TYPE II DEGENERATIONS OF K3 SURFACES

SHIGEYUKI KONDO

Introduction

A degeneration of $K 3$ surfaces (over the complex number field) is a proper holomorphic map $\pi: X \rightarrow \Delta$ from a three dimensional complex manifold to a disc, such that, for $t \neq 0$, the fibres $X_{t}=\pi^{-1}(t)$ are smooth $K 3$ surfaces (i.e. surfaces X_{t} with trivial canonical class $K_{X_{t}}=0$ and $\operatorname{dim} H^{1}\left(X_{t}, \mathcal{O}_{X_{t}}\right)$ $=0$).

Recently, Kulikov [7], Persson and Pinkham [12] have classified the semi-stable degenerations of $K 3$ surfaces into three types and Friedman [2], [3] has studied the local moduli problem for D-semi-stable $K 3$ surfaces. On the other hand, Piatetskii-Shapiro and Shafarevich [13], Burns and Rapoport [1] proved the Torelli theorem for Kaehler K3 surfaces. One of the next steps for the study of the moduli problem for $K 3$ surfaces is to extend the theory of the period of smooth $K 3$ surfaces to the degenerate case.

From the point of view of the moduli problem, the following surfaces are fundamental (see (1.6)): A stable K3 surface of type II is a surface $X=X_{1} \cup X_{2}$ with normal crossings such that; (i) X_{i} is a smooth rational surface ($i=1,2$) and $E=X_{1} \cap X_{2}$ is a smooth elliptic curve, (ii) the dualizing sheaf ω_{X} on X is trivial, (iii) the line bundle $N_{E / X_{1}} \otimes N_{E / X_{2}}$ over E is trivial, where $N_{E / X_{i}}$ is the normal bundle of E in $X_{i}(i=1,2)$.

In this paper we define the periods of stable $K 3$ surfaces of type II and prove the Torelli theorem for them. Let $X=X_{1} \cup X_{2}$ be a stable $K 3$ surface of type II. Then the component X_{i} is not always minimal and there happens a birational modification between the stable $K 3$ surfaces of type II, which is called a modification of type I in [7]. Let $L(X)$ denote the lattice $\left\{\left(x_{1}, x_{2}\right) \in H^{2}\left(X_{1} ; Z\right) \oplus H^{2}\left(X_{2} ; Z\right) ;\left(x_{1},\left[E_{1}\right]\right)_{X_{1}}=\left(x_{2},\left[E_{2}\right]\right)_{X_{2}}\right\} / Z\left(\left[E_{1}\right]-\right.$ $\left.\left[E_{2}\right]\right)$, where $\left[E_{i}\right]\left(\in H^{2}\left(X_{i} ; Z\right)\right)$ is the cohomology class of the double curve $E=X_{1} \cap X_{2}$. Then $L(X)$ is an even unimodular lattice of signature (1,17).

We define the period of the stable $K 3$ surface X by a homomorphism $\omega_{X}: L(X) \rightarrow J(E):=$ Jacobian variety of E (see (2.8)). The idea of our definition is due to Y. Namikawa [11].

Roughly speaking, our main result is as follows: let X and X^{\prime} be two stable $K 3$ surfaces of type II with the "same" period. Then there is a bimeromorphic map $X \longrightarrow X^{\prime}$ which is a composite of modifications of type I (see (2.14)).

The plan of this paper is as follows: in Section 1 we collect the known facts about the semi-stable degenerations of $K 3$ surfaces, in Section 2 we state our main results (Theorems (2.14), (2.15)), and Section 3 is devoted to their proofs.

I would like to express my thanks to Professor Yukihiko Namikawa whose insight and encouragement are invaluable.

$\S 1$. Semi-stable degenerations of $K 3$ surfaces

(1.1) A semi-stable degeneration of surfaces (resp. K3 surfaces) is a proper holomorphic map $\pi: X \rightarrow \Delta$ from a three dimensional complex manifold to a disc such that: (i) the fibres $X_{t}=\pi^{-1}(t)$ are smooth surfaces (resp. smooth $K 3$ surfaces) for $t \neq 0$; (ii) the central fibre $X_{0}=\pi^{-1}(0)$ is a divisor with normal crossings; (iii) all components of X_{0} have multiplicity one in the fibre.

If a degeneration of surfaces is projective, it becomes bimeromorphic to a semi-stable one after a base change ([5]).
(1.2) Let $\pi: X \rightarrow \Delta$ be a semi-stable degeneration of surfaces. The dual graph of $X_{0}=\pi^{-1}(0)$ is the following simplicial complex: (i) The set of vertices is the set of irreducible components of X_{0}; (ii) The set of edges is the set of components of double curves of X_{0}; (iii) The set of faces is the set of triple points of X_{0}.
(1.3) A degeneration of surfaces $\pi: X \rightarrow \Delta$ is weakly Kaehler if there exists a bimeromorphic map $\phi: X \longrightarrow X^{\prime}$ such that ϕ is biholomorphic on $X-\pi^{-1}(0)$, the diagram

is commutative and such that X^{\prime} is a Kaehler manifold.

In the study of the degenerations of $K 3$ surfaces, the following results are essential.
(1.4) Theorem (Kulikov [7], Persson and Pinkham [12]). Let $\pi: X \rightarrow \Delta$ be a degeneration of $K 3$ surfaces. If all components of the central fibre $X_{0}=\pi^{-1}(0)$ are algebraic, then X is bimeromorphic to a semi-stable degeneration $\pi^{\prime}: X^{\prime} \rightarrow \Delta$ with $K_{X^{\prime}} \equiv \mathcal{O}_{X^{\prime}}$, where $K_{X^{\prime}}$ is the canonical line bundle of X^{\prime}.
(1.5) Theorem (Kulikov [7]). Let $\pi: X \rightarrow \Delta$ be a weakly Kaehler, semistable degeneration of $K 3$ surfaces with $K_{X} \equiv \mathcal{O}_{X}$. Then $X_{0}=\pi^{-1}(0)$ is one of the following three types:
(Type I) X_{0} is a smooth K3 surface;
(Type II) $X_{0}=V_{1}+V_{2}+\cdots+V_{n-1}+V_{n}$, where V_{1} and V_{n} are rational surfaces, V_{2}, \cdots, V_{n-1} are elliptic ruled surfaces and $V_{i} \cap V_{i+1}, i=1, \cdots, n-1$, are smooth elliptic curves. The dual graph of X_{0} is as follows:

(Type III) $X_{0}=V_{1}+\cdots+V_{n}$, where all V_{i} 's are rational surfaces and the double curves $V_{i} \cap V_{j}$ on V_{j} are smooth rational curves forming a cycle. The dual graph of X_{0} is a triangulation of 2 -sphere S^{2}.
(1.6) Remark. In this paper we study the type II degenerations in the above Theorem (1.5). Among them, the type II degenerations without the elliptic ruled components are fundamental in the following sense: let $\pi: X \rightarrow \Delta$ be as in Theorem (1.5). Suppose the central fibre $X_{0}=V_{1}+V_{2}$ $+\cdots+V_{n-1}+V_{n}$ is of type II. By performing some birational modifications, we can assume that the elliptic ruled components V_{2}, \cdots, V_{n-1} are minimal. Then we can contract V_{2}, \cdots, V_{n-1} along the rulings for which the double curves are sections (cf. [2], [4]). This produces a new threefold X^{\prime} mapping to Δ, and X^{\prime} has a curve of A_{n-2} surface singularities. Moreover the new central fibre X_{0}^{\prime} is a surface of typa II without the elliptic ruled components. This is similar to the case of degenerations of elliptic curves of type I_{b} ([6], p. 604).
(1.7) Lemma. Let $\pi: X \rightarrow \Delta$ be as in Theorem (1.5). Suppose X_{0} is of type II and without the elliptic ruled component: i.e. $X_{0}=X_{1} \cup X_{2}$, where
X_{i} is a rational surface $(i=1,2)$ and $E=X_{1} \cap X_{2}$ is a smooth elliptic curve. Then
(i) $E \in\left|-K_{X_{i}}\right|(i=1,2)$;
(ii) $N_{E / X_{1}} \otimes N_{E / X_{2}} \cong \mathcal{O}_{E}$;
(iii) $\left(E^{2}\right)_{X_{1}}+\left(E^{2}\right)_{X_{2}}=0$.

Proof. By the adjunction formula and $\mathcal{O}_{X}\left(X_{0}\right)=\mathcal{O}_{X}$, we have $K_{X_{1}}=$ $\left.\left[K_{X}+X_{1}\right]\right|_{X_{1}}=\left.\left[X_{1}\right]\right|_{X_{1}}=-\left.\left[X_{2}\right]\right|_{X_{1}}$. Hence $E \in\left|-K_{X_{1}}\right|$. Since $N_{E / X_{1}}=\left.\mathcal{O}_{X}\left(X_{2}\right)\right|_{E}$ and $N_{E / X_{2}}=\left.\mathcal{O}_{X}\left(X_{1}\right)\right|_{E}$,

$$
N_{E / X_{1}} \otimes N_{E / X_{2}}=\left.\left.\mathcal{O}_{X}\left(X_{1}\right)\right|_{E} \otimes \mathcal{O}_{X}\left(X_{2}\right)\right|_{E}=\left.\mathcal{O}_{X}\left(X_{0}\right)\right|_{E}=\mathcal{O}_{E}
$$

Now the statement (iii) is obvious.
(1.8) Definition. A stable K3 surface of type II (resp. a quasi-stable K3 surface of type II) is a surface $X=X_{1} \cup X_{2}$ with normal crossings such that X_{i} is a smooth rational surface, $E=X_{1} \cap X_{2}$ is a smooth elliptic curve and satisfies the following conditions: (i) $E \in\left|-K_{X_{i}}\right|(i=1,2)$; (ii) $N_{E / X_{1}} \otimes$ $N_{E / X_{2}} \cong \mathcal{O}_{E}$ (resp. (i) $E \in\left|-K_{x_{i}}\right|(i=1,2)$; (ii') degree ($N_{E / X_{1}} \otimes N_{E / X_{2}}$) $=0$).
(1.9) Remark. More generally, Friedman ([2], [3]) has defined the D -semi-stable $K 3$ surfaces (cf. [3], (5.5)). We remark here that a quasi-stable $K 3$ surface of type II is D-semi-stable if and only if it satisfies the condition (ii) in (1.8) (i.e. stable).

Every stable $K 3$ surface of type II is obviously quasi-stable. In Sections 2 and 3, we shall treat a quasi-stable $K 3$ surface of type II rather than a stable one. The following result states that every stable $K 3$ surface of type II is nothing but a degenerate fibre of a semi-stable degeneration of $K 3$ surfaces.
(1.10) Theorem (Friedman [2], [3]). Let X be a stable K3 surface of type II. Then the Kuranishi space of X looks like $V_{1} \cup V_{2}$, here
(1) V_{1}, V_{2} are smooth and meet transversally;
(2) $\operatorname{dim} V_{1}=\operatorname{dim} H^{1}\left(X, \theta_{X}\right)=20, \operatorname{dim} V_{2}=20$ and $\operatorname{dim}\left(V_{1} \cap V_{2}\right)=19$, where θ_{X} is a sheaf of derivations of \mathcal{O}_{X};
(3) V_{1} is a space corresponding to the topologically trivial deformations;
(4) Let X_{t} be a surface corresponding to a point $t \in V_{1} \cup V_{2}$. Then
(i) X_{t} is a smooth $K 3$ surface if $t \in V_{2}-V_{1}$.
(ii) X_{t} is a quasi-stable K3 surface of type II if $t \in V_{1}$,
(iii) X_{t} is a stable K3 surface of type II if and only if $t \in V_{1} \cap V_{2}$.
(1.11) Remark. In [2], [3], Friedman has showed the similar results for every D-semi-stable $K 3$ surface.
(1.12) A modification of type I is a birational modification of a stable $K 3$ surface as follows: Let $X=X_{1} \cup X_{2}$ be a stable $K 3$ surface of type II, $E=X_{1} \cap X_{2}$ the double curve and C an exceptional curve of the first kind on X_{1}. Note that C intersects at exactly one point with E (see (1.13)). By (1.10) we regard X as a cental fibre of a semi-stable degeneration of $K 3$ surfaces. Then C can be moved to the adjacent component X_{2};

For quasi-stable $K 3$ surfaces, the modification of type I is defined as follows: on X_{1}, contracting C to a point, and on X_{2}, blowing up at $p=$ $E \cap C$.

We close this section with two lemmas for quasi-stable $K 3$ surfaces.
(1.13) Lemma. Let S be a component of a quasi-stable K3 surface of type II and C an irreducible curve on S with $E \neq C$ and $\left(C^{2}\right)_{s}<0$. Then C is a smooth rational curve such that either
(1) $\left(C^{2}\right)_{s}=-1,(C, E)_{s}=1$, or
(2) $\left(C^{2}\right)_{s}=-2,(C, E)_{s}=0$,
where $E \in\left|-K_{s}\right|$ is the double curve.
Proof. By $E \in\left|-K_{s}\right|$, the arithmetic genus of C can be computed as follows: $2 p_{a}(C)-2=\left(C^{2}\right)_{s}-(C, E)_{s}$. The lemma (1.13) can be easily deduced from this formula.
(1.14) Lemma. Let $X=X_{1} \cup X_{2}$ be a quasi-stable K3 surface of type II. Then the possible types for the relatively minimal model of X_{i} are as follows: (a) \boldsymbol{P}^{2}, or (b) $\boldsymbol{F}_{n}, n=0,2$.

Proof. Let E be the double curve of X. Let \bar{X}_{i} be a relatively minimal model of $X_{i}(i=1,2)$. By the classification of surfaces, \bar{X}_{i} is either \boldsymbol{P}^{2} or $\boldsymbol{F}_{n}, n \geqq 0, n \neq 1$. We note that \bar{X}_{i} has an anti-canonical divisor
which is a smooth elliptic curve. If $\bar{X}_{i} \cong F_{n}$, then $-K_{F_{n}}=2 s_{n}+(n+2) R$, where R is a fibre and s_{n} is the section with $\left(s_{n}^{2}\right)=-n$. By the above remark, we have

$$
0 \leqq\left(-K_{F_{n}}, s_{n}\right)=-2 n+n+2=2-n, \quad \text { and } \quad n \leqq 2
$$

Hence we have proved (1.14).
(1.15) Remark. In the following sections, we assume that the selfintersection number $\left(E^{2}\right)_{X_{i}}$ is equal to zero, $i=1,2$ (see (2.4)). In this case, by (1.14), we can choose P^{2} as a relatively minimal model of X_{i} ($i=1,2$).

§ 2. Periods of stable K3 surfaces and Torelli theorem

In this section, we define the period of (quasi-) stable $K 3$ surfaces and we state the Torelli theorem. Our statement may be regarded as a degenerate case of the Torelli theorem for Kaehler K3 surfaces ([1]). In the following, we shall deal with quasi-stable $K 3$ surfaces of type II. For stable $K 3$ surfaces of type II, theorems (2.14), (2.15) are also true with some modifications of the period domain (see Remark (2.9), (ii)). For simplicity, we say a quasi-stable $K 3$ surface for a quasi-stable $K 3$ surface of type II.
(2.1) Let $X=X_{1} \cup X_{2}$ be a quasi-stable $K 3$ surface with the double curve E. The Mayer-Vietoris cohomology exact sequence is as follows:

$$
\begin{aligned}
& 0 \longrightarrow H^{1}(E ; \boldsymbol{Z}) \longrightarrow H^{2}(X ; \boldsymbol{Z}) \longrightarrow H^{2}\left(X_{1} ; \boldsymbol{Z}\right) \oplus H^{2}\left(X_{2} ; \boldsymbol{Z}\right) \\
& \longrightarrow H^{2}(E ; \boldsymbol{Z}) \longrightarrow 0 .
\end{aligned}
$$

Put ${ }^{0} W_{2}(X):=H^{2}(X ; \boldsymbol{Z}),{ }^{0} W_{1}(X):=H^{1}(E ; \boldsymbol{Z})$, and we let ${ }^{0} L(X)$ denote the quotient module ${ }^{0} W_{2}(X) /{ }^{0} W_{1}(X)$. Then

$$
{ }^{0} L(X) \cong \operatorname{Ker}\left\{H^{2}\left(X_{1} ; \boldsymbol{Z}\right) \oplus H^{2}\left(X_{2} ; \boldsymbol{Z}\right) \longrightarrow H^{2}(E ; \boldsymbol{Z})\right\}
$$

Under this isomorphism, we always regard an element of ${ }^{0} L(X)$ as a class in $H^{2}\left(X_{1} ; Z\right) \oplus H^{2}\left(X_{2} ; \boldsymbol{Z}\right)$. Let D_{i} be a divisor on X_{i} and denote by [D_{i}] the cohomology class of D_{i}. If an element $\left(\alpha_{1}, \alpha_{2}\right) \in^{0} L(X)$ such that α_{i} is represented by $\left[D_{i}\right]$, we often denote $\left(\alpha_{1}, \alpha_{2}\right)$ by $\left[D_{1}\right]+\left[D_{2}\right]$. Let E_{i} be the double curve on $X_{i}(i=1,2)$, then $\left[E_{1}\right]-\left[E_{2}\right]$ is contained in ${ }^{\circ} L(X)$ for $\left(E_{1}^{2}\right)_{X_{1}}+\left(E_{2}^{2}\right)_{X_{2}}=0$.

A lattice H is a free abelian group of finite rank endowed with a
integral quadratic form. The group $H^{2}\left(X_{1} ; Z\right) \oplus H^{2}\left(X_{2} ; Z\right)$ admits a canonical structure of a lattice induced from the cup product. Note that ${ }^{0} L(X)$ inherits a lattice structure from that of $H^{2}\left(X_{1} ; Z\right) \oplus H^{2}\left(X_{2} ; Z\right)$. We denote its bilinear form by \langle,$\rangle .$
(2.2) Remark. ${ }^{0} W_{2}(X),{ }^{0} W_{1}(X)$ are the weight filtrations of the mixed Hodge structure on X ([7], p. 960).

In our study, the problem is how to interpret the modifications of type I in the language of cohomology groups. The following lemma will be needed.
(2.3) Lemma ([2]). Let $X=X_{1} \cup X_{2}$ be a quasi-stable $K 3$ surface with the double curve E and let C be an exceptional curve of the first kind on X_{1}. Let $X^{\prime}=X_{1}^{\prime} \cup X_{2}^{\prime}$ be the quasi-stable K3 surface with the double curve E^{\prime} obtained by the modification of type I along C. We denote this modification by ϕ_{c}. Then

$$
N_{E / / X_{\mathbf{1}}^{\prime}} \otimes N_{E / / X_{2}^{\prime}} \cong N_{E / X_{1}} \otimes N_{E / X_{2}}
$$

and ϕ_{C} induces a lattice isometry

$$
\phi_{C}^{*}:{ }^{0} L\left(X^{\prime}\right) \longrightarrow{ }^{0} L(X) .
$$

Proof. The first statement follows easily from definition. Let C^{\prime} be the exceptional curve on X_{2}^{\prime} created by ϕ_{c}. Denote by

$$
\pi_{1}: X_{1} \longrightarrow X_{1}^{\prime} \quad\left(\text { resp. } \pi_{2}: X_{2}^{\prime} \longrightarrow X_{2}\right)
$$

the blowing up at $p^{\prime}=E^{\prime} \cap C^{\prime}$ (resp. $p=E \cap C$). For $\left(\left[D_{1}^{\prime}\right],\left[D_{2}^{\prime}\right]\right) \in{ }^{0} L\left(X^{\prime}\right)$ such that $\left(D_{2}^{\prime}, C^{\prime}\right)_{X_{0}^{\prime}}=r$, we define ϕ_{C}^{*} by

$$
\phi_{C}^{*}\left(\left(\left[D_{1}^{\prime}\right],\left[D_{2}^{\prime}\right]\right)\right)=\left(\pi_{1}^{*}\left(\left[D_{1}^{\prime}\right]\right)+[r C],\left[\left(\pi_{2}\right)_{*} D_{2}^{\prime}\right]\right)
$$

Then we can easily check that $\phi_{c}^{*}\left(\left[D_{1}^{\prime}\right]+\left[D_{2}^{\prime}\right]\right)$ is contained in ${ }^{\circ} L(X)$ and ϕ_{c}^{*} is isometric. We leave the proof to the reader.
(2.4) Assumption. From now on, we assume that the self-intersection number $\left(E_{i}^{2}\right)_{X_{i}}$ is equal to zero ($i=1,2$). Since $\left(E_{1}^{2}\right)_{X_{1}}+\left(E_{2}^{2}\right)_{X_{2}}=0$, every quasi-stable $K 3$ surface satisfies this assumption, after performing some modifications of type I.
(2.5) Definition. We keep the notation of (2.1). Let $\pi_{i}: X_{i} \rightarrow \bar{X}_{i}$ be a relatively minimal model ($i=1,2$). Here we choose $\bar{X}_{i} \cong P^{2}$ (see (1.15)). By the assumption (2.4), $\pi_{i}: X_{i} \rightarrow \boldsymbol{P}^{2}$ is the blowing up of \boldsymbol{P}^{2} at nine points
on a smooth elliptic curve. We denote the distinct exceptional curves of π_{i} (not necessarily irreducible) which meet E_{i} by $L_{i}^{1}, \cdots, L_{i}^{9}$. We suppose that they are indexed in such a way that $L_{i}^{k} \subset L_{i}^{k^{\prime}}$ implies that $k \geqq k^{\prime}$. Let H_{i} be the total transform of the line in $\bar{X}_{i}=P^{2}$ which passes through $\pi_{i}\left(L_{i}^{1}\right)$ and $\pi_{i}\left(L_{i}^{2}\right)$ (at least when $\pi_{i}\left(L_{i}^{1}\right) \neq \pi_{i}\left(L_{i}^{2}\right)$; otherwise take the tangent line of $\pi_{i}\left(E_{i}\right)$ at $\left.\pi_{i}\left(L_{i}^{1}\right)=\pi_{i}\left(L_{i}^{2}\right)\right)$. Note that the set $\left\{\left[H_{i}\right],\left[L_{i}^{1}\right], \cdots,\left[L_{i}^{9}\right]\right\}$ is a basis of $H^{2}\left(X_{i} ; Z\right)(i=1,2)$. Any indexed set of exceptional curves $\left\{L_{i}^{k}\right\}$ thus obtained will be called an exceptional-configuration of X. As L_{i}^{k} is the unique effective divisor within its cohomology class [L_{i}^{k}], we use the same terminology for the corresponding collection $\left\{\left[L_{i}^{k}\right]\right\}$.
(2.6) A basis of ${ }^{\circ} L(X)$ is given by $\left\{\left[E_{1}\right],\left[E_{2}\right],\left[L_{1}^{9}\right]+\left[L_{2}^{9}\right],\left[L_{i}^{k}\right]-\left[L_{i}^{k+1}\right]\right.$, $\left.\left[H_{i}\right]-\left[L_{i}^{1}\right]-\left[L_{i}^{2}\right]-\left[L_{i}^{3}\right] ; i=1,2, k=1, \cdots, 7\right\}$. We note that for all quasistable $K 3$ surfaces, their corresponding lattices ${ }^{\circ} L(X)$ are isometric each other. Let L (resp. F) be an abstract lattice which is isometric to ${ }^{\circ} L(X)$ (resp. ${ }^{0} W_{1}(X)$) for some reference quasi-stable $K 3$ surface X with the double curve E and let θ be a vector in L corresponding to $\left[E_{1}\right]-\left[E_{2}\right] \in{ }^{\circ} L(X)$.
(2.7) Definition. A marking of a quasi-stable $K 3$ surface X with the double curve E is a lattice isometry

$$
\alpha_{X}:{ }^{0} L(X) \oplus{ }^{0} W_{1}(X) \longrightarrow L \oplus F
$$

such that $\alpha_{X}\left({ }^{0} W_{1}(X)\right)=F$ and $\alpha_{X}\left(\left[E_{1}\right]-\left[E_{2}\right]\right)= \pm \theta$. We call the pair $\left(X, \alpha_{X}\right)$ a marked quasi-stable $K 3$ surface of type II.

Now we define the periods of quasi-stable $K 3$ surfaces. The idea of our definition is due to Y. Namikawa ([11]).
(2.8) Let X be a quasi-stable $K 3$ surface with the double curve E. Let $\underline{\omega}_{X}$ be the dualizing sheaf of X (i.e. let $f: \bar{X}=X_{1} \Perp X_{2} \rightarrow X$ be the normalization of X, with E_{i} being the smooth elliptic curve on X_{i} such that $f\left(E_{i}\right)=E(i=1,2)$. Then $\underline{\omega}_{X}$ is the sheaf of 2 -forms ω on \bar{X} holomorphic except for simple poles at $E_{i}(i=1,2)$ and with $\operatorname{Res}_{E_{1}} \omega+\operatorname{Res}_{E_{2}} \omega$ $=0$). By definition (1.8), there is a nowhere vanishing section ω_{X} of $H^{0}\left(X, \underline{\omega}_{X}\right)$. Consider the exact homology sequence of the pair $\left(X_{i}, X_{i}-E\right)$: $\cdots \rightarrow H_{3}(X ; Z) \rightarrow H_{3}\left(X_{i}, X_{i}-E ; Z\right) \xrightarrow{\partial} H_{2}\left(X_{i}-E ; Z\right) \rightarrow H_{2}\left(X_{i} ; Z\right) \rightarrow H_{2}\left(X_{i}\right.$, $\left.X_{i}-E ; Z\right) \rightarrow \cdots$. We identify $H_{k}\left(X_{i}, X_{i}-E ; Z\right)$ with $H^{4-k}(E ; Z)$ by the Lefschetz duality. The connecting morphism $\partial: H_{1}(E ; Z) \rightarrow H_{2}\left(X_{i}-E ; Z\right)$ is then dual to the residue homomorphism; in particular, for a cycle $\gamma \in$ $H_{1}(E ; Z)$ we have

$$
\int_{\partial_{r}} \omega_{X_{i}}=\int_{\gamma} \operatorname{Res}_{E} \omega_{X_{i}},
$$

where $\omega_{X_{i}} \in H^{0}\left(X_{i}, \Omega_{X_{i}}^{2}(E)\right)$ is a nowhere vanishing section induced from $\omega_{X}(i=1,2)$. Let $\{\alpha, \beta\}$ be a basis of $H_{1}(E ; Z)$. If necessary, changing α and β, we can normalize ω_{X} by the condition

$$
\int_{\alpha} \operatorname{Res}_{E} \omega_{X_{1}}=\tau, \operatorname{Im} \tau>0, \quad \text { and } \quad \int_{\beta} \operatorname{Res}_{E} \omega_{X_{1}}=1 .
$$

Now we regard ${ }^{0} L(X)$ as a subgroup of $\operatorname{Pic}\left(X_{1}\right) \oplus \operatorname{Pic}\left(X_{2}\right)$ under the canonical isomorphism $H^{\circ}\left(X_{i} ; Z\right) \cong \operatorname{Pic}\left(X_{i}\right), i=1,2$. Let ८ be a group homomorphism from $\operatorname{Pic}\left(X_{1}\right) \oplus \operatorname{Pic}\left(X_{2}\right)$ to $\operatorname{Pic}(E)$ defined as follows: for (α_{1}, α_{2}) $\in \operatorname{Pic}\left(X_{1}\right) \oplus \operatorname{Pic}\left(X_{1}\right)$,

$$
\iota\left(\left(\alpha_{1}, \alpha_{2}\right)\right)=j_{1}^{*} \alpha_{1} \otimes j_{2}^{*} \alpha_{2}^{-1}
$$

where j_{i} is an inclusion $E \subset X_{i}, i=1,2$. Then, by definition, $\iota\left({ }^{\circ} L(X)\right) \subset$ $\operatorname{Pic}^{0}(E)$ (= the group of divisors of degree zero on E). So we get a group homomorphism $\iota:{ }^{0} L(X) \rightarrow \operatorname{Pic}^{0}(E)$. On the other hand, we define an AbelJacobi isomorphism

$$
\xi: \operatorname{Pic}^{0}(E) \longrightarrow J(E):=C /\{\boldsymbol{Z}+\boldsymbol{Z} \tau\}
$$

by $\xi(\gamma)=\int_{\gamma} \operatorname{Res}_{E} \omega_{X_{1}}$ for $\gamma \in \operatorname{Pic}^{0}(E)$.
We define a group homomorphism $\omega_{X}:{ }^{\circ} L(X) \rightarrow J(E)$ by the composite of ι and $\xi ; \omega_{X}=\xi \circ$ ८. Since $\operatorname{Res}_{E} \omega_{X_{1}}+\operatorname{Res}_{E} \omega_{X_{2}}=0$, the above definition is independent of selecting the component X_{i} of X. Put $L^{*}:=\operatorname{Hom}(L, Z)$. Let H^{+}be the upper-half plane and $Z^{2 \times 19}$ a lattice in $L_{\widetilde{C}}^{*}:=L^{*} \otimes C$ which acts on $H^{+} \times L_{C}^{*}$ as follows: for $\left(\tau,\left(z_{j}\right)_{1 \leq j \leq 19}\right) \in H^{+} \times L_{C}^{*}$ and $\left(m_{j}^{1}, m_{j}^{2}\right)_{1 \leq j \leq 19} \in$ $Z^{2 \times 19}$,

$$
\left(m_{j}^{1}, m_{j}^{2}\right):\left(\tau,\left(z_{j}\right)_{j}\right) \longrightarrow\left(\tau,\left(z_{j}+m_{j}^{1} \cdot \tau+m_{j}^{2}\right)_{j}\right) .
$$

Let $\Omega:=\left\{H^{+} \times L_{C}^{*}\right\} / Z^{2 \times 19}$ denote the quotient space. Let $\left(X, \alpha_{X}\right)$ be a marked quasi-stable $K 3$ surface with the double curve E. Then the period of smooth elliptic curve E determines a point in H^{+}as usual; we denote it by $\alpha_{X}\left(\tau_{x}\right) \in H^{+}$. As mentioned above ω_{X} is now considered as a homomorphism from ${ }^{\circ} L(X)$ to \boldsymbol{C} modulo $\boldsymbol{Z}+\boldsymbol{Z} \alpha_{X}\left(\tau_{x}\right)$. Hence we think of ω_{X} as a homomorphism from L to C modulo $\boldsymbol{Z}+\boldsymbol{Z} \alpha_{X}\left(\tau_{X}\right)$; we denote it by $\alpha_{X}\left(\omega_{X}\right)$. In this way each marked quasi-stable $K 3$ surface (X, α_{X}) determines a point $\left[\left(\alpha_{X}\left(\tau_{X}\right), \alpha_{X}\left(\omega_{X}\right)\right)\right] \in \Omega$. We call $\left[\left(\alpha_{X}\left(\tau_{X}\right), \alpha_{X}\left(\omega_{X}\right)\right)\right]$ the period of $\left(X, \alpha_{X}\right)$
and Ω the period domain for quasi-stable $K 3$ surfaces.
(2.9) Remark. (i) The homomorphism ω_{X} coincides with the extension class of mixed Hodge structure on X in the sense of Carlson's (cf. [2]).
(ii) The condition $N_{E / X_{1}} \otimes N_{E / X_{2}} \cong \mathcal{O}_{E}$ implies that $\omega_{X}\left(\left[E_{1}\right]-\left[E_{2}\right]\right) \equiv 0$ in $J(E)$. Hence if we take the quotient lattice ${ }^{\circ} L(X) / Z\left(\left[E_{1}\right]-\left[E_{2}\right]\right)$ for L, we can construct the period domain for stable $K 3$ surfaces.
(iii) We can easily check that the periods of quasi-stable $K 3$ surfaces are invariant under the modifications of type I in the following sense: let X be a quasi-stable $K 3$ surface with the double curve E and $\phi: X \longrightarrow X^{\prime}$ a modification of type I. We also think of E as the double curve of X^{\prime}.

Then for any ($\left.\left[C_{1}\right],\left[C_{2}\right]\right) \in{ }^{\circ} L\left(X^{\prime}\right)$,

$$
\omega_{X}\left(\phi^{*}\left(\left(\left[C_{1}\right],\left[C_{2}\right]\right)\right)\right)=\omega_{X^{\prime}}\left(\left(\left[C_{1}\right],\left[C_{2}\right]\right)\right) \quad \text { in } J(E)
$$

(see (2.3)).
Before stating the Torelli theorem, we need some definitions. In the following, we refer to [1], [8], [9] and [14] for the reflection groups and its geometric applications.
(2.10) We keep the notation of (2.1). Let X be a quasi-stable $K 3$ surface with the double curve E. We fix an exceptional configuration $\left\{L_{i}^{k}\right\}$ of X. Let $L(X)$ denote the quotient module ${ }^{0} L(X) / Z\left(\left[E_{1}\right]-\left[E_{2}\right]\right)$. Then $L(X)$ has a lattice structure induced from that of ${ }^{0} L(X)$. Moreover, by the expression of (2.6), $L(X)$ is isometric to $H \oplus\left(-E_{8}\right) \oplus\left(-E_{8}\right)$, where H is the lattice of rank 2 with the corresponding matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and E_{8} is the lattice of rank 8 with the Cartan matrix of the root system E_{8}. For brevity, we also denote the bilinear form of $L(X)$ by \langle,$\rangle and denote an element \left[D_{1}\right]$ $+\left[D_{2}\right] \bmod \left(\left[E_{1}\right]-\left[E_{2}\right]\right)$ of $L(X)$ by $\left[D_{1}\right]+\left[D_{2}\right]$.

We let Δ_{X} denote the set $\left\{\left[L_{1}^{9}\right]+\left[L_{2}^{9}\right],\left[L_{i}^{k}\right]-\left[L_{i}^{k+1}\right],\left[H_{i}\right]-\left[L_{i}^{1}\right]-\left[L_{i}^{2}\right]\right.$ $\left.-\left[L_{i}^{3}\right] ; \mathrm{i}=1,2, k=1,2, \cdots, 8\right\}$. As mentioned above, we regard Δ_{X} as a subset $L(X)_{R}$. Any class $\delta \in \Delta_{X}$ determines an automorphism s_{δ} of $L(X)_{R}$ defined by $s_{\delta}(x)=x+\langle x, \delta\rangle \delta$ for $x \in L(X)_{R}$. Note that $s_{\bar{\delta}}$ is a reflection for the hyperplane orthogonal to δ. Since the signature of $L(X)$ is $(1,17)$, the set $\left\{x \in L(X)_{R} ;\langle x, x\rangle>0\right\}$ has two connected components; write $P_{X}^{+} \cup$ $P_{\bar{X}}=\left\{x \in L(X)_{R} ;\langle x, x\rangle>0\right\}$. Here P_{X}^{+}is the component which contains an element $\left(\kappa_{1}, \kappa_{2}\right)$, where κ_{i} is the cohomology class of the 2 -form corresponding to a Kaehler metric on $X_{i}(i=1,2)$ and satisfies the condition $\left\langle\kappa_{1},\left[E_{1}\right]\right\rangle=\left\langle\kappa_{2},\left[E_{2}\right]\right\rangle$. The following result is known.
(2.11) Proposition (cf. [14]). Let W_{x} be the reflection group generated by Δ_{X} and C_{X} denote the set $\left\{x \in P_{X}^{+} ;\langle x, \delta\rangle>0\right.$ for all $\left.\delta \in \Delta_{x}\right\}$. Then W_{X} acts on P_{X}^{+}and the closure of C_{X} in P_{X}^{+}is a fundamental domain for this action. Moreover, the Coxeter diagram of W_{X} is as follows:

(2.12) Proposition. Let R_{X} denote the set $W_{X} \cdot \Delta_{X}$. Then R_{X} agrees with the set of all elements $\alpha \in L(X)$ with $\langle\alpha, \alpha\rangle=-2$.

Proof. Let Γ be the subgroup of the group of isometries of $L(X)$ generated by the reflections $\left\{s_{o} ; \delta \in L(X),\langle\delta, \delta\rangle=-2\right\}$. Then $\left\{s_{i} ; \delta \in \Delta_{X}\right\}$ is a generator of Γ (see [14], §3). Hence we have $W_{X}=\Gamma$. Let α be an element of $L(X)$ with $\langle\alpha, \alpha\rangle=-2$ and let denote H_{α} the hyperplane $\{x \in$ $\left.L(X)_{R} ;\langle x, \alpha\rangle=0\right\}$. By (2.11), we can choose $w \in W_{X}$ such that $w\left(H_{\delta}\right)=H_{\alpha}$ for some $\delta \in \Delta_{X}$. Since $H_{w(\delta)}=w\left(H_{\delta}\right)$, we have $H_{\alpha}=H_{w(\delta)}$. So $\alpha=r \cdot w(\delta)$ for some $r \in \boldsymbol{R}$. It then follows that $\alpha= \pm w(\delta)$.
(2.13) We call C_{X} in (2.11) the fundamental chamber of X endowed with the exceptional configuration $\left\{L_{i}^{k}\right\}$. The convex polyhedron C_{X} defines the partition $R_{x}=R_{x}^{+} \Perp R_{\bar{x}}$, where $R_{x}^{+}=\left\{\delta \in R_{x} ;\langle\delta, x\rangle>0\right.$ for all $\left.x \in C_{x}\right\}$. This partition has the property that
(*) If $\alpha_{1}, \cdots, \alpha_{n} \in R_{X}^{+}$, and $\alpha=\sum_{i=1}^{n} r_{i} \alpha_{i} \in R_{X}$ ($r_{i}>0$ integers), then $\alpha \in R_{x}^{+}$(e.g. [1], p. 241).

An element $\alpha \in R_{X}$ is called nodal if either α is represented by a smooth rational curve with self-intersection number - 2 or there is a sequence $\left\{X \xrightarrow[\phi_{1}]{\longrightarrow} X_{1} \longrightarrow \cdots \underset{\phi_{r}}{\longrightarrow} X_{r}\right\}$ of modifications of type I such that α is represented by $\phi_{1}^{*} \circ \cdots \circ \phi_{r}^{*}([C])$ (see (2.3)), where C is a smooth rational curve on X_{r} with self-intersection -2 . We denote the set of all nodal classes by Δ_{x}^{n}. Let W_{x}^{n} be the reflection group generated by Δ_{x}^{n} and put $R_{x}^{n}:=$ $W_{x}^{n} \cdot \Delta_{x}^{n}$. Note that if $\alpha \in R_{x}^{n} \cap \Delta_{X}$, then α is of one of the following types; (a) $\alpha=\left[L_{1}\right]+\left[L_{2}\right]$, where L_{i} is an exceptional curve of the first kind on $X_{i}(i=1,2)$, (b) $\alpha=\left[C_{1}\right]+\cdots+\left[C_{k}\right](k \geqq 1)$, where C_{i} is a smooth rational curve with self-intersection -2 and $\left(C_{i}, C_{i+1}\right)=1,\left(C_{i}, C_{j}\right)=0$ for $i \neq j \pm 1$. Moreover, in Section 3, we shall characterize R_{x}^{n} as follows (see 3.4)): $R_{X}^{n}=\left\{\alpha \in R_{X} ; \omega_{X}(\alpha)=0\right.$ in $\left.J(E)\right\}$. Let C_{X}^{n} be the set $\left\{x \in P_{x}^{+} ;\langle x, \delta\rangle>0\right.$ for all $\left.\delta \in \Delta_{x}^{n}\right\}$. Then Proposition (2.11) holds for the action of W_{x}^{n} on P_{X}^{+}
and a fundamental domain C_{X}^{n}. We remark that C_{X}^{n} is independent of the choice of an exceptional configuration of X. We call C_{X}^{n} the nodal chamber of X. Now we formulate our main results.
(2.14) Theorem. Let $X=X_{1} \cup X_{2}$ and $X^{\prime}=X_{1}^{\prime} \cup X_{2}^{\prime}$ be two quasi-stable $K 3$ surfaces of type II with the double curves E, E^{\prime}, respectively. Let ϕ^{*} : ${ }^{0} L\left(X^{\prime}\right) \oplus{ }^{0} W_{1}\left(X^{\prime}\right) \rightarrow{ }^{0} L(X) \oplus{ }^{0} W_{1}(X)$ be an isometry such that (i) $\phi^{*}\left({ }^{0} W_{1}\left(X^{\prime}\right)\right)$ $={ }^{0} W_{1}(X)$, (ii) $\phi^{*}\left(\left[E_{1}^{\prime}\right]-\left[E_{2}^{\prime}\right]\right)= \pm\left(\left[E_{1}\right]-\left[E_{2}\right]\right)$ (By (ii), ϕ^{*} induces an isometry from $L\left(X^{\prime}\right)$ to $L(X)$. For simplicity, we also denote it by ϕ^{*}), (iii) $\phi^{*}\left(P_{X^{\prime}}^{+}\right)=P_{X}^{+}$and $\phi^{*}\left(C_{X^{\prime}}^{n}\right)=C_{X}^{n}$, (iv) ϕ^{*} sends $H^{1,0}\left(E^{\prime}, C\right)$ to $H^{1,0}(E, C)$ and $\omega_{X}\left(\phi^{*}\left(\left(\alpha_{1}, \alpha_{2}\right)\right)\right)=J\left(\phi^{*}\right)\left(\omega_{X^{\prime}}\left(\left(\alpha_{1}, \alpha_{2}\right)\right)\right)($ in $J(E))$ for $\left(\alpha_{1}, \alpha_{2}\right) \in{ }^{\circ} L\left(X^{\prime}\right)$, where $J\left(\phi^{*}\right)$ is the isomorphism of Jacobian varieties induced from $\phi^{*}: H^{1,0}\left(E^{\prime}\right) \rightarrow H^{1,0}(E)$. Then there is a sequence

$$
\left\{X \underset{\phi_{1}}{\longrightarrow} X_{1} \underset{\phi_{2}}{\longrightarrow} \cdots \longrightarrow X_{r-1} \xrightarrow[\phi_{r}]{\longrightarrow} X_{r}\right\}
$$

of modifications of type I and an isomorphism $\psi: X_{r} \rightarrow X^{\prime}$ such that the associated isometry

$$
\phi_{1}^{*} \circ \cdots \circ \phi_{r}^{*} \circ \psi^{*}:{ }^{\circ} L\left(X^{\prime}\right) \oplus{ }^{0} W_{1}\left(X^{\prime}\right) \longrightarrow{ }^{0} L(X) \oplus{ }^{0} W_{1}(X)
$$

agrees with ϕ^{*}.
(2.15) Theorem. For every point $[(\tau, \omega)] \in \Omega$, there is a marked quasistable K3 surface of type II with the period $[(\tau, \omega)]$.

Proofs of (2.14), (2.15) will be given in Section 3.
(2.16) Remark. Let D be the period domain for smooth $K 3$ surfaces. Let us recall that there is an étale covering $\tilde{D} \rightarrow D$ such that \tilde{D} is a relevant moduli space for marked Kaehler K3 surfaces ([1], p. 239, or [10], Theorem (10.5)).

In our case, the corresponding situation is as follows: We let N denote the lattice $H \oplus\left(-E_{8}\right) \oplus\left(-E_{8}\right)$. As remarked in (2.9), (ii), we can construct the period domain $\Omega_{0}:=\left\{H^{+} \times N_{c}\right\} / Z^{2 \times 18}$ for stable $K 3$ surfaces by the same way for Ω. Here we select the lattice $Z^{2 \times 18} \subset N_{C}$ which contains N. Let W be the reflection group generated by $\Delta:=\{\delta \in N ;\langle\delta, \delta\rangle=-2\}$ and consider the space Ω_{0}^{\prime} consisting of pairs $([(\tau, \omega)], \kappa) \in \Omega_{0} \times N_{R}$ satisfying $\langle\kappa, \kappa\rangle>0$. Naturally W acts on Ω_{0}^{\prime} : for $\delta \in \Delta$,

$$
s_{\dot{\delta}}:([(\tau, \omega)], \kappa) \longrightarrow\left(\left[\left(\tau, s_{\delta}(\omega)\right)\right], s_{\delta}(\kappa)\right) .
$$

Let $\Omega_{0}^{\prime \prime} \subset \Omega_{0}^{\prime}$ denote the complement of the set of fixed points of reflections.

We define an equivalence relation \sim on $\Omega_{0}^{\prime \prime}$ by letting $([(\tau, \omega)], \kappa) \sim\left(\left[\left(\tau^{\prime}\right.\right.\right.$, $\left.\left.\left.\omega^{\prime}\right)\right], \kappa^{\prime}\right)$ if and only if $[(\tau, \omega)]=\left[\left(\tau^{\prime}, \omega^{\prime}\right)\right]$ and κ and κ^{\prime} belong to the same connected component of $\Omega_{0}^{\prime \prime} \cap\left([(\tau, \omega)] \times N_{R}\right)$. Let $\tilde{\Omega}_{0}:=\tilde{\Omega}_{0}^{\prime \prime} \mid \sim$ denote the quotient space. It is provided with a canonical projection

$$
\pi: \tilde{\Omega}_{0} \longrightarrow \Omega_{0}
$$

Then $\tilde{\Omega}_{0}$ receives the structure of analytic space, étale over Ω_{0} ([10], Lemma (10.4)).

Let M be the set of isomorphism classes of marked stable $K 3$ surfaces (with isomorphisms defined in the obvious manner). Then we associate a map $p: M \rightarrow \tilde{\Omega}_{0}$ which assigns to the isomorphism class of marked stable $K 3$ surface $\left(X, \alpha_{X}\right)$ the equivalence class of ($\left.\alpha_{X}\left(\tau_{X}\right), \alpha_{X}\left(\omega_{X}\right)\right)$, the nodal chamber of X). Here we use the following fact which will be proved in Section 3, Proposition (3.4); If $\delta \in R_{X}$, then $\delta \in R_{X}^{n}$ if and only if $\omega_{X}(\delta) \equiv 0$ in $J(E)$.

In this situation we reformulate theorems (2.14), (2.15) as follows:
(i) The map $p: M \rightarrow \tilde{\Omega}_{0}$ is surjective.
(ii) Let (X, α_{X}) and (X^{\prime}, α_{X}) be two marked stable $K 3$ surfaces whose images by the map p are contained in the same fibre of π, then there is a bimeromorphic map $X \longrightarrow X^{\prime}$ which is a composite of modifications of type I.

§ 3. Proofs of (2.14), (2.15)

Let $X=X_{1} \cup X_{2}$ be a quasi-stable $K 3$ surface and E the double curve. We fix an exceptional configuration $\left\{L_{i}^{k}\right\}$ of X. First we shall prove the following two lemmas. We keep the notation in Section 2.
(3.1) Lemma. If $\alpha \in \Delta_{X}-R_{X}^{n}$, then either $\left\{s_{\alpha}\left(\left[L_{i}^{k}\right]\right)\right\}$ is an exceptional configuration of X or there is a composition $\left\{\phi:=\phi_{1} \circ \phi_{2}: X^{\prime} \xrightarrow[\phi_{2}]{\longrightarrow} X^{\prime \prime} \xrightarrow[\phi_{1}]{\longrightarrow} X\right\}$ of modifications of type I such that $\left\{\phi^{*} \circ s_{\alpha}\left(\left[L_{i}^{k}\right]\right)\right\}$ is an exceptional configuration of X^{\prime}. (We remark here that every reflection $s_{\alpha}, \alpha \in \Delta_{X}$, is defined on $H^{2}\left(X_{1} ; \boldsymbol{R}\right) \oplus H^{2}\left(X_{2} ; \boldsymbol{R}\right)$, and the expression $s_{\alpha}\left(\left[L_{\imath}^{k}\right]\right)$ is in this meaning.)
(3.2) Lemma. If $w \in W_{X}$ is such that $w\left(C_{X}\right) \subset C_{X}^{n}$, then either $\left\{w\left(\left[L_{i}^{k}\right]\right)\right\}$ is also an exceptional configuration of X or there is a composition $\left\{X_{r} \xrightarrow[\phi_{r}]{\longrightarrow}\right.$ $\left.X_{r-1} \xrightarrow[\phi_{r-1}]{\longrightarrow} \cdots \longrightarrow X_{1} \xrightarrow[\phi_{1}]{\longrightarrow} X\right\}$ of modifications of type I such that $\left\{\phi_{r}^{*} \circ \cdots\right.$ 。 $\left.\phi_{1}^{*} \circ w\left(\left[L_{i}^{k}\right]\right)\right\}$ is an exceptional configuration of X_{i}.
(3.3) Remark. Looijenga [9] has deeply studied rational surfaces with
anti-canonical cycle. Our process in the above lemmas is similar to his method, but in our case modifications of type I occur, which make the argument more complicated (see [9], §4).

Proof of (3.1) (see [9], § 3). Let α be an element of Δ_{X}. If $\alpha=\left[L_{i}^{k-1}\right]$ $-\left[L_{i}^{k}\right]$, then $\alpha \notin R_{X}^{n}$ if and only if L_{i}^{k} is not contained in L_{i}^{k-1}, hence L_{i}^{k} and L_{i}^{k-1} are disjoint (see (2.13)). Since s_{α} interchanges L_{i}^{k-1} and L_{i}^{k} and leaves all other $L_{i}^{k^{\prime}}$ fixed, everything is obvious in this case. Next if $\alpha=\left[H_{i}\right]$ $-\left[L_{i}^{1}\right]-\left[L_{i}^{2}\right]-\left[L_{i}^{3}\right]$, then the condition that $\alpha \notin R_{X}^{n}$ implies that $\pi_{i}\left(L_{i}^{1}\right), \pi_{i}\left(L_{i}^{2}\right)$, $\pi_{i}\left(L_{i}^{3}\right)$ are not collinear. (Here $\pi_{i}: X_{i} \rightarrow \bar{X}_{i}$ is a relatively minimal model of X_{i} (see (2.5)).) Suppose that $\pi_{i}\left(H_{i}\right)$ is not a tangent line of E. Then $\pi_{i}\left(L_{i}^{1}\right), \pi_{i}\left(L_{i}^{2}\right)$ and $\pi_{i}\left(L_{i}^{3}\right)$ are distinct. Moreover, by the assumption of the indices of the exceptional configuration, each L_{i}^{k} is a maximal exceptional curve in the sense that $L_{i}^{k}=\pi_{i}^{-1} \circ \pi_{i}\left(L_{i}^{k}\right)$. Now $s_{a}\left(\left[L_{i}^{1}\right]\right)=\left[H_{i}\right]-\left[L_{i}^{2}\right]-\left[L_{i}^{3}\right]$ is represented by the total transform of the line $\bar{X}_{i}=\boldsymbol{P}^{2}$ which passes through $\pi_{i}\left(L_{i}^{2}\right)$ and $\pi_{i}\left(L_{i}^{3}\right)$ minus $L_{i}^{2}+L_{i}^{3}$. If we denote this representative ' L_{i}^{1} (and ' L_{i}^{2}, resp. ' L_{i}^{3}, the corresponding representatives of $s_{\alpha}\left(\left[L_{i}^{2}\right]\right)$, resp. $\left.s_{a}\left(\left[L_{i}^{3}\right]\right)\right)$, then it is clear that ' $L_{i}^{1}, L_{i}^{2},{ }_{L}^{3}$ are disjoint and that any $L_{i}^{\mu}(\mu>3)$ which meets ' $L_{i}^{k}(1 \leqq k \leqq 3)$ is actually contained in ' L_{i}^{k}. So $\left\{s_{a}\left(\left[L_{i}^{k}\right]\right)\right\}$ is an exceptional configuration of X. The proof for the case that $\pi_{i}\left(H_{i}\right)$ is a tangent line is similar.

Last of all, if $\alpha=\left[L_{1}^{9}\right]+\left[L_{2}^{9}\right]$, the condition that $\alpha \notin R_{X}^{n}$ just means that the points $L_{1}^{9} \cap E$ and $L_{2}^{9} \cap E$ are distinct. Note that $s_{\alpha}\left(\left[L_{1}^{9}\right]+\left[L_{2}^{9}\right]\right)=$ $-\left[L_{1}^{9}\right]-\left[L_{2}^{9}\right], \quad s_{\alpha}\left(\left[L_{1}^{8}\right]-\left[L_{1}^{9}\right]\right)=\left[L_{1}^{8}\right]+\left[L_{2}^{9}\right], \quad s_{\alpha}\left(\left[L_{2}^{8}\right]-\left[L_{2}^{9}\right]\right)=\left[L_{2}^{8}\right]+\left[L_{1}^{9}\right]$ and $s_{\alpha}\left(\left[L_{i}^{k}\right]\right)=\left[L_{i}^{k}\right]$ for $i=1,2,1 \leqq k \leqq 8$. Let $\phi: X^{\prime} \longrightarrow X$ be the birational map obtained by the modifications of type I along the exceptional curves of the first kind L_{1}^{9}, L_{2}^{9} (by the assumption of indices of $\left\{L_{i}^{k}\right\}, L_{1}^{9}$ and L_{2}^{9} are first kind). Let ' L_{1}^{9} (resp. ' L_{2}^{9}) be the exceptional curve on X^{\prime} obtained by blowing up the point $L_{1}^{9} \cap E$ (resp. $L_{2}^{9} \cap E$).

Put $\left[^{\prime} L_{i}^{k}\right]=\phi^{*}\left(\left[L_{i}^{k}\right]\right), i=1,2,1 \leqq k \leqq 8$, Then we have that $\phi^{*}\left(-\left[L_{1}^{9}\right]\right.$ $\left.-\left[L_{2}^{9}\right]\right)=\left[{ }^{\prime} L_{1}^{9}\right]+\left[{ }^{\prime} L_{2}^{9}\right], \quad \phi^{*}\left(\left[L_{1}^{8}\right]+\left[L_{2}^{9}\right]\right)=\left[L_{1}^{8}\right]-\left[{ }^{\prime} L_{2}^{9}\right] \quad$ and $\phi^{*}\left(\left[L_{2}^{8}\right]+\left[L_{1}^{9}\right]\right)=$ $\left[{ }^{\prime} L_{2}^{8}\right]-\left[L_{1}^{9}\right]$. Now it is easily check that $\left.\left\{{ }^{\prime} L_{i}^{k}\right]\right\}$ is an exceptional configuration. We leave the proof to the reader.

Proof of Lemma (3.2) (see [9], (3.5), (4.2)). First we claim that C_{X}^{n} contains C_{X}. For this purpose, it is sufficient to prove that Δ_{X}^{n} is contained in R_{X}^{+}(see (2.13)). Let $\delta=[D]\left(\in D_{x}^{n}\right)$ be a nodal class. If D has a component which is not contained in L_{i}^{k}, then obviously $\left\langle\delta,\left[H_{1}\right]+\left[H_{2}\right]\right\rangle>0$. Since $\left[H_{1}\right]+\left[H_{2}\right] \in \bar{C}_{X}, \delta$ is contained in R_{X}^{+}. Now we assume that δ is represented by a divisor D whose each irreducible component is contained in some L_{i}^{k}. Since D is connected (by definition), D is one of the following two types: (i) D is a smooth rational curve with self-intersection -2, (ii) $D=C_{1}+C_{2}$, where C_{i} is an exceptional curve of the first kind on $X_{i}(i=1,2)$ with $C_{1} \cap E=C_{2} \cap E$. If D is a smooth rational curve with self-intersection -2 , then D is represented by $L_{i}^{k}-L_{i}^{k^{\prime}}\left(1 \leqq k<k^{\prime} \leqq 9\right)$. Hence $[D]$ is a positive linear combination of elements of Δ_{x} :

$$
[D]=\left(\left[L_{i}^{k}\right]-\left[L_{i}^{k+1}\right]\right)+\cdots+\left(\left[L_{i}^{k^{\prime}-1}\right]-\left[L_{i}^{k^{\prime}}\right]\right)
$$

By (2.13), (*), [D] is contained in R_{x}^{+}.
Next, if $D=C_{1}+C_{2}$, where C_{i} is an exceptional curve of the first kind on $X_{i}(i=1,2)$ with $C_{1} \cap E=C_{2} \cap E$, then $\left[C_{1}\right]+\left[C_{2}\right]$ is a positive linear combination of elements of Δ_{X} :

$$
\begin{aligned}
{\left[C_{1}\right]+\left[C_{2}\right]=} & \left(\left[L_{1}^{j}\right]-\left[L_{1}^{j+1}\right]\right)+\cdots+\left(\left[L_{1}^{8}\right]-\left[L_{1}^{9}\right]\right)+\left(\left[L_{1}^{9}\right]+\left[L_{2}^{9}\right]\right) \\
& +\left(\left[L_{2}^{8}\right]-\left[L_{2}^{9}\right]\right)+\cdots+\left(\left[L_{2}^{k}\right]-\left[L_{2}^{k+1}\right]\right) .
\end{aligned}
$$

So in this case $\left[C_{1}\right]+\left[C_{2}\right] \in R_{X}^{+}$, too. Hence C_{X} is contained in C_{X}^{n}. Note that there are no hyperplane separating C_{X} from $w\left(C_{X}\right)$ which is orthogonal to some $\alpha \in \Delta_{x}^{n}$.

Now we prove (3.2). We pick a point $x_{0} \in w\left(C_{X}\right)$ and denote the set $\left\{\alpha \in R_{x}^{+} ;\left\langle\alpha, x_{0}\right\rangle<0\right\}$ by $\Phi_{x_{0}}$. Then $\Phi_{x_{0}}$ corresponds to the set of hyperplanes orthogonal to $\alpha \in R_{X}$ which separate C_{X} and $w\left(C_{X}\right)$. By [15] Lemma 9 (in §3), $\Phi_{x_{0}}$ is a finite set. Hence we can index the elements of $\Phi_{x_{0}}$ as follows: $\Phi_{x_{0}}=\left\{\alpha_{1}, \cdots, \alpha_{k}\right\}$ (with $k=\operatorname{card} \Phi_{x_{0}}$) such that the set

$$
\left\{C_{i}=s_{\alpha_{i}} \circ \cdots \circ s_{\alpha_{1}}\left(C_{X}\right) ; i=1, \cdots, k\right\}
$$

is a chain of the fundamental chambers from C_{X} to $w\left(C_{X}\right)$; more precisely the intersection of C_{i-1} and $C_{i}=s_{\alpha_{i}}\left(C_{i-1}\right)$ is a non-empty open set in the hyperplane $H_{\alpha_{i}}=\left\{x \in L(X)_{R} ;\left\langle x, \alpha_{i}\right\rangle=0\right\}$. Note that α_{1} is contained in
Δ_{X}. Since C_{X} is contained in C_{X}^{n}, the condition that $\alpha_{i} \in R_{X}^{+}$implies that $\alpha_{i} \notin R_{X}^{n}(i=1, \cdots, k)$. With induction on i, Lemma (3.2) now follows easily from (3.1).

Proof of Theorem (2.14). Let $\left\{L_{i}^{k}\right\}$ (resp. $\left\{{ }^{\prime} L_{i}^{k}\right\}$) be an exceptional configuration of X (resp. X^{\prime}). Let C_{X} (resp. $C_{X^{\prime}}$) be the fundamental chamber of X (resp. X^{\prime}) endowed with the exceptional configuration $\left\{L_{i}^{k}\right\}$ (resp. $\left.\left\{L_{i}^{k}\right\}\right)$. By the assumptions in (2.14), we have that $\phi^{*}\left(P_{X^{\prime}}^{+}\right)=P_{X}^{+}, \phi^{*}\left(C_{X^{\prime}}^{n}\right)$ $=C_{x}^{n}$. On the other hand, by (2.12), we have $\phi^{*}\left(R_{X^{\prime}}\right)=R_{x}$. Hence both C_{X} and $\phi^{*}\left(C_{X^{\prime}}\right)$ are fundamental domains for the action of W_{X} on P_{X}^{+}(see (2.11)). In particular, $w\left(C_{X}\right)=\phi^{*}\left(C_{X^{\prime}}\right)$ for some $w \in W_{X}$. It then follows that $w\left(\Delta_{X}\right)=\phi^{*}\left(\Delta_{X^{\prime}}\right)$. Hence, if necessary, changing the indices of X_{1} and X_{2} (or equivalently, replacing ϕ^{*} by $\iota \circ \phi^{*}$, where ι is the symmetry of the Coxeter diagram of W_{X} (see (2.11)), we can assume that

$$
\begin{aligned}
& w\left(\left[L_{i}^{k}\right]-\left[L_{i}^{k+1}\right]\right)=\phi^{*}\left(\left[^{\prime} L_{i}^{k}\right]-\left[\left[^{\prime} L_{i}^{k+1}\right]\right),\right. \\
& w\left(\left[L_{1}^{9}\right]+\left[L_{2}^{9}\right]\right)=\phi^{*}\left(\left[^{\prime} L_{1}^{9}\right]+\left[\left[^{\prime} L_{2}^{9}\right) \quad\right. \text { and }\right. \\
& w\left(\left[H_{i}\right]-\left[L_{i}^{1}\right]-\left[L_{i}^{2}\right]-\left[L_{i}^{3}\right]\right)=\phi^{*}\left(\left[\left[^{\prime} H_{i}\right]-\left[L_{i}^{1}\right]-\left[L_{i}^{2}\right]-\left[L^{\prime} L_{i}^{3}\right]\right),\right. \\
& \quad i=1,2, \quad k=1,2, \cdots, 8 .
\end{aligned}
$$

Since $w\left(C_{X}\right)$ is contained in $\phi^{*}\left(C_{X^{\prime}}^{n}\right)=C_{X}^{n}$, by applying Lemma (3.2), we get a sequence $\left\{X_{r} \xrightarrow[\phi_{r}]{\longrightarrow} X_{r-1} \longrightarrow \cdots \longrightarrow X_{1} \xrightarrow[\phi_{1}]{\longrightarrow} X_{0}=X\right\}$ of modifications of type I such that $\left\{\phi_{r}^{*} \circ \cdots \circ \phi_{1}^{*} \circ w\left(\left[L_{i}^{k}\right]\right)\right\}$ is an exceptional configuration of $X_{r}=X_{1, r} \cup X_{2, r}$. We denote $\phi_{r}^{*} \circ \cdots \circ \phi_{1}^{*} \circ \phi^{*}$ by ψ^{*} and $\left\{\phi_{r}^{*} \circ \cdots \circ \phi_{1}^{*} \circ\right.$ $\left.w\left(\left[L_{i}^{k}\right]\right)\right\}$ by $\left\{\left[L_{i, r}^{k}\right]\right\}$. Let $\pi_{i, r}: X_{i, r} \rightarrow \bar{X}_{i, r}$ be a relatively minimal model and let E_{r} be the double curve of X_{r}. Then we have that

$$
\begin{aligned}
& \psi^{*}\left(\left[{ }^{\prime} L_{i}^{k}\right]-\left[{ }^{\prime} L_{i}^{k+1}\right]\right)=\left[L_{i, r}^{k}\right]-\left[L_{i, r}^{k+1}\right] \\
& \psi^{*}\left(\left[{ }^{\prime} L_{1}^{9}\right]+\left[^{\prime} L_{2}^{9}\right]\right)=\left[L_{1, r}^{9}\right]+\left[L_{2, r}^{9}\right] \text { and } \\
& \psi^{*}\left(\left[{ }^{\prime} H_{i}\right]-\left[L_{i}^{1}\right]-\left[L_{i}^{2}\right]-\left[L_{i}^{3}\right]\right)=\left[H_{i, r}\right]-\left[L_{i, r}^{1}\right]-\left[L_{i, r}^{2}\right]-\left[L_{i, r}^{3}\right] \\
& \quad(i=1,2, k=1,2, \cdots, 8),
\end{aligned}
$$

where $H_{i, r}$ is the total transform of the line in $\bar{X}_{i, r}=\boldsymbol{P}^{2}$ which passes through $\pi_{i, r}\left(L_{i, r}^{1}\right)$ and $\pi_{i, r}\left(L_{i, r}^{2}\right)$ (at least when $\pi_{i, r}\left(L_{i, r}^{1}\right) \neq \pi_{i, r}\left(L_{i, r}^{2}\right)$; otherwise take the tangent line of $\pi_{i, r}\left(E_{r}\right)$ at $\left.\pi_{i, r}\left(L_{i, r}^{1}\right)=\pi_{i, r}\left(L_{i, r}^{2}\right)\right)$. Let u_{i}^{k} (resp. 'u u_{i}^{k}) be the point $E_{r} \cap L_{i, r}^{k}$ (resp. $E^{\prime} \cap^{\prime} L_{i}^{k}$). Then by the equations $\psi^{*}\left(\left[^{\prime} L_{1}^{k}\right]-\right.$ $\left.\left.{ }^{\prime} L_{1}^{k+1}\right]\right)=\left[L_{1, r}^{k}\right]-\left[L_{1, r}^{k+1}\right]$ and the assumption (iv) in (2.14), there is an isomorphism

$$
\psi_{0}: E_{r} \longrightarrow E^{\prime}
$$

such that $\psi_{0}\left(u_{1}^{k}\right)={ }^{\prime} u_{1}^{k}(k=1, \cdots, 9)$. Morasver, fron $\psi^{*}\left(\left[L_{1}^{9}\right]+\left[' L_{2}^{9}\right]\right)=$ $\left[L_{1, r}^{9}\right]+\left[L_{2, r}^{9}\right]$, we obtained

$$
\psi_{0}\left(u_{1}^{9}\right)-\psi_{0}\left(u_{2}^{9}\right)={ }^{\prime} u_{1}^{9}-{ }^{\prime} u_{2}^{9}
$$

(Here we consider E_{r} (resp. E^{\prime}) a group with the identity element u_{1}^{1} (resp. $\left.{ }^{\prime} u_{1}^{1}\right)$). So we get $\psi_{0}\left(u_{2}^{9}\right)={ }^{\prime} u_{2}^{9}$. By the equations $\psi^{*}\left(\left[{ }^{\prime} L_{2}^{k}\right]-\left[{ }^{\prime} L_{2}^{k+1}\right]\right)=\left[L_{2, r}^{k}\right]$ $-\left[L_{2, r}^{k+1}\right]$, we conclude that $\psi_{0}\left(u_{i}^{k}\right)={ }^{\prime} u_{i}^{k}(i=1,2, k=1,2, \cdots, 9)$.

Let u_{i} (resp. ' u_{i}) denote the third point at which $H_{i, r}$ intersects E_{r} (resp. ' H_{i} intersects E^{\prime}). Then the linear system $\left|u_{i}+u_{i}^{1}+u_{i}^{2}\right|\left(\right.$ resp. $\left.\right|^{\prime} u_{i}+$ $\left.' u_{i}^{1}+{ }^{\prime} u_{i}^{2} \mid\right)$ gives an embedding $E_{r} \rightarrow \boldsymbol{P}^{2}=\bar{X}_{i, r}\left(\right.$ resp. $\left.E^{\prime} \rightarrow \boldsymbol{P}^{2}=\bar{X}_{i}^{\prime}\right), i=1,2$. By the above equation w.r.t. ψ^{*}, it follows that

$$
\left.\psi_{0}^{*}\right|^{\prime} u_{i}+{ }^{\prime} u_{i}^{1}+{ }^{\prime} u_{i}^{2}\left|=\left|u_{i}+u_{i}^{1}+u_{i}^{2}\right| \quad(i=1,2) .\right.
$$

Hence ψ_{0} can extend to an isomorphism $\bar{\psi}_{i}: \bar{X}_{i, r} \rightarrow \bar{X}_{i}^{\prime}(i=1,2)$. Obviously $\bar{\psi}_{i}$ induces an isomorphism $\psi_{i}: X_{i, r} \rightarrow X_{i}^{\prime}(i=1,2)$. Moreover $\psi:=\psi_{1} \cup \psi_{2}$: $X_{1, r} \cup X_{2, r} \rightarrow X_{1}^{\prime} \cup X_{2}^{\prime}$ is an isomorphism and by construction, $\psi^{*}=\phi_{r}^{*} \circ \cdots$ 。 $\phi_{1}^{*} \circ \phi^{*}$ agrees with an isomorphism induced from ψ.

Proof of Theorem (2.15). Let $[(\tau, \omega)] \in \Omega$ be given. Let E be a smooth elliptic curve with the period $\{1, \tau\}$ and ω_{E} a holomorphic 1-form on E such that

$$
\int_{\alpha} \omega_{E}=\tau, \quad \int_{\beta} \omega_{E}=1
$$

for a suitable basis $\{\alpha, \beta\}$ of $H_{1}(E ; Z)$. We regard a basis of L as a coordinate system of L_{C} and write

$$
\omega=\left[\left(t_{1}, t_{2}, \cdots, t_{19}\right)\right] \in L_{C}^{*} / Z^{2 \times 19},
$$

where $\left(t_{1}, t_{2}, \cdots, t_{19}\right) \in L_{C}^{*}$. Now we consider the following equations in the points $z_{\mu, j}, \mu=1,2, j=0,1, \cdots, 9$, on E : modulo $Z+Z e$,

$$
\begin{equation*}
\sum_{j=1}^{9} \int_{z_{1, j}}^{z_{1,0}} \omega_{E} \equiv t_{1}, \quad \sum_{j=1}^{9} \int_{z_{2,0}}^{z_{2, j}} \omega_{E} \equiv t_{2} \tag{i}
\end{equation*}
$$

(ii) $\int_{z 2,9}^{z_{1,9}} \omega_{E} \equiv t_{3}$

$$
\begin{align*}
& \text { (iii) } \quad \sum_{j=1}^{3} \int_{z_{1, i}, ~}^{z_{1}, 0} \omega_{E} \equiv t_{4}, \quad \int_{z_{1, i+1}}^{z_{1, i}} \omega_{E} \equiv t_{i+4}(i=1, \cdots, 7) \tag{iii}\\
& \text { (iv) } \quad \sum_{j=1}^{3} \int_{z_{2,0}, 0}^{z_{2}} \omega_{E} \equiv t_{12}, \quad \int_{z_{2, i}}^{z_{2, i+1}} \omega_{E} \equiv t_{i+12}(i=1, \cdots, 7) .
\end{align*}
$$

These equations are correspond to the expression (2.6) of the basis of ${ }^{\circ} L$. By Jacobi's inversion theorem, we can solve these equations as follows:

First we take a point $z_{1,0}=p_{0} \in E$, arbitrarily. Applying Jacobi theorem on the equation (iii), we can find $p_{1}, \cdots, p_{8} \in E$ such that $\left\{z_{1, i}=p_{i} ; i=\right.$ $1, \cdots, 8\}$ satisfies the equation (iii). Next from the equation (i), we can find a point $p_{9} \in E$ such that $\left\{z_{1, i}=p_{i} ; i=1, \cdots, 8,9\right\}$ satisfies the first of the equation (i). Similarly from the equation (ii), there is a point $q_{9} \in E$ such that

$$
\int_{q_{9}}^{p_{9}} \omega_{E} \equiv t_{3} \bmod \boldsymbol{Z}+\boldsymbol{Z} \tau
$$

Moreover, by the relations

$$
\begin{aligned}
& \left(z_{1,1}+\cdots+z_{1,9}\right)-\left(z_{2,1}+\cdots+z_{2,9}\right) \\
& \quad=9\left(z_{1,9}-z_{2,9}\right)+\sum_{i=1}^{8} i\left(z_{1, i}-z_{1, i+1}\right)+\sum_{i=1}^{8} i\left(z_{\Omega, i+:}-z_{2, i}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
9 z_{i, 0}- & z_{i, 1}-\cdots-z_{i, 9} \\
= & 3\left(3 z_{i, 0}-z_{i, 1}-z_{i, 2}-z_{i, 3}\right)+2\left(z_{i, 1}-z_{\imath .2}\right)+4\left(z_{i, 2}-z_{i, 8}\right) \\
& \quad+\sum_{k=1}^{6}(7-k)\left(z_{i, k+2}-z_{i, k+3}\right),
\end{aligned}
$$

we can write that

$$
\int_{z_{2}, 0}^{z_{1,0}} \omega_{E} \equiv \text { a linear combination of }\left\{t_{1}, t_{2}, \cdots, t_{19}\right\}
$$

Again, applying Jacobi theorem on this equation and the equation (iv), we can find $q_{0}, q_{1}, \cdots, q_{8} \in E$ such that $\left\{z_{2, j}=q_{j} ; 0 \leqq j \leqq 9\right\}$ is a solution of the equation (iv) and the second of the equation (i). Consequently we obtain the solution $\left\{z_{1, i}=p_{i}, z_{2, j}=q_{j} ; 0 \leqq i, j \leqq 9\right\}$ of the equations (i)(iv).

Let \bar{X}_{i} be a copy of $\boldsymbol{P}^{2}(i=1,2)$. Now we consider the embeddings $\left|3 p_{0}\right|: E \rightarrow \bar{X}_{1}=\boldsymbol{P}^{2},\left|3 q_{0}\right|: E \rightarrow \bar{X}_{2}=\boldsymbol{P}^{2}$. Let X_{1} (resp. X_{2}) be the surface obtained from \bar{X}_{1} (resp. \bar{X}_{2}) by taking successive blowing ups at p_{1}, \cdots, p_{9} (resp. q_{1}, \cdots, q_{9}). Let E_{1} (resp. E_{2}) be the proper transform of E by the above blowing ups. We denote the induced isomorphism from E_{1} to E_{2} by ϕ. Then the surface X obtained from X_{1} and X_{2} by patching through E_{1} and E_{2} under the isomorphism ϕ is the required one.

Lastly we prove the following proposition which has been used in the reformulation of theorems (2.14), (2.15) (see (2.16)).

For $\alpha \in \Delta_{X}$, we can define $\omega_{X}(\alpha)$ by regarding α as an element in ${ }^{0} L(X)$. We can also define $\omega_{X}(\alpha)$ for $\alpha \in R_{X}$, since α is represented by an element of $\boldsymbol{Z} \cdot \Delta_{X}$.
(3.4) Proposition. If $\alpha \in R_{X}$, then $\alpha \in R_{X}^{n}$ if and only if $\omega_{X}(\alpha)=0$ in $J(E)$.

Proof. Let $\delta\left(\in \Delta_{x}^{n}\right)$ be a nodal class. Then, by definition and (2.9), (iii), $\omega_{X}(\delta)=0$ in $J(E)$. If $\alpha \in R_{X}^{n}$, then $\alpha \equiv 0 \bmod Z \cdot \Delta_{X}^{n}$ and so $\omega_{X}(\alpha)=0$ in $J(E)$. Conversely, if $\alpha \in R_{X}$ such that $\omega_{X}(\alpha)=0$ in $J(E)$, then $\alpha=w(\beta)$ for some $\beta \in \Delta_{X}, w \in W_{x}$. Write $w=w^{\prime \prime} \circ w^{\prime}$ with $w^{\prime}\left(C_{x}\right) \subset C_{x}^{n}$ and $w^{\prime \prime} \in W_{x}^{n}$. According to (3.2), there is a sequence

$$
\left\{X_{r} \underset{\phi_{r}}{\longrightarrow} X_{r-1} \longrightarrow \cdots \xrightarrow[\phi_{1}]{\longrightarrow} X_{0}=X\right\}
$$

of modifications of type I such that $\phi_{r}^{*} \circ \cdots \circ \phi_{1}^{*} \circ w^{\prime}(\beta)=[L]+\xi\left[L^{\prime}\right]$ for some exceptional curves L, L^{\prime} on $X_{r}(r \geqq 0)$, where $\xi=-1$ (resp. $\xi=1$) if and only if L and L^{\prime} lie on the same component of X_{r} (resp. on the distinct component). Let E_{r} be the double curve of X_{r}. Since $w^{\prime \prime} \circ w^{\prime}(\beta)$ $\equiv w^{\prime}(\beta) \bmod \boldsymbol{Z} \cdot \Delta_{X}^{n}, \omega_{X}\left(w^{\prime}(\beta)\right)=\omega_{X}\left(w^{\prime \prime} \circ w^{\prime}(\beta)\right)=\omega_{X}(\alpha)=0$ in $J(E)$. Hence, by (2.9), (iii), $\omega_{X_{r}}\left([L]+\xi\left[L^{\prime}\right]\right)=0$ in $J\left(E_{r}\right)$. This implies $L \cap E_{r}=L^{\prime} \cap E_{r}$ by Abele's theorem. It follows that either L contains L^{\prime} or L does not lie on the component of X_{r} on which L^{\prime} lies. Hence $[L]+\xi\left[L^{\prime}\right] \in R_{X_{r}}^{n}$. By definition, each ϕ_{i} preserves the nodal classes and so $w^{\prime}(\beta) \in R_{x}^{n}$. Consequently $\alpha=w^{\prime \prime} \circ w^{\prime}(\beta) \in R_{x}^{n}$.

References

[1] Burns, D. and M. Rapoport, On the Torelli problem for K3 surfaces, Ann. Sci. École Norm. Sup., 4 (1975), 235-274.
[2] Friedman, R. D., Hodge theory, degenerations, and the global Torelli problem, Harvard Thesis (1981).
[3] -, Global smoothings of varieties with normal crossings, Ann. of Math., 118 (1983), 75-114.
[4] Friedman, R. D. and D. Morrison editors, Birational geometry of degenerations, Progress in Math. (1983), Birkhauser.
[5] Kempf, G. et al., Toroidal embeddings, I, Lecture Note in Math., vol. 339, Springer (1973).
[6] Kodaira, K., On compact analytic surface, II, Ann. of Math., 77 (1963), 563-626.
[7] Kulikov, V., Degenerations of K3 surfaces and Enriques surfaces, Math. USSRIzv, 11 (1977), 957-989.
[8] Looijenga, E., Invariant theory for generalized root systems, Invent. Math., 61 (1980), 1-32.
[9] -, Rational surfaces with anti-canonical cycle, Ann. of Math., 114 (1981), 267-322.
[10] Looijenga, E. and C. Peters, Torelli theorem for $K 3$ surfaces, Compositio Math., 42 (1980), 145-186.
[11] Namikawa, Y., Type I degenerations of K3 surfaces. (in Japanese), Proc. Symp. Algebraic Geometry, Tohoku University (1980).
[12] Persson, U. and H. Pinkham, Degenerations of surfaces with trivial canonical bundle, Ann. of Math., 113 (1981), 45-66.
[13] Piatetskii-Shapiro, I. and I. Shafarevich, A Torelli theorem for algebraic surfaces of type K3, Math. USSR-Izv., 35 (1971), 530-572.
[14] Vinberg, E., Some arithmetical discrete groups in Lobatchevsky spaces, in Discrete Subgroups of Lie groups, Bombay, Oxford Univ. Press (1973), 323-348.
[15] - , Discrete linear groups generated by reflections, Math. USSR-Izv., 5 (1971), (1971), 1083-1119.

Department of Mathematics
Faculty of Sciences
Nagoya University
Nagoya, 464 Japan

