cusp κj9 it is easy to verify the following facts:

I. (s — l)Ei(z, s) — πau is bounded uniformly for 0 < s < 1, ze Dγ

and as s tends to 1, this quantity tends to zero uniformly for z e Dγ.
II. (s — l)EJ(z, s) is uniformly bounded for 0 < s < 1, zeDl (k =

It is clear that

(s — l)(s/ -

= f ( s -

f
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dxdy+ Σ ί A* - l)(β' - ΐ)Eϊ(z,s)EΪ(z,s)-

y2

by I and II. Therefore,

lim f (s - l)(s' - ΐ)Ef(z, s)Ef(z, sQ dxdy = π2a2

u f
 dxdy . (24)

sf->i j H/Γ y2 J D? y2

However, by equation (23),

S ' - 1) f Eξ(z, s)Eξ(z, sO
J H/Γ

( 8 _ D( S ' _

_γ
s + s' — 1 s — s'

+ 0(8 - 1) + O(s' - 1)

s + s' — 1

Therefore,

*'+i + ffα + o(s - 1) + 0(8' - 1) .

S'-Ί

so that

lim f (s - l)(s' - l)£?f (2, 8)ί7f (a, s') dxdy =

D? y

But as Y—> oo,

JD? y2

so that

Ίf J D y2

πWu vol {HID = πau ,

which is just Theorem 3-3 for ί = j . But since πaiS is the residue of
Ei(z, s) at s = 1, we see that πau = τταo (1 < i, / < Λ).
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There is a classical formula for vol (H/Γ) which gives us arithmetic
information about ai3. Let g denote the genus of H/Γ and let eu , er

denote the orders of the Γ-inequivalent fixed points of Γ on H, h the
number of cusps of Γ. Then [3, p. 42], we have

vol (H/Γ) = 2π\2g - 2 + h + Σ (l ~ — )1
I v=i \ ej)

Therefore, we have

COROLLARY 3-4. ai3 = ~π~2\2g - 2 + h + f](l - - ϋ 1 * .
2 1 v=i \ ev I)

In particular, we have

COROLLARY 3-5. The quantity — (4πV—l^^)"1 is of the form 2π\l — \τι
where rt = r^Γ) is the positive rational number given by

Our next task is to prove that ηΓii(z) is an automorphic form for
Γ corresponding to a certain multiplier system. Namely we will prove

THEOREM 3-6. The function ηΓii(z) is an automorphic form for
σ^Γύi of weight 1/2 corresponding to the multiplier system

v(σ) — exp {πV^ΪSΓ^(σ)} .

Proof. It is clear from Theorem 3-2 that

Vr,i(0%) — v(σ)Vcz + dηΓti(z) ,

for σ = [a I € a^Γύi, zeH, where the branch of the square root is
\c dl

the one which is positive on the positive real axis. Therefore, it suf-
fices to check that ηΓti(z) has the appropriate Fourier expansion about
the cusps of σ^Γσt It is easy to check that the cusps of σ^Γσi are given
by σϊK/Cj) 0 '= 1, « ,fe). Moreover, the stability subgroup of aϊλκ3 in
G^ΓGI is just σ^ΓjGi, where Γ3 is the stability subgroup of κ3 in Γ.
Also, note that
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στ1σj = (α<> bTherefore, if στ1σj = (α<> bίj), then let us set
\ctj dl

Choose p e σ^Γβi so that (σ^σ^piσ^σ) = I }. Then by the funda-

mental transformation property of ηΓti(z)9 we derive that

/viz + 1) = Vcij(z + 1) + dij-^r^ajiz + D)

= Vcijiz + 1) + an Wcσ^σjZ + dv(ρ)ηΓjiσ^σ/s))

where p = (a b). If θ = (a β) eSL(2,R), let us set
\c dl \γ δl

J(θ, z) = Vγz + 3 ,

where the branch of the square root is the one which is positive on the

positive real axis. Then J(θ, z) is well-defined and analytic for z e H and

a trivial computation involving J(θ, z)2 shows that

J(flζ, z) = ± J(β, ζz)J(ζ, z) , (ζ,θe SL(2, R),zeH) .

But it is clear that for large 3 very close to the positive real axis, the

plus sign must prevail, so that

J(θζ,z) = J(β,ζz)J(ζ,z) (ζ,θeSL(2,/?), 26ff) .

However, since

Vctjίz + 1) + dty = Jiσ^σ^

Vcσ^σjZ + d = J(ρ, σ^σ

we see that

ί3

Thus, we see that

ftJ(z + 1) = vipViσ^σ^zY'ηr^σ^σμ) - v(p)fυ(z) . (25)

Let us define θ^ to be the unique real number satisfying
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v(p) = e

2πV~lθi> , 0<θtj< 1 .

Then (25) implies that fij(z) has a Fourier expansion of the form

(26)

We assert that all terms in the Fourier expansion for which m + atj < 0
are zero. If not, the function fijiz) will assume values of arbitrarily
large absolute value in every neighborhood of infinity. However, it
follows immediately from the Fourier expansion (22) that fijiz) remains
bounded in a neighborhood of infinity. Therefore, the Fourier expansion
(26) has the form

VcijZ + dij ^=o

which is the desired Fourier expansion of ηΓii(z) about the cusp σ^fcj.
Thus we have established the character of ηΓii(z) as an automorphic form.

§ 4 . Properties of the Dedekind sums

In this section, we will prove certain general facts about the Dedekind
sums SΓiί(σ).

THEOREM 4-1. The mapping ΘΓ^: σ^σi -* R defined by

is a homomorphism.

Proof, Let σ, τ e σ^Γσi Then by Theorem 3-2 we have

log 7]Γ^{στ{z)) = log ηΓΛ{z) + \ log {c"z + d") + πV^ΛSΓii(στ) , (27)

where we set

la b\ laf V

On the other hand, by applying Theorem 3-2 twice, we see that

log Vr
= log ηΓiί(z) + \ log (cτ(z) + d) + \ log {c'z + df) (28)

+
However,
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log (cτ(z) + d) + logics + dθ = log Ic a'z + h' +d) + log (c's + dθ
\ c ̂  + α /

= log ((cα7 + d&)z + (cbf + ddO) + 2kπV^Λ , (29)

where keZ does not depend on Z. However, by taking zeH large and
close to the positive real axis, and recalling that all logarithms are taken
with respect to the principal branch, we see that k = 0. Therefore,
combining (28) and (29) noting that cn = caf + dcf, d" = cb' + dd', we
see that

SΓtt(στ) = S r > ) + S Γ » .

In the remainder of this section, we would like to make some com-
ments on the rationality of the quantities SΓji(σ), since many of the most
significant and interesting properties of the classical Dedekind sums come
from the fact that they are rational numbers. As trivial consequences
of Theorem 4-1, we have

COROLLARY 4-2. If σe σ^Γσi is elliptic, then SΓΛ(σ) is rational with
denominator dividing the order of σ.

COROLLARY 4-3. (1) SΓii(σ) = - S ^ G r 1 ) .
(2) // σ,τeΓ are conjugate, then SΓti(σ) = SΓji(τ).

It is known that Γ is finitely generated. Then we have:

COROLLARY 4-4. Let τu - , rr be generators for σ^Γσi. Then SΓti(σ)
is rational for all σ e σ^Γσi if and only if SΓti(τj) is rational for 1 < j < r.
Moreover, in case the latter is true, the denominator of SΓ)i(σ)(σ e σϊxΓσ^
always divides the least common multiple of the denominators of SΓii(τj)
(1 < j < r). In particular, the Dedekind sums have bounded denominators.

There is one obvious case (other than Corollary 4-2) where we can

conclude the rationality of the Dedekind sum. Namely:

THEOREM 4-5. SΓM
 xj\ is rational

Proof. By Theorem 4-1, we have

so that it suffices to prove that



DEDEKIND SUMS 35

/I 1\

is rational. But from the definition of the Dedekind sum, we see that

= log ηΓ>i(z + 1) - log ηΓti(z)

However, by the definition of logηΓiί(z), we see that

" 6 U 0 1/

Therefore, by Corollary 3-5,

S r > ί ((o l ) ) " 2 ^ ' ( 8 0 )

where

COROLLARY 4-6. Suppose that Γ has a single cusp and is generated

by parabolic and elliptic elements- Then SΓil(σ) is rational for all

Proof. By Corollary 4-2 and Corollary 4-4, it suffices to show that

SΓil(σ) whenever a is one of the parabolic generators a — σΐxpσιy p e Γ is

parabolic. Then the fixed point λ of p is a cusp of Γ and is therefore

equivalent to κ19 so that λ = θ(tc^ for some θ e Γ. Therefore, since Λ is

a fixed point of p, κt is a fixed point of θ~ιpθ and σf1^ = oo is a fixed

point of σ^θ^pθσ^ However, by the way in which σ was chosen, this

implies that

for some x e Z. Moreover, by Corollary 4-3, (2), we have

Therefore, SΓil(σ) is rational by Corollary 4-5.

For example, Corollary 4-6 implies to Γ = SL(2, Z) which is generated
1 X) and (° - 1 ) . Here, by (30), we have
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and the denominator of divides 2. Therefore, by CorollaryL )
4-4, SΓA(σ) is rational for all σeSL(2,Z) and has denominator always
divisible by 12. Therefore, in this case, the multiplier

v(σ) = — lSΓtl(σ)}

is a 24th root of 1.
It would be interesting to determine precisely for which groups Γ

it is true that SΓyl(σ) is rational for all σ e σ^Γσ^ There is some reason
to believe that all arithmetic subgroups of SL(2,R) have the property
that the Dedekind sums are algebraic, but we have no way of proving
this. In the remainder of this paper, we will explicitly compute the
Dedekind sums for the groups Γ(N).

§ 5 . Calculation of the Dedekind sums for Γ(N)

Throughout this section, let N be a positive integer and let Γ(N)
denote the principal congruence subgroup of SL(2,Z) of level iV-that is,

a b

Set

Π ( l - > 2)

(N = 1)

Moreover, let x -> x denote the canonical homomorphism of SL(2, R) into
SL(29R)/{±1}. Then it is well-known that Γ(N) is a Fuchsian group of
the first kind and that Γ(N) has μN/N inequivalent cusps. Moreover, it
is possible to get a set of representatives for these cusps as follows:
Every cusp tc is of the form K = α/&, α, b e Z, (α, 6) = 1. By convention,
we include K = 1/0 = oo.) Moreover, κx = a/b, tc2 = c/d are Γ(N) equiva-
lent if and only if a Ξ c (mod AT), b ~ dimodN) or a = — c(modN), b =
-d(modN).

Let ί = α/j3 be a cusp of Γ(N) and let σκ e SL(2,R)/{±1} be such that
(ĵ oo = K and
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•"-1G ί ) I H ^
where Γκ is the subgroup of Γ(N) leaving K invariant. Then it is a
reasonably elementary computation to show that

2 cZez \cz + dfs

c=β OoaodN)
d=a(moάN)

where 5(2V) = 1 if iV = 1 or 2 and δ(N) = 2 otherwise.

Let us compute the Dirichlet series φu,m(s) which appear in the
Fourier expansion of Eκ(σκz,s). Let ^ denote the cusp at oo and let us
write σ* instead of σKoa. Then, it is easy to see that

so that

= IN1/2 0

Since Γ(l) has only one cusp, all cusps of Γ(N) are Γ(l)-equivalent. There-
fore, there exists θκ e Γ(l) such that 0Λ(oo) = Λ:. But then an elementary
argument shows that

ΘKΓKJ~' - Γf

is the stabilizer of K in Θ^ΓQs^θ'1. However, since Γ(N) is a normal
subgroup of Γ(l), this shows that Γ* is the stabilizer of K in T(N), and
therefore we have

Now on the one hand, we have

But on the other hand,

Therefore, by comparing the last two equations, we have
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σκ = ί Λ (3D

We can explicitly construct θκ as follows: If tc — K^, set θκ — I j . If

KΦ oo, suppose t h a t K = a/γ, (a,γ) = 1, r =£ 0. Choose β,δeZ such t h a t

αδ — /fy = 1. Then we may set

(α η (310

Next, let us compute σ;T(N)σΛ. By (31) and (310,

since Γ(N) is a normal subgroup of Γ(l). However, since

OWα δ\ /2V1/2 0 \ / α N-'
U d/ \ 0 N-ι/2l " \Nc d

we see that

^ l ^ 6, c, d e Z, αd - 6c = 1, α = d = 1(N), & = c =

(31")

It is possible to use (3Γ0 to directly calculate φu,m(s) from the formulas
of Section 2. However, the expression for φu,m(s) thus derived is rather
complicated. Thus, the following approach to calculating the ^-function
seems preferable:

Let g and h be arbitrary integers such that (g, h, N) — 1, and let
us define the following series:

£'
2 .sgb,

ώ = ft ( m o d AT)
( ώ ) l

E*h{z,8;N)= δ(N)

2 c,d=-oo \cz

d Λ ( d i V )

where the prime on the summation indicates that (c, d) = (0,0) is omitted.
Note that if K = ft/# is a cusp of Γ(Λ0, then EgΛ(z,s;N) = Eκ(z,s).

By using the formal reasoning found in [2, pp. 44-48], we find that

Egth{z,8;N)= Σ f Σ - ^ W ^ f e β ) . (32)Σ
\ τ ι = l

) = l \7ia==l(modiV)
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Moreover,

E*h(z,8 ,N) = -*Ά{θN(g)Th + SgΛ} ,
Li

where

τh = Σ d-2*, sgΛ= Σ Σ \cz + d\-2°,
dΞ-oo C=-oo d=-oo

d=h(modN) c=g(modN) d=h(modN)
cφO

θN(g) = 1 if 0 =

0 otherwise .

By applying the Poisson summation formula to the inner sum of Sg,h,
we derive that

CΞg(modN) ' '
Σ

m=-oo

/N)\

where

C=-oo
c=σ(modi\Γ)

e

2πinx/Nl(s, -
\

+ 2 e l ( s , )
iV »=-«» \ TV /

WϊtO CΞfl(
C>0 C > 0

Thus, by combining (32) and (320, we see that

Egth(z, s;N) = aQ,gΛ(y, s N) + Σ amt9th(y9 s N)e2*ίm*/N , (33)
m = —oo

mΦQ

where

Σ I Σ -&£-)\vo»(fig) Σ
α = l \ w = l 71s \ d=-

( α , Λ r ) = l \ w α l ( d i V ^ ) / Z f t (

c=αg (mod iV)
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(
(α,2V)=l na=Hmo<iN)

LEMMA 5-1. Let Γ be a Fuchsian group of the first kind and let

it be a cusp of Γ,τeSL(2,R)/{±l}. Then

Eκ,Γ(zfs) = Eτ-1(κhτ-1Γτ(z,s) .

In particular, if τ normalizes Γ, then

ESjΓ(τz, s) = Eτ-Hτ)tΓ(z, s) .

Proof. Note first that r"1^) is a cusp of τ~ιΓτ and that the stabi-

lizer of τ^O) in τ~ιΓτ is just τ~Ψκτ9 where Γκ = the stabilizer of K in Γ.

Moreover, by the definition of σκ, we see that

so t h a t σΓ_1(τ) == τ~ισκ. Therefore,

aerκ\r «erκ\r

Σ y(σ;}ίwV(z))s = Σ
ηeτ-lΓκτ\τ~lΓτ η G Γτ-l(κ)\τ-lΓ

= Eτ-Hκhτ-1Γτ(z,s) .

COROLLARY 5-2. Let σ= (a b) eSL(2,Z). Then
\c dl

Let us now use Lemma 5-1 to compute Eκ(σκz,s). By (28), we have

Eκ(σκz, s) = Eκ{θκσ^z, s) = E^i^σ^z, s) - # „ ( # * , s) . (34)

Thus, as a consequence of (34), we see that there is only one ̂ -function

for the group Γ(N) and this one is an automorphic form for Γ(N) itself.

The situation is typical for a normal subgroup of SL(2,Z)/{±1}. Let

us denote this unique automorphic from by ηN{z). By (33), we see that

f] bm(y9s; N)e*°™* , (35)
ra=-o
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where

bm(y, s N) = amtOti(Ny, s N) (meZ) .

Then it is easy to see that

bo(y, s;N) = ys + t~sφls N) Γ ^ (36)

where

φo(s;N) = d(NW~*s ζ(2s

ζ(ζ(2δ) P\N

Moreover,

bm(y, s N) = ——-ζ(2s)~' \[ (1 — p'^y^is,

, . n, (37)
c-

2*-ιe2«tmfeN

c\m
c=0(modiV)

c>0

Now an easy computation shows that

I(s, -2πmy) = 2π(\m\y)1/2K1/2(2π\m\y) .

Therefore, combining (37) and (10), we see that

Φ*,~(s) = 4^-C(2s)"1 Π (1 - P-'T1- Σ ^ Γ T - (mφO). (38)
2N P\N C\m C2S~l

e>o
CΞθ(modiV)

(Here we write φN,m(s) instead of φίίym(s).) Moreover, another easy com-

putation shows that

ι: du
(u2 + I)8 Γ(s) '

so that from (36), we see that

φNtQ(8) - g ( A 0 N 1 - 3 j C ( ^ " 1 ) Π (1 - V~2sri (39)
ζ(2s) PIΛΓ

(where we write φNtQ(s) instead of φUi0(s)).

It is easy to check that the Laurent expansion of φNt0(s) about s = 1

begins

s — 1
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where

J L
7Γ 2

aH = -^9{N) |iV2 Π (1 - p-% , (40)

- π
iiv p2 — 1 ζ(2)

where C is the Euler-Mascheroni constant. Combining the above formulas
with the definition of logηN(z), we see that

logηN(z) = - — 4 — - N Σ ^ ~ Σ d
4πtαf 1 wι di

- i V Σ Σ -
AπiaN

Σ4πίaN d-i *-i fc (42)

N-l

1 0

V β2*ίa/N \Γ J Q g Q _ e2xUa + Nn)NzΛ

β2πίa/N Yog FT Π giπίmNz\

m=α (mod iV)

Thus, we may finally state

THEOREM 5-3. Let Γ(N) denote the principal congruence subgroup
of SL(29Z) of level N. Then

lim \~Eκ(z9 s) - aN 1 = 1 ^ - aN log 2 -

where aN and βN are given by (40) and (41), respectively, and where

log 9*Gs) - - — i — + Σ 1 ̂ 2 j r i α ^ log Π (1 ~ ^27rimiVO

Let us now explicitly determine the Dedekind sums for the groups
Γ(N). Our method is an adaptation of Dedekind's original proof [1] of
the transformation formula for Iog3?(τ). Throughout this discussion, let

la b\σ=[ A eΓ(N), and let sN(σ) denote the Dedekind sum for Γ(N), and
\c d!

let ζN denote e2H/N.
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From equation (42), we have

log ηN(z) = - — % — + Yx e2πU/N l o ^ d - e2πidNz)
4πiaN <ι=i

= - — 4 — - Σ Σ e2πU/N- (43)
Aia d i i r

where Q = e2>r<ΛΓ*. Now by Theorem 3-2, we have

log 7}N(σz) = log 37̂ (2) + I log (cs + d) + πίSN(σ) ,

so that

πiSN(σ) = i Im {log ^ ( σ z) - log ^(«) - J log (c« + d)} . (44)

However, by (43) and the formal identity

a _ β __ 1 _ 1
1-a 1- β ~ 1-a 1- β '

we derive

8πaN 2ί hi r L 1 - ζNQr 1 - ζ^Q

Case 1: c^tO.

Let us set z = — <Z/c + ic2u,u real and positive. Then, σ(«) = α/c +

iu/cK By (44), we see that

πiSN = ί lim Im (log ηN f- + JΪL)
«-o I \ C C2 /

(46)

C C2U I 2 \ CU

However,

log f — ) = log (—ί—) + i arg ( — ) ,
\ cu I \\cu\l \ cu I

so that
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Imlog(-L- =-**- i f c > 0
.cut 2

2

Thus, by (45), we have

SN(σ) = - A

m if c < 0 .

+ limlmίlog^f + ^
4 |c | π »-o I \ c c2 /

C

Now by equation (45), we have

where V = e~2*N/c*u, Qo = e

2πN/c2u. However, as u -> 0, Qo tends rapidly

to infinity and it is clear that the summation in (48) tends to zero as

u -> 0. Thus,

d

Thus, by (47), we see that

SN(σ) - - ! - £ - + — ^ — + 1 Km Im l o g ^ ί ^ + - ^ ) . (49)
4 | c | 4πanC r «-o V c c2

Let W7 = e

2"»*/«, Qj = e - ! ™w. Then (45) implies that

c c2 .

1 A Γ L i ] ( 5 0 )

4πaNc 2ί r4i C^ Q &r

A simple argument (see [1, p. 167]) can be used to justify the interchange

of the summation on the right of (50) and the operation u -> 0. However,

1 - ζNWr 1 - ζJ

0 if ζHWr = 1 .

if ζNWr Φ 1 ( 5 1 )
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If η Φ 1 is a kth root of 1, then a simple argument shows that

1 -λψi
1 — η k i=ι

Therefore, since ζNWr is a \c\Nth root of 1, we see that, if ζNWr Φ 1,

\c\N-l

1 lcliV-1

\C\N k ιίNl

Thus, by equation (51), we see that

lim ( 1 - 1 I

|c|Λ/ i=i

provided that ζNWr Φ 1. However, if ζNWr = 1, then (51) shows that
(52) again holds, so that by (50),

I oo -| \C\N-1

Let us now show that the inner sum of (53) is just the Forier expansion
of an elementary function.

Let z be a real number and let [z] = the largest integer <z. Further,
let ((z)) = z — [z] — 1/2*. Then a simple computation shows that

1 \ \ oo p-ZπίZμ plπizμ

2 // /«=i //

Therefore,

2πiZμ 1

μ
* See the footnote on p. 22.



46 LARRY JOEL GOLDSTEIN

Thus, as a consequence, we see that

--'((•-!))--(('--I
Thus, finally we see that for λeC,

Let us set Λ = ζj

N, z — Naj/c. Then we see immediately that

Σ

(54)

Thus, by combining (55) with (49), we have, finally, that

4π2aNc 4π2aNc \c\N

1 / a + d \ l c

+

 1 ί 5 5 )
c I 4 \c\ \c\N

\C\N-1

X
I ΛΓ

N

This completes the discussion of Case 1.

Case 2: c = 0.

In this case, σ = ί ), 6 = 0 (mod N). Thus, by equation (42),
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log ηN(σz) = log ηN(z + 6) = log ηN(z) —

Thus, by the definition of SN(σ), we have

SN(σ) = — ^ — .
4ττ2αtf

Combining Cases 1 and 2, we may state the following

THEOREM 5-4. Let σ = (a b\ e Γ(N). Then the Dedekind sum SN(σ)
\c dl

is given by

SM - -J4— > if c = 0
4π2aN

1 (a + d\ _ 1 c 1
i4 ^ 0 ? ^ \ c / 4 \c\ \ o \ N

N

where

7?z particular, SN(σ) is an algebraic number belonging to the Nth cyclo-

tomic field.
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