P. Colwell

Nagoya Math. J.
Vol. 50 (1973), 1-6

MEROMORPHIC FUNCTIONS WITH LARGE SETS OF JULIA POINTS

PETER COLWELL

1. Introduction. Let $D=\{z:|z|<1\}$ and $C=\{z:|z|=1\}$. If W denotes the Riemann sphere equipped the chordal metric X, let $f: D \rightarrow$ W be meromorphic. A chord T lying in D except for an endpoint $\gamma \in C$ is called a Julia segment for f if for each Stolz angle Δ in D at γ which contains T, f assumes infinitely often in Δ all values of W with at most two exceptions. We call $\gamma \in C$ a Julia point for f if every chord in D ending at γ is a Julia segment for f, and we denote by $J(f)$ the set of Julia points of f.

In this paper we show that for a certain class of functions meromorphic in D the sets of Julia points are residual in C. This class of functions lies in the intersection of two previously-studied classes of functions. In [1] K. Barth defined the class $A_{m}: f \in A_{m}$ if f is meromorphic in D, and if for each point γ of a set dense in C there exists a curve K in D ending at γ such that $\lim _{z \rightarrow r(z \in K)} f(z)$ exists. More recently, in [7] K-F. Tse divided all functions meromorphic in D into two classes in the following way. For each pair of points $z, w \in D$, the hyperbolic distance between z and w is defined by

$$
\rho(z, w)=(1 / 2) \log \{[1+\sigma(z, w)] /[1-\sigma(z, w)]\},
$$

where $\sigma(z, w)=|z-w| /|1-\bar{w} z|$. A meromorphic function f is of the second kind if there exist a sequence $\left\{z_{n}\right\}_{n=1}^{\infty} \subset D,\left|z_{n}\right| \rightarrow 1$, a constant $r>0$, and a point $\alpha \in W$ such that for $\mathscr{D}(r)=\bigcup_{n=1}^{\infty}\left\{z: \rho\left(z, z_{n}\right)<r\right\}, f$ tends uniformly to α as $|z| \rightarrow 1$ in $\mathscr{D}(r)$. And f is of the first kind if it is not of the second kind. Tse's results in [7] characterize the functions of the first kind and show how wild their boundary behavior must be.

Theorem 1. If $f \in A_{m}$ is of the first kind, then $J(f)$ is residual in C.
Received April 11, 1972.

After proving Theorem 1 in §2, we show that if in addition the set of points on C at which f has an asymptotic value is of measure 2π on C, then $J(f)$ has measure 2π on C also. It is important to note that these results apply to the Tsuji functions, a well-studied class of meromorphic functions. Following the notation in [5], let $f^{*}(z)=$ $\left|f^{\prime}(z)\right| /\left(1+|f(z)|^{2}\right)$ be the spherical derivative of f in $D ; f$ is a Tsuji function if for some finite constant $l>0$, $\sup _{r<1}\left[\int_{0}^{2 \pi} f^{*}\left(r e^{i \theta}\right) r d \theta\right]<l$. It is a consequence of [5, Theorem 6] that each Tsuji function is in class A_{m}.
2. Proof of Theorem 1. We begin with a few lemmas. For any $\gamma \in C$ and any $\beta \in(-\pi / 2, \pi / 2)$, let $T(\gamma, \beta)$ denote the chord in D ending at γ and making angle β with the radius to γ.

Lemma 1. Let f be meromorphic in D and suppose for some $\gamma \in C$, $\beta \in(-\pi / 2, \pi / 2)$, that $T(\gamma, \beta)$ is not a Julia segment for f. Then there exists $\varepsilon>0$ such that $T(\gamma, \alpha)$ is not a Julia segment for f if $\alpha \in(-\pi / 2, \pi / 2)$ and $|\alpha-\beta|<\varepsilon$.

Proof. Obvious.
For each $\beta \in(-\pi / 2, \pi / 2)$, let $E(\beta)=\{\gamma \in C: T(\gamma, \beta)$ is not a Julia segment for $f\}$.

Lemma 2. Let f be meromorphic in D and E be the set of points on C which are not Julia points for f. Then $E=\bigcup_{\beta} E(\beta)$, where β is rational and $\beta \in(-\pi / 2, \pi / 2)$.

Proof. If $\gamma \in E$, from Lemma 1 it follows that $\gamma \in E(\beta)$ for some rational $\beta \in(-\pi / 2, \pi / 2)$. And it is obvious that for each rational $\beta \in(-\pi / 2, \pi / 2), E(\beta) \subset E$.

For each chord $T(\gamma, \beta)$ at $\gamma \in C$, we let $\Delta(\gamma, \beta, \alpha)$ denote the Stolz angle in D at γ which is symmetric about $T(\gamma, \beta)$ and has vertex angle α. (We presume here that $0<\alpha<\pi / 2-|\beta|$.)

Lemma 3. Let β, α be fixed, where $\beta \in(-\pi / 2, \pi / 2)$ and $0<\alpha<\pi / 2$ $-|\beta|$. If $M=\tanh ^{-1}\{\sin (\alpha / 2) /[4+\sin (\alpha / 2)]\}$ and $z \in T(1, \beta)$, then $\{w \in D: \rho(w, z)<M\} \subset \Delta(1, \beta, \alpha)$.

Proof. From a lemma of P. Lappan [7, Lemma 2], if $\rho(z, w)<M$, then $|w-z| /(1-|z|) \leq 2 \tanh M /(1-\tanh M)=(1 / 2) \sin (\alpha / 2)<\sin (\alpha / 2)$. Thus $|w-z|<(1-|z|) \sin (\alpha / 2) \leq|1-z| \sin (\alpha / 2)$, and $w \in \Delta(1, \beta, \alpha)$.

Now suppose $f \in A_{m}$ is of the first kind but $J(f)$ is not residual. Then $C-J(f)$ is of second category on C, and Lemma 2 implies that for some rational $\beta \in(-\pi / 2, \pi / 2), E(\beta)$ is of second category on C.

For each positive integer n, let

$$
\begin{gathered}
E_{n}(\beta)=\{\gamma \in E(\beta): \exists \alpha \geq 1 / n \ni f \text { omits at least three values }\} . \\
\text { in } \Delta(\gamma, \beta, \alpha)
\end{gathered}
$$

We see that $E_{n+1}(\beta) \supset E_{n}(\beta)$, and $E(\beta)=\bigcup_{n} E_{n}(\beta)$. Thus for some integer $N, E_{N}(\beta)$ is of second category on C.

Since, for each $\gamma \in E_{N}(\beta), f$ omits at least three values in $\Delta(\gamma, \beta, 1 / N)$, there exists $d(\gamma)>0$ with this property: for any two sets A, B on W whose union contains the values omitted by f in $\Delta(\gamma, \beta, 1 / N)$, either $\operatorname{diam} A \geq d(\gamma)$, or $\operatorname{diam} B \geq d(\gamma)$. For each positive integer j, let $E_{N, j}(\beta)=$ $\left\{\gamma \in E_{N}(\beta): d(\gamma) \geq 1 / j\right\}$. Clearly $E_{N, j+1}(\beta) \supset E_{N, j}(\beta)$, and $E_{N}(\beta)=\bigcup_{j} E_{N, j}(\beta)$. Hence, for some integer $J>0, E_{N J}(\beta)$ is of second category on C.

If $\gamma \in E_{N J}(\beta)$, there exists $\mu>0$ such that f never assumes some three distinct values in the region $\Delta(\gamma, \beta, 1 / N) \cap\{|z-\gamma|<\mu\}$. For each positive integer k, let $E_{N J, k}(\beta)=\left\{\gamma \in E_{N J}(\beta): \mu \geq 1 / k\right\}$. Since $E_{N J, k+1}(\beta)$ $\supset E_{N J, k}(\beta)$ and $E_{N J}(\beta)=\bigcup_{k} E_{N J, k}(\beta)$, there exists integer $K>0$ such that $E_{N J K}(\beta)$ is of second category on C. For brevity let us denote $E_{N J K}(\beta)$ by E^{*}.

There exists an are A on C such that E^{*} is dense in A. Since $f \in A_{m}$, we can choose an interior point $\lambda \in A$ at which there ends a curve Γ in D along which f has a limit. Let Γ^{\prime} be the "last part" of Γ in $\{|z-\lambda|<1 / K\}$ and $\left\{w_{m}\right\}$ be any sequence on Γ^{\prime} converging to λ. For each m, let $\varepsilon(m)=2^{-m}$, and let $\delta(m)>0$ be chosen so that $X\left[f(w), f\left(w_{m}\right)\right]$ $<\varepsilon(m)$ whenever $\rho\left(w, w_{m}\right)<\delta(m)$. For m sufficiently large there exists $\gamma_{m} \in E^{*}$ for which the chord $T\left(\gamma_{m}, \beta\right)$ intersects the neighborhood $\left\{w \in D: \rho\left(w, w_{m}\right)<\delta(m)\right\}$. We select a point $v_{m} \in T\left(\gamma_{m}, \beta\right)$ (which may be w_{m} itself) such that $\left|v_{m}-\gamma_{m}\right|<1 / K$ and $\rho\left(v_{m}, w_{m}\right)<\delta(m)$. Within each such neighborhood $\left\{w \in D: \rho\left(w, w_{m}\right)<\delta(m)\right\}$ we deform Γ^{\prime} to make it pass through v_{m}. The resulting curve we call Γ^{*}, and we see that f has a limit as $z \rightarrow \lambda$ along Γ^{*}.

Since f is of the first kind, $\left\{v_{m}\right\}$ is a ρ-sequence [7, Corollary 3.1]. Thus for each $r>0$, [4, Theorem 2] implies that there exist sets $G(m, r)$, $H(m, r)$ on W with chordal diameter less than or equal to r, and integer $M(r)>0$ such that for $m>M(r)$

$$
W-[G(m, r) \cup H(m, r)] \subset f\left[\left\{w \in D: \rho\left(w, v_{m}\right)<r\right\}\right]
$$

We choose r to be less than the smaller of $1 / J$ and $\tanh ^{-1}\{\sin (1 / 2 N) /$ $[4+\sin (1 / 2 N)]\}$. For this choice of r and every $m>M(r)$ we have:
(i) $\left\{w \in D: \rho\left(w, v_{m}\right)<r\right\} \subset \Delta\left(\gamma_{m}, \beta, 1 / N\right)$ by Lemma 3 ;
(ii) $f\left[\left\{w \in D: \rho\left(w, v_{m}\right)<r\right\}\right]$ omits at least three values, all of which lie in $G(m, r) \cup H(m, r)$.
But since $\gamma_{m} \in E^{*} \subset E_{N J}(\beta)$, either $\operatorname{diam} G(m, r) \geq 1 / J>r$, or $\operatorname{diam} H(m, r)$ $\geq 1 / J>r$. This is a contradiction. Hence $J(f)$ is residual on C.
3. Further results. Now we consider functions meromorphic in D which have asymptotic values at almost every point of C.

Theorem 2. Suppose f is meromorphic in D and has an asymptotic value at each point of a set of measure 2π on C. If f is of the first kind, then, $J(f)$ is residual and of measure 2π on C.

Proof. That $J(f)$ is residual follows from Theorem 1. If $C-J(f)$ has positive measure on C, we can easily alter the selection process in the proof of Theorem 1 so that the resulting set E^{*} has positive measure on C. And at every point of some subset of E^{*} of positive measure f has an asymptotic value.

Let $\lambda \in E^{*}$ be a two-sided accumulation point of E^{*} at which f has an asymptotic value. The remainder of the argument proceeds as in the proof of Theorem 1: we construct a curve ending at γ along which f has a limit, and which intersects a sequence of chords $\left\{T\left(\gamma_{m}, \beta\right)\right\}$, where $\gamma_{m} \in E^{*}$ and $\gamma_{m} \rightarrow \lambda$.

Since Tsuji functions of the first kind satisfy the hypotheses of both Theorems 1 and 2, we have a corollary.

Corollary 1. If f is a Tsuji function of the first kind, $J(f)$ is residual and of measure 2π on C.

For each $\alpha \in D$, let $\phi_{\alpha}(z)=(z-\alpha) /(1-\bar{\alpha} z)$. In [3] Collingwood and Piranian defined the Tsuji set of a meromorphic function f to be the set of points $\alpha \in D$ such that $f \circ \phi_{\alpha}$ is a Tsuji function. The following lemma, whose proof we omit, permits a slight extension of Corollary 1.

Lemma 4. Let f be meromorphic in D and $\alpha \in D$. Then f has a Julia point at $\gamma \in C$ if and only if $f \circ \phi_{\alpha}$ has a Julia point at $\phi_{\alpha}^{-1}(\gamma)$.

Corollary 2. If f is a meromorphic function of the first kind with nonempty Tsuji set, then $J(f)$ is residual and of measure 2π on C.
4. Some examples. The author is grateful to Professor $K-F$. Tse for Example 1, which exhibits a function satisfying the hypothesis of the theorems and corollaries above.

Example 1. There exists a Tsuji function of the first kind. Let Λ be a monotone spiral in D with the property that for any $\theta \in[0,2 \pi]$, if $\left\{z_{n}(\theta)\right\}_{n=1}^{\infty}=\Lambda \cap\{z \in D: \arg z=\theta\}$ then $\rho\left[z_{n}(\theta), z_{n+1}(\theta)\right] \rightarrow 0$ as $n \rightarrow \infty$. Select the monotone sequence $\left\{w_{n}\right\}_{n=0}^{\infty}$ from Λ with $w_{0}=0$ and $\rho\left(w_{n}, w_{n+1}\right)$ $=1 / n$ for $n \geq 1$. Let $\left\{r_{n}\right\}$ be a sequence of positive numbers such that $r_{n}+r_{n+1}<\left|w_{n+1}\right|-\left|w_{n}\right|$ for each n, and $r_{n}=0\left(1-\left|w_{n}\right|\right)$ as $n \rightarrow \infty$.

If $\left\{a_{n}\right\}$ is a sequence of positive numbers such that $a_{n}<r_{n}^{3}$, it is shown in [3] that $f(z)=\sum_{n}\left[a_{n} /\left(z-w_{n}\right)\right]$ is a Tsuji function with these properties: (i) if $D_{n}=\left\{z:\left|z-w_{n}\right|<r_{n}\right\}$, the series for f converges uniformly in the plane less $\bigcup_{n} D_{n}$; (ii) if $\left\{w_{k}\right\}$ is a subsequence of $\left\{w_{n}\right\}$ such that $w_{k} \rightarrow \gamma \in C$, for k sufficiently large the values f omits in D_{k} lie in arbitrarily small neighborhoods of $f(\gamma)$.

Now let $\lambda \in C$, let $\left\{\xi_{n}\right\}$ be a sequence in D with $\xi_{n} \rightarrow \lambda$, and let $\delta>0$ be fixed. For each integer k, if $z \in D_{k}, \sigma\left(z, w_{k}\right) \leq r_{k} /\left(1-\left|w_{k}\right|\right)$, so $\sigma\left(z, w_{k}\right)$ $\rightarrow 0$ and $\rho\left(z, w_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. Hence $\mathscr{D}=\bigcup_{n}\left\{z \in D: \rho\left(\xi_{n}, z\right)<\delta\right\}$ contains infinitely many disks D_{k}, and f cannot tend to a constant limit as $|z| \rightarrow 1$ in \mathscr{D}. Therefore f is of the first kind.

Example 2. There exists a Tsuji function f of the second kind such that $J(f)=C$. This example is due to Collingwood and Piranian [3, Theorem 1]; here we show additionally that the function is of the second kind.

Let $z_{n}=\left(1-n^{-1 / 2}\right) \exp (i \log n), n=2,3,4, \cdots$, and let $\left\{r_{n}\right\}_{n=2}^{\infty},\left\{a_{n}\right\}_{n=2}^{\infty}$ be sequences of positive numbers such that $r_{n}+r_{n+1}<\left|z_{n+1}\right|-\left|z_{n}\right|, 0<a_{n}$ $<r_{n}^{3}$. Then ([3, Theorem 1]) $f(z)=\sum_{n=2}^{\infty}\left[a_{n} /\left(z-z_{n}\right)\right]$ is a Tsuji function such that $J(f)=C$.

The sequence $\left\{z_{n}\right\}$ lies on the monotone spiral

$$
\Gamma:\left\{z(t)=\left(1-t^{-1 / 2}\right) \exp (i \log t): 1 \leq t<\infty\right\}
$$

For any $\theta \in[0,2 \pi]$, if $\left\{w_{k}(\theta)\right\}_{k=1}^{\infty}=\Gamma \cap\{z: \arg z=\theta\}$ is arranged in order of increasing modulus, direct calculation shows that $\lim _{k \rightarrow \infty} \rho\left[w_{k}(\theta), w_{k+1}(\theta)\right]$ $=\pi / 2$.

Choose a monotone sequence $\left\{\xi_{k}\right\}_{k=1}^{\infty}$ on the radius to $e^{i \theta}$ such that ξ_{k} is midway between $w_{k}(\theta)$ and $w_{k+1}(\theta)$, so that $\xi_{k} \rightarrow e^{i \theta}$. We can choose a number $\delta, 0<\delta<\pi / 2$, and positive integer K such that

$$
\mathscr{D}(\delta, K)=\bigcup_{k \geq K}\left\{z \in D: \rho\left(z, \hat{\xi}_{k}\right)<\delta\right\}
$$

is disjoint from all the disks $\left\{z \in D: \rho\left(z, z_{n}\right)<r_{n}\right\}$. The details of [3, Theorem 1] show that f converges uniformly to a constant as $|z| \rightarrow 1$ in $\mathscr{D}(\delta, K)$. Thus f is of the second kind.

If E is a subset of C which is residual but of measure 0 on C, there exists a Tsuji function g of bounded characteristic such that $E \subset J(g)$ [3, Theorem 3]. Thus $J(g)$ is residual and of measure 0 on C. And there exists a Tsuji function h for which $J(h)$ is of measure 2π but of first category on C [2, pp. 199-200]. Both g and h are necessarily of the second kind.

References

[1] Barth, K., Asymptotic values of meromorphic functions, Mich. Math. J., 13 (1966), 321-340.
[2] Collingwood, E. F., A boundary theorem for Tsuji functions, Nagoya Math. J., 29 (1967), 197-200.
[3] and G. Piranian, Tsuji functions with segments of Julia, Math. Z., 84 (1964), 246-253.
[4] Gauthier, P., A criterion for normalcy, Nagoya Math. J., 32 (1968), 277-282.
[5] Hayman, W. K., The boundary behavior of Tsuji functions, Mich. Math. J., 15 (1968), 1-26.
[6] Lappan, P., Some sequential properties of normal and non-normal functions with applications to automorphic functions, Comm. Math. Univ. Sancti Pauli, 12 (1964), 41-57.
[7] Tse, K.-F., Some results on value distribution of meromorphic functions in the unit disk, Nagoya Math. J., 34 (1969), 105-119.

