
Y, Teranishi
Nagoya Math. J.
Vol. 99 (1985), 131-146

THE FUNCTIONAL EQUATION OF ZETA DISTRIBUTIONS

ASSOCIATED WITH PREHOMOGENEOUS

VECTOR SPACES (G, p, M(n, C))

YASUO TERANISHI

Introduction

Let (G, p, V) be a triple of a linear algebraic group G and a rational
representation /)ona finite dimensional vector space V, all defined over
the complex number field C.

We call the triple (G, p, V) a prehomogeneous vector space if G has
a Zariski-open orbit. Assume that the triple (G, p, V) is a prehomo-
geneous vector space. Then there exists a proper algebraic subset S of
V such that V — S is a single G-orbit. The algebraic set S is called the
singular set of (G, p, V). For a rational character of G, a non-zero
rational function P on V is called a relative invariant of (G, p, V) cor-
responding to % if

P(P(g)x) = X(g)P(x) (g e G, x e V).

Let Pu - , Pn be irreducible polynomials defining the components of
S with codimension 1. It is known that Pl9 , Pn are relative invariants
of (G, p, V) (cf. [1]). The set {Pl9 , Pn} is called a complete set of irre-
ducible relative invariants of (G, p, V).

The purpose of this paper is to give an explicit expression for the
Fourier transform of relative invariants on a certain class of prehomo-
geneous vector spaces.

NOTATION. We denote by Z, R and C the ring of integers, the rational
number field and the complex number field, respectively. For zeC, we
set e(z) = exp ^ ΓΛΓ^Z). We denote by M(n, C) (resp. M(n, R)) the com-
plex (resp. real) vector space consisting of all n by n matrices with entries
in C (resp. R). For any matrix x, ιx denotes the transposed matrix. For
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xeM(n, C), we set x* = ιχ-\ For a C°°-manifold X, C0~(X) denotes the

space of C°°-functions with compact support on X. We denote by Γ{z)

the usual Gamma function. We denote by Bn(C) (resp. Bn(R)) the sub-

group of the general linear group GL(n9 C) (resp. GL(n, R)) consisting of

all upper triangular matrices.

§ 1. Prehomogeneous vector space (G, β9 M(n, C))

1.1. Let G be a linear algebraic group, p: G->GL(n,C) a rational

representation of G both defined over C. We denote by G the direct

product group G X Bn(C). For any x e M(n9 C) and g = (g9 a) e G, set

p(g)x = p(g)xa~\ Then p is a rational representation of G. We denote

by p* the contragredient representation to p. It is known that the triple

(G, β9 M(n, C)) is a prehomogeneous vector space if and only if the triple

(G, p*9 M(n, C)) is a prehomogeneous vector space. In what follows we

assume that the triplet (G, £, M(n, C)) is a P.V. Let {Po, , Pk} be a com-

plete set of irreducible relative invariants of (G, p9 M(n9 C)) and X09 , Xk

characters of Po, , Pk9 respectively. Since det x is an irreducible relative

invariant of (G, p9 M(n9 C))9 we may set P0(x) = det x. Let P(x) be any

relative invariant polynomial of (G, ̂ , M(n, C)). For any Λ: 6 M(n9 C)), we

denote by xe the ^-th column vector of x. Then it is known that P(x) is

homogeneous with respect to each column vector xe (1 < £ < n). Denoting

by >ί̂  the homogeneous degree of P(x) with respect to xe

9 one can show

that Vs satisfy

λ, > λ2 > . > ^ , (cf. [6]).

Denoting by λ the /z-tuple ( 1̂? , λn)9 we call λ the partition corre-

sponding to the relative invariant polynomial P(x). Let Λ(0), , λ(k) be

partitions corresponding to Po, , Pfe, respectively. We set

P*(x) - P0(x) = det x, X* = χ0,

Pf(x) = P,(Λ:*)P 0(X)^^ and χ* = χ ^ χ ^ (1 < f < k).

Then one sees easily that Pf, , P * are relative invariants of (G, p*9

M(n9 C)) and satisfy

Pΐ(P*(g)x) = XKgY'PAx) (0<i<k).

Moreover the set {Po*, , P?} is a complete set of irreducible relative

invariants of (G, β*, M(n9 C)) (cf. [6]).
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We denote by XP(G) the group of all rational characters corresponding

to the relative invariants of (G, p, M(n, C)). It is known that the group

Xp{G) is a free abelian group of rank k + 1 generated by Xo, , Xk and

hence there exists k + 1-tuples (δ(X0\ , δ(Xk)) and (δ*(X0), , δ*(X)k) e Zk+1

such that

z = Π o « ( I ) < = Π / Γ < X Ϊ S (cf. [6]).

For any Z e ̂ ( G ) , we set

fc k
P ΓT p5(χ)i p * _ ΓT p*δ*(χ)f

δ(χ) = (5(χ)0, . . , 3(χ)fc) and d*(χ) = (δ(χ)0, , δ*(X)k) .

Let >ί(0), , λ{k) be partitions of Po, , Pfc, respectively. For any

s = (s0, , sk) e Ck+\ we write

Us) = Σ

and

Σ

Furthermore we set

r(s) = ft A^Xβ) + n - * + l)

and

r * ( s ) = f ] Γ(λf(s) + n - £ + l ) .

Then the "6-function" of (G, iδ, M(λi, C)) (resp. (G, ̂  M(n, C)) is given by

. bf(s) = ^ ) , (cf. [6]).
χ r*(s - a*(z» / v

For 5 = (s0, su , 5fc) e C*+1, we set

where sf = — ̂ 2(s) and sf = ŝ  (1 < ί < /?).

LEMMA 1. Notations being as above, one Λ^,

( i )

(ii)
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Proof. '•'•( i ) #(«*) = Σ S i ( ^ ) , - W - Σ

= - Σ «Λ»);

= - Λ(s)
( i i ) δ(X)* = (-Λ(δ(Z)), 3(Z),, , δ(X)k)

Then one sees immediately

δ*(x) = (t «(zy(0., - W<, , W.) Q E.D.

If ac is not contained in the singular set of (G, />, M(n, C)), it follows
from the definition of P*(x) that

(1) P*(x*) = Pz(x)-«.

For χ e XP(G), we set

d(X) = Σiδ(X)ifegPι and d*(χ) = Σ δ*(Z), deg Pf .

1.2. In the following, we assume that G is defined over R. Denoting
by GR the set of ^-rational points of G, we set

GR = Gχ Bn(R),

SR =

Furthermore we always assume the following conditions:
(A.I) GR is a connected subgroup of GL(n, R).
(A.2) the singular set S of (G, iδ, M(n, C)) is the union of irreducible

hypersurfaces of the form

S, - {x e M(n, i?); Pt(x) - 0} (0 < i < h),

where, for each /, Pi(x) is a C-irreducible polynomial with real coefficients.
(A.3) M(n, R) — SR is a single ^(G^-orbit.
We denote by GR the connected components of the identity and con-

ι icer the |δΛ(G52)-orbital decomposition of M(n, R) — SR

M(n,R)-SR= V.U U K .
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For ^(G^-orbit Vi9 we set

Vf = {xe M(n, R); x* e Vt).

Then one sees that the set M(n, R) — S% is decomposed into the disjoint

union of /^(G^-orbits

M(n, R) - S% = Vf U U V* .

For s = (s09 , sk) e Ck+1, we set

\P(x)\ = Π \PtU)\" > \P*(*)V - Π
ί0 i0

Π \ \ \()V Π I

ft= ft ιz<(*)i" - ιχ*(ί)i = π
ίQ ίι

=Q

§ 2. Fourier transforms of relative invariants

2.1. We denote by S(M(n, R)) the Schwartz space of the vector space

M{n, R). We consider the following integrals:

( 2 ) Φί{f,s)= ί f(x)\P(x)\sdx
JVi

and

( 3 ) Φf(f, s ) = [ f(x)\P*(x)\°dx ( l < ί < v )

where dx is the Euclidean measure on Vt. If Re (s)0 > 0, , Re (s)k > 0,

the above integrals Φt(f, s), Φf(f, s) are absolutely convergent.

For 1 e XO(G), we set

ε , 0 0 - s g n P χ | F ί and εf(X) = sgnP* | F ί (1 < i < v).

By (1), one has ε^X) = εf (Z), (1 < i < v). We also set, for s = (s0, , st)

d(s) = Σ se deg Pe, d*(β) = Σ s, deg P *
£=0 £=0

k \ / Y
- ΣJ st0* ~ ei(%e)) ) 9 s*(s) = β( — Σ 5 / l ~ ει*(

t=o / \ 4

Then, one can easily check:

d(χ) = d(δ(X)), d*(χ) = d*(3*(χ)),
e<(*) - e4(3(χ)) , εf(X) - ef(3*(χ)) ,
d(s) = — d*(s*) and
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We set

^i(f,s) and Ft(f, s) = -Λ^Φf(f, s).

Denoting by f the Fourier transform of /, one can easily prove the fol-
lowing

LEMMA 2. // Re (s0), , Re (sk) are sufficiently large, one has

( i ) for any X e XP(G), such that δ*(X)0, , δ*(X)k > 0,

?, 8) = (-2πΛf=ϊ)-™εtf)Ftf, s - δ(X))

and for any X e XP(G) such that δ(X)09 , δ(X)k > 0,

Ff(ίQ, s) = (2π/^ϊ)-d^εί(X)Ff(f9 s - 3*(χ))

(ii) for any X e XP(G) such that δ(X)09 , δ(X)k > 0,

F,(P^d)7, 5) = (^π^Λy^Mbzis + δixmCf, s + δ(X))

and for any X e Xβ(G) such that δ*(X)09 , δ*(X)k > 0,

Ff(PffeίdΓ/, 8) = (2πV^ϊrωεΐ(X)bf(s + δ*(X))Ft(f, 8 + 3*(χ)) .

(iii) /or αλiy Z e XP(G) such that δ*(X)0, , δ*(X)k > 0,

F,(Pχ*(grad)/, s) - e^X-lΓ^W, s - δ(X))

and for any X e XP(G) such that δ(X)09 , δ(X)k > 0,

Ff(Pχ(grad)/, s) - ε?(χ)(-l)^^Ff(/, s - 3*(χ)).

Let D be the domain in Cfc+1 defined by

D = {(s0, ••.,«*)€ Cfc+1; Re(s0) > 0, , Re(sΛ) > 0}.

Then one sees that s* is contained in D when s is contained in D. By
Lemma 2 (iii), one has, for any i (1 < i < P),

^(P0-(grad)/, s) = ε ^ ^ ί - l ) " - ^ / , s - mβ(χ0))

and

F*(P0-(grad)/, s) = et(XQ)m(-ΐ)»mFt(f, s - mδ*(X0))

if Re (s0), , Re (sk) are sufficiently large. Hence we can continue ana-
lytically Ft(f, s) and Ff(f, s) to holomorphic functions on D. Again, by
Lemma 2 (iii), one can easily show that the mapping / -> F^f, s) (resp.
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F*(f, s)) defines a tempered distribution on the vector space M(n, R) when

s is contained in D (cf. Proposition 1.3 in [3]). We call this tempered

distribution a zeta distribution associated with the prehomogeneous vector

space (G, p, M(n, C)).

Putting

and

Φ*(f, 8) = <(Φ*(f9 s), - . . , Φ y ( / , s ) ) ,

one has the following proposition.

PROPOSITION 1. The vector valued functions Φ(f, s) and Φ*(/, s) satisfy

a functional equation of the following form

Φ(f, s - nδ(X0)) = r(s - d(X0))C(s)Φ*(f, s*) ,

where s varies in the domain D and C(s) is a v X v matrix whose entries

Cij(s) are holomorphίc in D.

This proposition can be proved by the similar argument to Theorem

1.1 in [3]. For the sake of completement, we shall give a proof.

Proof of Proposition 1. For feS(M(n,R)), set g-f(x) = /(/δ*(^)~1 x)

G°R). Then one has g-f(x) = y^n(g)f(g~ιx) and hence it follow that

£, s - nX0) = \X0(g)\-n\WFi(f, s - nX0),

, 5*) - \Ug)\-n\**(g)\—Ft(f, 8*).

On the other hand, one can easily check that \X(g)\s = \%*(g)\~s*.

Then by a theorem of Bruhat (Theorem 3.1 in [7]), there exist holomorphic

functions Cί3(s) (1 < i, j < v) such that

Ft(f9 s - nX0) = r*(5*) ± Cυ(s)Ff(f9s*)
.7 = 1

for all fe Co(M(n, R) — S%). We denote by Ts a tempered distribution on

M(n, R) defined as

Ts(f) = Flf, s - Mo) - r*(s*) Σ C{j(s)Ff(f, s*) (s e D).
J = l

One can find a non-negative integer M such that the order of the tempered

distribution Ts does not exceed M for all s contained in the set Do —

{seD; -1 < Re s0 < 0}. If δ*(X)0, , δ*(X)k > M, it follows from Lemma
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1.3 in [3] that T.{P*f) = 0 ( s e ΰ , - 1 < s0 < 0 and fe C;(M{n, R)). Take

a X 6 XP(G) such that δ*(X\, , δ*(X)k > 0. From Lemma 2, it follows that,

for every fe C»(M(n, R) - SR),

f, s - nXa)

= (-2,r/=I)-'*<»e<(z) £ Cti(a - δ(X))Y*((s - δ(X)y)F*(f*, (s - δ(X))*)

and

FtiP^f, s - nX0) = Σ C^εfWΠs* + δ*(X))Ff(f*, s* + δ*(X)) .

Hence, by using the relation (s — δ(X))* = s* + <5*(Z), one obtains

Ctj(s) = (-2πV=I)-Λt<»εfi0ef(X)CtJ<fl - δ(X)) .

Therefore, for any fe C»(M(n, R)) and δ*(X\, ••-, δ*(X)k ^ M, one has

Ts(Pff) = (-2^/^I)-<«e i(Z)71

s_S ( Z )(/).

This implies that, for any s e Do,

Ts.HI)(f) = 0 (fe C0-(Λf), δ*(X\, -.., δ*(X)k > M ) .

Since Ts is a tempered distribution and Ts(f) is a holomorphic func-

tion of s in D, we can conclude iTs(/) = 0 (s e D, f e S(M(n, R)) which

proves our proposition.

Remark. It is known that the integrals Φx(f, s), , Φv(f, s), Φf(f, s), ,

Φ*(/, s) have analytic continuation to meromorphic functions of s in C fc+1

(cf. [3], [5]) and hence Proposition 1 holds in Cfc+1.

We denote by ε(s) the y by y matrix whose entries are given by

s)ε?(s*), 1 < ί, j<v.

Then it is easy to verify the following relation, for any X e XP(G)R,

εtJ(8) = (-2^^ΛΓI)--(z)e<(χ)e*(χ)fi<i(s - δ(X)) .

We set ttj(s) = Cijφεtjis)-1 (1 < i, j < v). Then one sees

U,(8) = Ufa - δ(X)) (XeXp(GR)).

2.2. In this paragraph, we shall give an explicit expression for the

functions tί:j(s). We denote by D the group consisting of n by n diagonal

matrices whose diagonal entries are 1 or —1. For two subsets A and B
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of GL(n, R), we write A -% B if there exists a matrix g in D such that A —
Bg. We set, for any integer i (1 < i < v),

and

where

Kt = {ke SO(n, R); *a e B°n(R) such that k-ae V&]

Kf = {ke SO(n, R);*ae B°n(R) such that k-a* e Vfe,},

€, =
1,

From (A.3), it follows that V^ Vs (1 < i, j < v). On the other hand,
the Iwasawa decomposition for the group GL(n, R)Q shows that, for any

i (1 < i < »),

(4 ) V, = KrBn(R)0 ei9

(5 ) Vf = Kf Bn(R)°_ e%,

where Bn(R)_ stands for the subgroup of GL(n, R) consisting of lower
triangular matrices. Since the mapping x-+x* gives a one-to-one corre-
spondence between Vt and Vf, one has Kt ~ Kf (1 < i < v).

Using the Iwasawa decomposition

(xiά) = g.(ttj), ((Xij) € GL(n, R)\ (ti3) e Bn(R)\ g e SO(n, R)),

we normalize a Haar measure dg on SO(n, R) by setting

n

Π dxi} = Π ^ r ί Π dtij dg.

Then, one has

f \P(g)\Bdg = \ JP*(g)\'dg, (l<ίj<v).
jKi JKΪ

Let f(s) be a function on Cfc+1. For a character XeXp(G), we set:

( 6 ) <Ti00f(s) = £iQ0f(s + δ(X)), (1 < i < y).

We also set

Et(s) - (-2)»(2^)n<»-1)/2e(-^W-s) ft sin~
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We set

PROPOSITION 2. Assume that, for all p,q(pφ q), ε* φ e*. Then t^is)
is given by

*«/«> = (^-T^n-s*) π a + ff/z^(s)).
\ 2 / =̂o

Proo/. Let / be a function on the vector space M(n, R) defined by
f(x) = exp(—τr(x, x)). Then / = /. We make change of variables (4) and
(5). Then, using an well known formula:

2 V 2 / Jo

one has

Φi(f,8) = ί \P(g)\'dg.\ exp(-^Σ^) f[ tr)+n~e Π

and

<W, «*) = f # l^*(ί)r ί exp (-7Γ Σ fl) Π ί ί ^ ^ - 1 Π
JϋΓ| Jθ<ί/<oo \ ^ = 1 / / = 1 / = 1

Thus, from Proposition 1, one obtains

fΓ(
ΐ(s-nX0)Li V 2

= Σ ^(«)ίw(β) Π (-^^±
i = i t=\ \ 2

Using well known formulas of Γ-function:

Γ(z)Γ(l -z) = -Jϊ—
sm πz

and

we can rewrite (7) as
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( 8) Σ βi/β /̂β) = (-2Π2π)-^^-» ft sinπ(λ e ( s )~e) , (1 < ί < u).

Hence one has

E^s) = £ εf(a*)tu(s).

From (6), it follows that

( 9 ) o^DEls) = εf(X) £ e*((s + δ(X))*) tu(s)

Putting Lj(X) = {£; εj(ϊ) = εf(X).}, one can rewrite (9) as

1 ( 1 + σfiO)Et(8) = Σ ef(s*)ί«(β).
2 iSL()

Then, by our assumption of Proposition 2, one obtains

/1 y + i ̂  ( 1 + ^ ( ^ ^ ( s ) ^ e*(8*)ί (8),
\ 2 / =̂o

which proves our assertion.

By Proposition 1 and Proposition 2, we have the following theorem.

THEOREM 1. Assume that, for all p, q (p Φ q, 1 < p, q < v), ε* Φ e*

Then the tempered distributions Φtf, s), - - , Φv(f, s), Φf(f,s), , Φ*(f, s)

defined by (2) and (3) satisfy a system of functional equations of the follow-

ing form.

Φ(f, s - nδ(X0)) = r(s - nδ(W)C(8)Φ*(f, s*)),

where C(s) is the v by v matrix whose entries are given by

Cυ(s) = ( - 2 ) » ( i

( 1 0 ) X Π (1 + ̂ ( Z r ) ) β ( - - ^ ) β 4 ( - β) Π s i n | - α (
r = 0 \ 4 / / = 1 2

(1 < i, j<n).
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§ 3. Examples

Let G be a connected semi-simple linear algebraic group and p an n-

dimensional irreducible representation both defined over C. Assume that

the triple (G, p, M(n, C)) is a prehomogeneous vector space. Then the

group G must be one of the following subgroups of SL(n, C) and p the

identity representation of G;

G = SL(n, C), SO(n, C) or Sp(m, C) witrc n = 2m , (cf. [6]),

Case 1. (cf. [2], [6]) G = SL(n, C).

In this case, {det x} is a complete set of irreducible relative invariants

and the 6-function is given by

γ(s) = Γ(s + n) - Γ(s + 1), s e C.

Since the singular set is given by

S = S* = {x e Λf(n, C), det x - 0}.

We have the orbit decomposition

M(n,R)-SR= ^UV,,

where

VΊ = {x e M(/2, i?), det x > 0} and V2 = {xe M(n, R), det x < 0}.

Then one has

Ctj(s) = 2-1(2ττ)w ( w-1 ) / 2-W 5

(11) . -{Π cos^(s-β + ί) + (V^ϊn-l)ί+j Π sin^-(s-^ +
ϋ=i 2 4=i 2

(1 < i, j < 2).

By Theorem 1, one has a system of functional equations.

PROPOTISON 3. The zeta distributions for G = SL(7Z, C) have the follow-

ing system of functional equations:

Φtif, s - ή) = Γ(s)Γ(s - 1) Γ(s - n + 1) Σ 0^)00, -s),

where Cί<7(s) is given by (11), (i = 1, 2).

Case 2. G - SO(#ι, C).

For x e M(n, i?), we denote by xι the i-th column vector of x. Put
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P0(x) = det x

and

Pt(x) = det

'(x\xι)9

(1 < i < n - 1),

where (x3, xk) denotes the usual inner product,

(i.e. (^**) = έ*ί*;)..
Then {Po, - - -, Pn_1} is a complete set of irreducible relative invariants of

this prehomogeneous vector space, and the singular set S is given by

s= us,,
S, = {x e Λf(τι, 2?); P,(x) - 0} (0 < i < n - 1).

The orbit decomposition of M(n, R) — SR is given by

where

1 = {xe M(n, R) - SR; det x > 0}

and

V2 = {xe M(n, R) - SR; det x < 0}.

For s = (s0, su , sw_j) € Cn, one sees

= ns0

and

Thus one has:

λe(s) =

εt(8) =

< ^ < n),

(i = 1, 2 ) .

(12)

cos Ξ-(
2

+ ( - I)**3 (^=\Y f[ sin -^α(s) - i + 1)), (1 < i, j < 2).

From Theorem 1, we obtain the following proposition.
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PROPOSITION 4. The zeta distributions for G = SO(n, C) have the fol-

lowing system of functional equation: for ί = 1, 2,

Φtf, s - nδ(X0)) = f[ Γ(so + t 2msm - i + l ) Σ Ci3(s)Φ,{f, β*),
£=l \ m = £ } y = l

where Cί%/(s) is given by (12) ατid

( n \

- « 0 — Σ 2 m S m , S 2 , , S n _ 1 ) .
m = l /

Case 3. G = Sp(m, C), (n = 2m).
Denoting by [x, y] the skew symmetric bilinear form on Cn X Cn defined

as
m

[χ> y] = Σ fay'i — x'iJi)

with x = '(xj, xί, , xm, O and y = '( ^, yί, , ym, y^), we set

P0(x) - det x

and, for i = 1, 2, , m — 1,

•[x\ x1],

P,(x) - Pff

where Pff denotes the Pfaffian.

Then {Po, •• ,Pm_i} is a complete set of the irreducible relative in-

variants of this prehomogeneous vector space, and the orbit decompositions

are given as follows:

M(n, R) - SR - U Vt and M(n, R) - S* =' \J V* ,

where I denotes a set consisting of all m-tuples (/0, , ίm_1) with each is

is equal to 1 or —1, and V* is described as

V, = {xe M(n, R) - SR; sgnPe = ie}, (0 < ^ < m).

In this case, one has:

m - l

rf(s) — 2m50

^(s) = 50 +
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ΐ(s) = Π Γ(s0 4
£ = 1

εί(s) = e(±-VΣϊ
\ 4 ̂ =o

Thus one has

X β ( - ^

σj(Xr))

- β) ft sin -l (s0 +
4i 2

From Theorem 1, we obtain the following proposition.

PROPOSITION 5. The zeta distributions for G = Sp(m, C) have the fol-

lowing system of functional equations,

, s - nd(X0)) =

Now, we shall give an example such that G is not reductive. Let

G be a subgroup of SL(n, C) consisting of all lower triangular matrices

whose diagonal entries are all equal to 1 and p a representation of G

defined by

&g)x = g'X, x e M(n, C).

Then the triplet (G, p, M(n, C)) is a prehomogeneous vector space.

For x = (xβj9) e M(n, C), we set

P0(x) = det x

and

= det

_ xiu , xu _

(1 < i < n - 1).

One sees that {Po, , Pn_J is a complete set of irreducible relative

invariants of this space and the orbit decomposition is given by

M(n, R)-SB = \JVι

where / denotes the set of all ^-tuples (i0, , ίn_i) with ίe = l or —1, and

Vt = {xe M(n, R) - SR; sgn Pt = it9 0 < £ < n - 1}.
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In this case, one has

d(s) = ns0 + 2 is,

λt{s) = s0 + Σ s,, (1 < ί <
i>£

and

Thus, one obtains

(13) Cυ(s) = (- m2π)^-^-d^^y

X ft (1 + σχχ r))e(--!^-W- s) ft sin|-(So + Σ ^ - ^).

By Theorem 1, we have the following proposition

PROPOSITION 6. The zeta distributions for this group have the follow-

ing system of functional equations, for any i e I

Φ,(Λ s - nd(X0)) - ft Γ(s0 + ΣSί + n- £ + l).Σ: Cf i(s)^(/, s*),
i=i %>e jei

where C^s) is given by (13).
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