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TYPE II DEGENERATIONS OF K3 SURFACES

SHIGEYUKI KONDO

Introduction

A degeneration of KS surfaces (over the complex number field) is a
proper holomorphic map π: X—> Δ from a three dimensional complex mani-
fold to a disc, such that, for t ψ 0, the fibres Xt = π~\t) are smooth KS sur-
faces (i.e. surfaces Xt with trivial canonical class KXt = 0 and dimH^Xt, ΘX{)
= 0).

Recently, Kulikov [7], Persson and Pinkham [12] have classified the
semi-stable degenerations of KS surfaces into three types and Friedman
[2], [3] has studied the local moduli problem for D-semi-stable KS surfaces.
On the other hand, Piatetskii-Shapiro and Shafarevich [13], Burns and
Rapoport [1] proved the Torelli theorem for Kaehler KS surfaces. One
of the next steps for the study of the moduli problem for KS surfaces is
to extend the theory of the period of smooth KS surfaces to the degenerate
case.

From the point of view of the moduli problem, the following surfaces
are fundamental (see (1.6)): A stable KS surface of type II is a surface
X z= Xί[jX2 with normal crossings such that; (i) Xt is a smooth rational
surface (i = 1, 2) and E = Xίf]X2 is a smooth elliptic curve, (ii) the dualiz-
ing sheaf ωx on X is trivial, (iii) the line bundle NE/Xl (g) NE/X2 over E is
trivial, where NE/X. is the normal bundle of E in Xt (i = 1, 2).

In this paper we define the periods of stable KS surfaces of type II
and prove the Torelli theorem for them. Let X=X1{JX2 be a stable KS
surface of type Π. Then the component Xt is not always minimal and
there happens a birational modification between the stable KS surfaces
of type Π, which is called a modification of type I in [7]. Let L(X) denote
the lattice {(xl9 x2) e H\Xi; Z) ® H\X2; Z); (xu [EJ)Xl = (x2, [SJW/ZfltfJ -
[E2])9 where [Et] (e H2(Xi Z)) is the cohomology class of the double curve
E = Xj Γl X2. Then L(X) is an even unimodular lattice of signature (1,17).
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We define the period of the stable KS surface I by a homomorphism

ωx: L(X)-+J(E): = Jacobian variety of E (see (2.8)). The idea of our defi-

nition is due to Y. Namikawa [11].

Roughly speaking, our main result is as follows: let X and X/ be two

stable KS surfaces of type II with the "same" period. Then there is a

bimeromorphic map X > X/ which is a composite of modifications of

type I (see (2.14)).

The plan of this paper is as follows: in Section 1 we collect the known

facts about the semi-stable degenerations of KS surfaces, in Section 2 we

state our main results (Theorems (2.14), (2.15)), and Section 3 is devoted

to their proofs.

I would like to express my thanks to Professor Yukihiko Namikawa

whose insight and encouragement are invaluable.

§ 1. Semi-stable degenerations of KS surfaces

(1.1) A semi-stable degeneration of surfaces (resp. KS surfaces) is a

proper holomorphic map π: X—• Δ from a three dimensional complex mani-

fold to a disc such that: (i) the fibres Xt = π~\t) are smooth surfaces

(resp. smooth KS surfaces) for t Φ 0; (ii) the central fibre Xo = π'XO) is

a divisor with normal crossings; (iii) all components of XQ have multiplicity

one in the fibre.

If a degeneration of surfaces is projective, it becomes bimeromorphic

to a semi-stable one after a base change ([5]).

(1.2) Let π: X-> Δ be a semi-stable degeneration of surfaces. The

dual graph of X0=π~\0) is the following simplicial complex: (i) The set

of vertices is the set of irreducible components of Xo; (ii) The set of edges

is the set of components of double curves of Xo; (iii) The set of faces is

the set of triple points of Xo.

(1.3) A degeneration of surfaces π: X-> Δ is weakly Kaehler if there

exists a bimeromorphic map φ: X—-» Xf such that φ is biholomorphic on

X — τr~ *(()), the diagram

π
v

π'

Δ = Δ

is commutative and such that Xf is a Kaehler manifold.
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In the study of the degenerations of KS surfaces, the following results

are essential.

(1.4) THEOREM (Kulikov [7], Persson and Pinkham [12]). Let π: X-+ Δ

be a degeneration of KS surfaces. If all components of the central fibre

Xo = 7r"XO) are algebraic, then X is bίmeromorphic to a semi-stable degene-

ration πf: X'—> Δ with Kx, = Θx,, where Kx, is the canonical line bundle of

X'.

(1.5) THEOREM (Kulikov [7]). Let π: X-+Δ be a weakly Kaehler, semi-

stable degeneration of KS surfaces with Kx = Θx. Then Xo = π~\0) is one

of the following three types:

(Type I) XQ is a smooth KS surface;

(Type II) Xo = Vι + V2 + + V^ + Vn, where Vx and Vn are

rational surfaces, V2, •••, Vn_x are elliptic ruled surfaces

and Vif] Vί+U i = 1, , n — 1, are smooth elliptic curves.

The dual graph of Xo is as follows:

V1 V2 Vn

(Type III) XQ = V1 + -f Vn, where all Vt

9s are rational surfaces

and the double curves V^Vj on V3 are smooth rational

curves forming a cycle. The dual graph of Xo is a trίangu-

lation of 2-sphere S2.

(1.6) Remark. In this paper we study the type II degenerations in

the above Theorem (1.5). Among them, the type II degenerations without

the elliptic ruled components are fundamental in the following sense: let

π: X—> Δ be as in Theorem (1.5). Suppose the central fibre Xo = Vx + V2

+ * * + Vn-i + Vn is of type II. By performing some birational modifi-

cations, we can assume that the elliptic ruled components V2, •••, Vn^1

are minimal. Then we can contract V2, •••, Vn_1 along the rulings for

which the double curves are sections (cf. [2], [4]). This produces a new

threefold Xf mapping to Δ, and Xf has a curve of An_2 surface singulari-

ties. Moreover the new central fibre X'o is a surface of type II without

the elliptic ruled components. This is similar to the case of degenerations

of elliptic curves of type Iδ ([6], p. 604).

(1.7) LEMMA. Let π: X-> Δ be as in Theorem (1.5). Suppose Xo is of

type II and without the elliptic ruled component: i.e. Xo — X1(jX29 where
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Xt is a rational surface (i = 1, 2) and E = X1Γ\X2 is a smooth elliptic curve.

Then

( i ) Ee\-KXi\ (£ = 1, 2);

(ii) NE/Xl®NE/X2^(DE;

(iii) (E%t + (E%2 = 0.

Proof. By the adjunction formula and ΘX(XQ) = Θx, we have KXl =

[ # x + XJ|X l = [XJ|Xl - ~[X2]\Xl. Hence £Je | - K X l | . Since NE/Xχ=Θx{X2)\E

and i V ^ -

• NE/Xl <g> iV^ 3 =

Now the statement (iii) is obvious.

(1.8) DEFINITION. A stable KS surface of type II (resp. a quasi-stable

KS surface of type II) is a surface X — XX\}X2 with normal crossings such

that Xi is a smooth rational surface, E = Xγ Π X2 is a smooth elliptic curve

and satisfies the following conditions: (i) Ee\ — Kx.\ (i = 1, 2); (ii) NE/Xχ®

NE/X2 s tf* (resp. (i) Ee\-KXί\ (i = 1, 2); (ii') degree (NE/Xι ® iV£/X2) = 0).

(1.9) Remark. More generally, Friedman ([2], [3]) has defined the D-

semi-stable K3> surfaces (cf. [3], (5.5)). We remark here that a quasi-stable

KS surface of type II is Z)-semi-stable if and only if it satisfies the con-

dition (ii) in (1.8) (i.e. stable).

Every stable K3 surface of type II is obviously quasi-stable. In Sec-

tions 2 and 3, we shall treat a quasi-stable KS surface of type II rather

than a stable one. The following result states that every stable KS surface

of type II is nothing but a degenerate fibre of a semi-stable degeneration

of KS surfaces.

(1.10) THEOREM (Friedman [2], [3]). Let X be a stable KS surface of

type II. Then the Kuranishi space of X looks like Vx U V2, here

(1) VΊ, V2 are smooth and meet transversally;

(2) dim V, = dim H\X, θx) = 20, dim V2 = 20 and dim ( ^ Π V2) = 19,

where θx is a sheaf of derivations of Θx\

(3) V1 is a space corresponding to the topologically trivial deformations;

(4) Let Xt be a surface corresponding to a point t e V1U V2. Then

( i ) Xt is a smooth KS surface if teV2— Vx.

(ii) Xt is a quasi-stable KS surface of type II if te V19

(iii) Xt is a stable KS surface of type II if and only if te VΊΠ V2.
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(1.11) Remark. In [2], [3], Friedman has showed the similar results

for every D-semi-stable KS surface.

(1.12) A modification of type I is a birational modification of a stable

K3 surface as follows: Let X = X1\JX2 be a stable K3 surface of type

Π, E = Xj Π X2 the double curve and C an exceptional curve of the first

kind on Xx. Note that C intersects at exactly one point with E (see (1.13)).

By (1.10) we regard X as a cental fibre of a semi-stable degeneration of

K3 surfaces. Then C can be moved to the adjacent component X2;

blow up C blow bown P*χP* in the other direction

For quasi-stable K3 surfaces, the modification of type I is defined as

follows: on Xl9 contracting C to a point, and on X2, blowing up at p =

En a
We close this section with two lemmas for quasi-stable K3 surfaces.

(1.13) LEMMA. Let S be a component of a quasi-stable K3 surface of

type II and C an irreducible curve on S with E Φ C and (C% < 0. Then

C is a smooth rational curve such that either

(1) (C%= - 1 , (C9E)8 = 1, or

(2) (C%= - 2 , (C,E)s = 0,

where Ee\— Ks\ is the double curve.

Proof. By Ee\—Ks\, the arithmetic genus of C can be computed as

follows: 2pa(C) - 2 = (C2)s - (C, E)s. The lemma (1.13) can be easily

deduced from this formula.

(1.14) LEMMA. Let X = X1{JX2 be a quasi-stable K3 surface of type II.

Then the possible types for the relatively minimal model of Xt are as fol-

lows: (a) P\ or (b) Fn, n = 0,2.

Proof. Let E be the double curve of X. Let Xt be a relatively mini-

mal model of Xt (i — 1, 2). By the classification of surfaces, Xt is either

P2 or Fn9 n >̂ 0, n Φ 1. We note that Xi has an anti-canonical divisor
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which is a smooth elliptic curve. If Xt = Fn, then —KFn = 2sn + (n + 2)R>

where R is a fibre and sn is the section with (s2

n) — —n. By the above

remark, we have

0 <: (~KFn, sn) = -2n +n+2=2-n, and n <: 2 .

Hence we have proved (1.14).

(1.15) Remark. In the following sections, we assume that the self-

intersection number (E2)x. is equal to zero, ί = 1, 2 (see (2.4)). In this

case, by (1.14), we can choose P2 as a relatively minimal model of Xt

(£ = 1, 2).

§2. Periods of stable KS surfaces and Torelli theorem

In this section, we define the period of (quasi-) stable K3 surfaces

and we state the Torelli theorem. Our statement may be regarded as a

degenerate case of the Torelli theorem for Kaehler K3 surfaces ([1]). In

the following, we shall deal with quasi-stable KS surfaces of type II. For

stable K3 surfaces of type II, theorems (2.14), (2.15) are also true with

some modifications of the period domain (see Remark (2.9), (ii)). For sim-

plicity, we say a quasi-stable KS surface for a quasi-stable KS surface of

type II.

(2.1) Let X = X 1 U X 2 be a quasi-stable K3 surface with the double

curve E. The Mayer-Vietoris cohomology exact sequence is as follows:

0 > H\E; Z) > H2(X; Z) > H2(Xi; Z) ® H\X2; Z)

> H\E; Z) > 0 .

Put °W2(X):^ H2(X;Z), °VF1(X):= H\E;Z), and we let °L(X) denote the

quotient module "W^X^W^X). Then

°L(X) ^ Ker {H\X,)Z) ® H\X2; Z) • H2(E; Z)} .

Under this isomorphism, we always regard an element of °L(X) as a class

in H\XX\ Z) ® H\X2; Z). Let Dt be a divisor on Xt and denote by [Dt]

the cohomology class of A If an element (au a2) e °L(X) such that at is

represented by [DJ, we often denote (al9 a2) by [DJ + [Z)2]. Let Et be the

double curve on Xi (ί — 1,2), then [E^ — [E2] is contained in °L(X) for

(Et)Σl + (Et)X2 = 0.
A lattice H is a free abelian group of finite rank endowed with a
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integral quadratic form. The group H2(Xt; Z) ® H2(X2; Z) admits a canoni-

cal structure of a lattice induced from the cup product. Note that °L(X)

inherits a lattice structure from that of H2(Xt;Z) Θ H2(X2; Z). We denote

its bilinear form by <, >.

(2.2) Remark, °W2(X), "W^X) are the weight filiations of the mixed

Hodge structure on X ([7], p. 960).

In our study, the problem is how to interpret the modifications of

type I in the language of cohomology groups. The following lemma will

be needed.

(2.3) LEMMA ([2]). Let X = Xλ U X2 be a quasi-stable K3 surface with

the double curve E and let C be an exceptional curve of the first kind on X^

Let Xf = X[ U Xf

2 be the quasi-stable K3 surface with the double curve E/

obtained by the modification of type I along C. We denote this modifica-

tion by φc. Then

NE//Xί <g) NE//X^ ^ NE/Xl ® NE/X2

and φc induces a lattice ίsometry

φ*: °L(X') >*UX).

Proof, The first statement follows easily from definition. Let C ba

the exceptional curve on X'2 created by φc. Denote by

πt: X, > Xί (resp. π2: X'2 • X2)

the blowing up at pf = E'f)C (resp. p = Ef] C). For ([DJ], [D'2]) e °L(X')

such that (Z?2? C
r)x> = r, we define φ% by

ΦMDίl [D3» = (si*([oa) + [rC], [(χd*r>3).

Then we can easily check that φc([D[] + [D'2]) is contained in °L(X) and

φ% is isometric. We leave the proof to the reader.

(2.4) ASSUMPTION. From now on, we assume that the self-intersec-

tion number (El)x. is equal to zero (i = 1, 2). Since (Ef)Xl + (Eξ)X2 = 0,

every quasi-stable K3 surface satisfies this assumption, after performing

some modifications of type I.

(2.5) DEFINITION. We keep the notation of (2.1). Let πt\ Xi->Xi be

a relatively minimal model (ί = 1, 2). Here we choose Xt = P2 (see (1.15)).

By the assumption (2.4), πt: Xt-+ P2 is the blowing up of P2 at nine points
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on a smooth elliptic curve. We denote the distinct exceptional curves of

Tti (not necessarily irreducible) which meet Et by LJ, , LJ. We suppose

that they are indexed in such a way that LJ c Lf implies that k Ξ> &'.

Let Ht be the total transform of the line in Xt = P2 which passes through

7Γί(LJ) and τrt(LJ) (at least when TΓ^L}) =£ TΓ^L ) ; otherwise take the tangent

line of πt(Et) at ^(LJ) - ^(LJ)). Note that the set {[fl,], [LJ], , [L?]} is

a basis of H2(Xt Z) (i = 1, 2). Any indexed set of exceptional curves {LΊ}

thus obtained will be called an exceptional-configuration of X. As Lf is

the unique effective divisor within its cohomology class [L*], we use the

same terminology for the corresponding collection {[LJ]}.

(2.6) A basis of °L(X) is given by {[£J, [£2], [LJ] + [L2

9], [LJ] - [LJ+1],

[fl,] - [£,}] - [L3 - {L3J; ί = 1, 2, Jfe = 1, -, 7}. We note that for all quasi-

stable KS surfaces, their corresponding lattices °L(X) are isometric each

other. Let L (resp. F) be an abstract lattice which is isometric to °L(X)

(resp. °Wλ(X)) for some reference quasi-stable KS surface X with the double

curve E and let Θ be a vector in L corresponding to [Et] — [2?2] e °L(X).

(2.7) DEFINITION. A marking of a quasi-stable i£3 surface X with

the double curve E is a lattice isometry

α^: °L(X) ® °W1(X) • L®F

such that axiϋW^X)) - F and ^([JSJ - [S2]) = ±θ. We call the pair (X, ax)

a marked quasi-stable KS surface of type II.

Now we define the periods of quasi-stable KS surfaces. The idea of

our definition is due to Y. Namikawa ([11]).

(2.8) Let X be a quasi-stable KS surface with the double curve E.

Let ωx be the dualizing sheaf of X (i.e. let /: X = Xγ _LL X2 -• X be the

normalization of X, with Et being the smooth elliptic curve on Xt such

that f(Et) = E(i = 1, 2). Then ω x is the sheaf of 2-forms ω on X holo-

morphic except for simple poles at Et (ί = 1, 2) and with Res^ω + Reŝ 2<^

= 0). By definition (1.8), there is a nowhere vanishing section ωx of

H°(X, ωx). Consider the exact homology sequence of the pair (Xί9 Xt — E):

. . -> HZ(X; Z) -> ff.ίX,, Xt-E Z)-^ H2{Xt -E Z)^ H2{Xt Z) -> H2(XU

Xt-E Z)^--. We identify Hk(Xi9 Xt - E; Z) with HAk(E; Z) by the

Lefschetz duality. The connecting morphism d: HX(E\ Z) —> H2{Xt — £; Z)

is then dual to the residue homomorphism; in particular, for a cycle Te

; Z) we have
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ωXi = \ JlesEωXί ,

where ωx. e H°(XU Ω2

X.(E)) is a nowhere vanishing section induced from

ωx (ί = 1, 2). Let {a, β} be a basis of H^E; Z). If necessary, changing a

and β, we can normalize ωx by the condition

Res* ωXl = τ , Im τ > 0 , and Res* ωXl = 1 .

Now we regard °L(X) as a subgroup of Pic (XO Θ Pic (X2) under the canoni-

cal isomorphism ίf°(X*; Z) = Pic(Xi), £ = 1, 2. Let <r be a group homo-

morphism from Pic(X^ 0 Pic(X2) to Pic(Z?) defined as follows: for (α,,α:)

where ^ is an inclusion E a Xu ί = 1, 2. Then, by definition, c(°L(X)) C

Pic°(jB) ( = the group of divisors of degree zero on E). So we get a group

homomorphism :̂ °L(X) —> Pic0 (£7). On the other hand, we define an Abel-

Jacobi isomorphism

ξ: Pic°(£) > J(E) := Cj{Z + Zτ}

by ξ(r) - J Res* ωXl for ϊ e Pic0 (£J).

We define a group homomorphism ω z : °L(X) -> c/(-B) by the composite

of c and ξ; ωx — ξ o c. Since Res*ωX l + ResEωX2 = 0, the above definition

is independent of selecting the component Xt of X. Put L* : = Horn (L, Z).

Let H+ be the upper-half plane and Z 2 X 1 9 a lattice in L% : = L* ® C which

acts on if+ X L$ as follows: for (τ, (^)^^1 9) e H+ X L$ and (mj, m2

y)^^1 9 e

Z2X19

(mj, rrή): (τ, (^),) > (τ, (^ + mj τ + πή),) .

Let β : = {H+ χL?}/Z2 x 1 9 denote the quotient space. Let (X, ax) be a

marked quasi-stable i£3 surface with the double curve E. Then the period

of smooth elliptic curve E determines a point in H+ as usual; we denote

it by ax(τx) e H+. As mentioned above ωx is now considered as a homo-

morphism from °L(X) to C modulo Z + Zax{τx). Hence we think of ωx

as a homomorphism from L to C modulo Z + Z<xx(rx); we denote it by

ocχ(a)x). In this way each marked quasi-stable K3 surface (X, ax) determines

a point [(ax(τx), ax(ωx))] e Ω. We call [(ax(τx), ax(ωx))] the period of (X, α*)
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and Ω the period domain for quasi-stable K3 surfaces.

(2.9) Remark, ( i ) The homomorphism ωx coincides with the exten-

sion class of mixed Hodge structure on X in the sense of Carlson's (cf. [2]).

(ii) The condition NE/Xl®NE/X2 ^ OE implies that ωx{[E^ — [E2]) = 0

in J{E). Hence if we take the quotient lattice *UX)lZ([Eά - [E2]) for L,

we can construct the period domain for stable K3 surfaces.

(iii) We can easily check that the periods of quasi-stable K3 surfaces

are invariant under the modifications of type I in the following sense: let

X be a quasi-stable KS surface with the double curve E and φ: X > X'

a modification of type I. We also think of E as the double curve of X\

Then for any ([CJ, [CJ) e °L(X'),

ω*(0*(([CJ, [CJ))) = o*,(([CJ, [CJ)) in J{E)

{see (2.3)).

Before stating the Torelli theorem, we need some definitions. In the

following, we refer to [1], [8], [9] and [14] for the reflection groups and

its geometric applications.

(2.10) We keep the notation of (2.1). Let X b e a quasi-stable K3 sur-

face with the double curve E. We fix an exceptional configuration {Lf}

of X. Let L(X) denote the quotient module °L(X)/Z([£J1] - [JEJ). Then L(X)

has a lattice structure induced from that of °L(X). Moreover, by the ex-

pression of (2.6), L(X) is isometric to H®(—E8)@ (—E8), where H is the

lattice of rank 2 with the corresponding matrix (i Q) and E8 is the lattice

of rank 8 with the Cartan matrix of the root system Es. For brevity, we

also denote the bilinear form of L(X) by <,) and denote an element [DJ

+ [D2] mod([ί;j - [E2]) of L(X) by [DJ + [AL

We let Δx denote the set {[LI] + [Ifl, [LJ] - [LJ+1], [Ht] - [L\] - [LI]

— [L?] i = 1, 2, k = 1, 2, , 8}. As mentioned above, we regard Δx as a

subset L(X)R. Any class β e J z determines an automorphism sδ of L(X)R

defined by sδ(x) = x + <x, <5)5 for x e L(X)R. Note that sδ is a reflection

for the hyperplane orthogonal to δ. Since the signature of L(X) is (1,17),

the set {xe L(X)R; <#, x> > 0} has two connected components; write P£U

p - == {χeL(X)R; <x, x) > 0}. Here P J is the component which contains

an element (κl9 κ2), where κt is the cohomology class of the 2-form corre-

sponding to a Kaehler metric on Xt (i = 1, 2) and satisfies the condition

= <Λ:2, [E2\). The following result is known.
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(2.11) PROPOSITION (cf. [14]). Let Wx be the reflection group generated

by Δx and Cx denote the set {xePx; (x, δ) > 0 for all δeΔx}. Then Wx

acts on Px and the closure of Cx in Px is a fundamental domain for this

action. Moreover, the Coxeter diagram of Wx is as follows:

(2.12) PROPOSITION. Let Rx denote the set WXΔX. Then Rx agrees

with the set of all elements aeL(X) with {a, a} = —2.

Proof Let Γ be the subgroup of the group of isometries of L(X)

generated by the reflections {sδ; δ e L(X), <3, δ) = —2}. Then {sδ; δ e Δx} is

a generator of Γ (see [14], § 3). Hence we have Wx = Γ. Let a be an

element of L{X) with <αr, a) = — 2 and let denote Ha the hyperplane {xe

L(X)R; {x, a) = 0}. By (2.11), we can choose weWx such that w(Hδ) = ίfα

for some de J x . Since Hw(δ) = ^(i?"δ), we have #« = ίf^^. So α = r w(δ)

for some re i? . It then follows that a = ±

(2.13) We call C x in (2.11) the fundamental chamber of X endowed

with the exceptional configuration {LI}. The convex polyhedron Cx defines

the partition Rx = Rx M Rx, where Rx = {δ e Rx; (δ, x> > 0 for all x e Cx}.

This partition has the property that

(*) If ai9 - , an e Rx, and a = ΣS=i riai e Rχ
(rt > 0 integers), then a e Rx (e.g. [1], p. 241).

An element a e Rx is called nodal if either a is represented by a smooth

rational curve with self-intersection number —2 or there is a sequence

{X • Xλ > - - > XΛ of modifications of type I such that a is repre-
Φl Φr

sented by φf o . . . o φ*([C]) (see (2.3)), where C is a smooth rational curve

on Xr with self-intersection —2. We denote the set of all nodal classes

by Δx. Let Wx be the reflection group generated by Δx and put Rx : =

Wχ-Δχ. Note that if ae RXΠΔX, then a is of one of the following types;

(a) a = [LJ + [L2], where L̂  is an exceptional curve of the first kind on

Xt (i = 1, 2), (b) a = [CJ + h [CJ (^ ^ 1), where Ct is a smooth rational

curve with self-intersection —2 and {Cu Ci+1) = 1, (Cf, C7) = 0 for iΦj±l.

Moreover, in Section 3, we shall characterize R\ as follows (see 3.4)):

Rx = {a e Rx; ωx(a) = 0 in J(E)}. Let Cj be the set {x e Px; (x, δ) > 0

for all δ e JJ}. Then Proposition (2.11) holds for the action of W$ on Px
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and a fundamental domain Cj. We remark that Cj is independent of the

choice of an exceptional configuration of X We call CJ the nodal chamber

of X. Now we formulate our main results.

(2.14) THEOREM. Let X=XXΌX2 and X' = X[UX'2 be two quasi-stable

KS surfaces of type II with the double curves E, E;, respectively. Let φ*:

°L(X')@0W1(X')->0L(X)®0W1(X) be an ίsometry such that (i) φ*(?W1(X'))

= °W1(X)f (ii) φ*([E[] - [E'2]) = ± ([Ex] - [E2]) (By (ii), φ* induces an ίso-

metry from L(X') to L(X). For simplicity, we also denote it by φ*\ (iii)

φ*(Pi,) = Pi and φ*(Cn

x) = Cj, (iv) φ* sends H10(E\ C) to H10(Ef C) and

<»z{φ*({*u a2))) = J(φ*XωA(«i, «*))) (in J(E)) for (au a2) e °L(X')9 where J(φ*)

is the isomorphism of Jacobian varieties induced from φ*: Hι*\E') -> Hh0(E).

Then there is a sequence

[X -+ Xί _> , χr_x _> χr]

Φ1 φ2 ψr

of modifications of type I and an isomorphism ψ: Xr -> X' such that the

associated ίsometry

φ* o . . . o φ* o ψ*: °L(X0 Θ °W1(Xί) > °L(X) ® °Wt(X)

agrees with φ*.

(2.15) THEOREM. For every point [(τ, ω)] e Ω, there is a marked quasi-

stable KS surface of type II with the period [(r, ω)].

Proofs of (2.14), (2.15) will be given in Section 3.

(2.16) Remark. Let D be the period domain for smooth KS surfaces.

Let us recall that there is an etale covering D —> D such that D is a

relevant moduli space for marked Kaehler KS surfaces ([1], p. 239, or [10],

Theorem (10.5)).

In our case, the corresponding situation is as follows: We let N denote

the lattice H® (—EQ) 0 (—E8). As remarked in (2.9), (ii), we can construct

the period domain Ωo : = {H+ X Nc}lZ2xί8 for stable KS surfaces by the

same way for Ω. Here we select the lattice Z 2 x 1 8 c Nc which contains N.

Let W be the reflection group generated by Δ : = {δeN; (δ, 3} = —2} and

consider the space Ω'o consisting of pairs ([(r, ώ)]9 tc) e Ωo X NR satisfying

<Λ:, K) > 0. Naturally W acts on Ω'o: for δeΔ,

sδ: ([(τ, ω)], K) > ([(τ, sδ(ω))], sδ(ιc)) .

Let Ω" c ΩQ denote the complement of the set of fixed points of reflections.
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We define an equivalence relation ~ on β" by letting ([(τ, ω)], fc) ~ ([(τ/,

ω% K') if and only if [(r, ω)] = [(τ\ ω')] and /c and κf belong to the same

connected component of Ω" Π ([(τ, ω)] X NR). Let Ωo := Ω"/ ~ denote the

quotient space. It is provided with a canonical projection

π: ΩQ >Ω0.

Then Ωo receives the structure of analytic space, etale over Ωo ([10], Lemma

(10.4)).

Let M be the set of isomorphism classes of marked stable KS surfaces

(with isomorphisms defined in the obvious manner). Then we associate

a map p: M—> Ωo which assigns to the isomorphism class of marked stable

KS surface (X, ax) the equivalence class of ((ax(τx), ax(ωx)), the nodal

chamber of X). Here we use the following fact which will be proved in

Section 3, Proposition (3.4); If δ e Rx, then δ e Rn

x if and only if ωx(δ) ΞΞ 0

in J(E).
In this situation we reformulate theorems (2.14), (2.15) as follows:

( i ) The map p: M—> Ωo is surjective.

(ii) Let (X, ax) and (X', ax) be two marked stable KS surfaces whoss

images by the map p are contained in the same fibre of π, then there is

a bimeromorphic map X > Xf which is a composite of modifications of

type I.

§3. Proofs of (2.14), (2.15)

Let X = Xx (J X2 be a quasi-stable KS surface and E the double curve.

We fix an exceptional configuration {Lf} of X. First we shall prove the

following two lemmas. We keep the notation in Section 2.

(3.1) LEMMA. If aeΔx — Rx, then either {sβ([Lf])} is an exceptional

configuration of X or there is a composition {φ : = φίoφ2: Xr • X" > X}
02 Φl

of modifications of type I such that {φ* o sα([Z£])} is an exceptional configu-

ration of X'. (We remark here that every reflection sa, aeΔx, is defined on

H\XX\ R)@ H2(X2; R), and the expression sa([L*]) is in this meaning.)

(3.2) LEMMA. If weWx is such that w(Cx) c Cx, then either {wflXJ])}

is also an exceptional configuration of X or there is a composition {Xr >
Φr

Xr.x > > Xx • X) of modifications of type I such that {φf o . . . o
Φr-l Φl

φf o w([Lι])} is an exceptional configuration of XΊ.
(3.3) Remark. Looijenga [9] has deeply studied rational surfaces with
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anti-canonical cycle. Our process in the above lemmas is similar to his

method, but in our case modifications of type I occur, which make the

argument more complicated (see [9], § 4).

Proof o/(3.1) (see [9], § 3). Let a be an element of Δz. If a = [L\~x]

— [L*], then a <£ Rx if and only if L\ is not contained in L\~λ, hence L\ and

L\~x are disjoint (see (2.13)). Since sa interchanges L\"1 and L\ and leaves

all other Lf fixed, everything is obvious in this case. Next if a = [ifj

— [L\] — [LI] — [LI], then the condition that a e Rx implies that π^L]), ̂ (LJ),

π^L^) are not collinear. (Here πt: Xt —• X* is a relatively minimal model

of X* (see (2.5)).) Suppose that πt(Ht) is not a tangent line of E. Then

TΓ^LJ), 7Γi(Li) and π^Lf) are distinct. Moreover, by the assumption of the

indices of the exceptional configuration, each L\ is a maximal exceptional

curve in the sense that L\ = πϊ1 o ̂ t(Lf). Now sa([L]]) = [Hi] - [LI] - [L?]

is represented by the total transform of the line Xt = P2 which passes

through πt(Lf) and π^L^) minus L\ + L\. If we denote this representative
fL\ (and 'L , resp. 'L\9 the corresponding representatives of sa([Ll]), resp.

SaiWfl)), then it is clear that 7LJ, 'LJ, 'LJ are disjoint and that any Lξ (μ > 3)

which meets rL\ (I <L k <L 3) is actually contained in fL\. So {sα([L£])} is

an exceptional configuration of X. The proof for the case that π^Hi) is

a tangent line is similar.

Last of all, if a = [L[] + [LI], the condition that a £ Rx just means

that the points L\ΠE and L9

2Γ)E are distinct. Note that sβ([LJ] + [LJ]) =

— [L3 - [LI], sa([L«] - [LI]) = [LI] + [LI], sa([L«] - [LI]) - [Lf] + [LI] and

s«([i<]) = [i?l for i = 1, 2, 1 ^ ife ^ 8. Let φ: X' • X be the birational

map obtained by the modifications of type I along the exceptional curves

of the first kind L?, L\ (by the assumption of indices of {L\}, L\ and L\ are

first kind). Let fL\ (resp. 'L§ be the exceptional curve on X' obtained by

blowing up the point L\f\E (resp. L\Γ)E).
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Put ['Lϊ] = 0*([LJ]), ί = 1, 2, 1 ^ A ̂  8, Then we have that 0*(-

- [LJ]) = ['Lfl + ['L°], 0*([L?] + [LI]) = ['Lf] - ['«] and ί5*([X5] + [L?]> =

['L\] — \m\. Now it is easily check that {['L*]} is an exceptional configu-

ration. We leave the proof to the reader.

Proof of Lemma (3.2) (see [9], (3.5), (4.2)). First we claim that Cn

x con-

tains Cx. For this purpose, it is sufficient to prove that Δx is contained

in Rx (see (2.13)). Let δ= [D] (eΔn

x) be a nodal class. If D has a com-

ponent which is not contained in L\, then obviously <£, [ffj + [H2]) > 0.

Since [fiΓJ + [#2] e C^, d is contained in Rx. Now we assume that δ is

represented by a divisor Z) whose each irreducible component is contained

in some L*. Since Z) is connected (by definition), D is one of the fol-

lowing two types: (i) D is a smooth rational curve with self-intersection

— 2, (ii) D = Cj + C2, where C* is an exceptional curve of the first kind

on Xt (i = 1, 2) with Cλ Π i? = C2 (Ί J5. If Z) is a smooth rational curve with

self-intersection —2, then D is represented by L£ — L\' (1 ^ /J < h! ^ 9).

Hence [D] is a positive linear combination of elements of Δx\

[D] = ([Lf] - [LΓ1]) + + ([if"1] - [Lf]) .

By (2.13), (*), [2>] is contained in Rx.

Next, if D = Cj + C2, where Ct is an exceptional cμrve of the first

kind on Xt (i = 1, 2) with C.Π E = C2Γ\ E, then [CJ + [C2] is a positive

linear combination of elements of Δx\

[c j + [c j = ([L{] - [Lr]) + + ([ta - [Li]) + ([Li] + [LIV

+ ([Lί] - [LI]) + + ([LI] - [Lr1]).

So in this case [CJ + [C2] e Rx, too. Hence Cx is contained in Cx. Note

that there are no hyperplane separating Cx from w(Cx) which is orthogonal

to some a e Δx.

Now we prove (3.2). We pick a point x0 e w(Cx) and denote the set

{aeRx; (a, xo> < 0} by ΦXo. Then ΦXo corresponds to the set of hyper-

planes orthogonal to a e Rx which separate Cx and w(Cx). By [15] Lemma

9 (in § 3), ΦXQ is a finite set. Hence we can index the elements of ΦXo as

follows: ΦXQ = {aί9 , ak) (with k = caxdΦXo) such that the set

{Ci = s a i o . . . o S a i ( C x ) ; i = l , • - . , * }

is a chain of the fundamental chambers from Cx to w(Cx); more precisely

the intersection of Ci_1 and Ĉ  = ^ . ( C ^ ) is a non-empty open set in the

hyperplane Ha. = {xeL(X)/j; <x, ^ ) = 0}. Note that at is contained in
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Δx. Since Cx is contained in Cj, the condition that at e Rx implies that

oίi £ Rx (ί = 1, , k). With induction on ί, Lemma (3.2) now follows easily

from (3.1).

Proof of Theorem (2.14). Let [Lf] (resp. {'LJ}) be an exceptional con-

figuration of X (resp. Xf). Let Cx (resp. Cx) be the fundamental chamber

of X (resp. Xf) endowed with the exceptional configuration [Lf] (resp.

{'£,?}). By the assumptions in (2.14), we have that φ*(P$,) = Pi, φ*(Cn

x.)

= Cj. On the other hand, by (2.12), we have φ*{Rx) = Rx. Hence both

C x and φ*{Cx) are fundamental domains for the action of Wx on Px (see

(2.11)). In particular, w(Cx) = 0*(CZ>) for some w e Wx. It then follows

that w{Δx) = φ*(Δx). Hence, if necessary, changing the indices of X^ and

X2 (or equivalently, replacing φ* by coφ*} where c is the symmetry of the

Coxeter diagram of Wx (see (2.11)), we can assume that

- [LJ+1]) = φ*(['Lf\ - ['Lf+1]) ,

[L9

2]) - 0*(['ia + ΓL9

2]) and

ί = l,2, Λ = l , 2 , .-., 8 .

Since ^(C x) is contained in ^*(Cj/) = Cx, by applying Lemma (3.2), we

get a sequence {Xr —•-> Xr_! • • Xt • Xo = X} of modifications
Φr Φl

of type I such that {φ* o . o φ* o ιt;([Lf])} is an exceptional configuration

of Xr = JfliΓ U^,r. We denote φ*o...oφ*o φ* by ψ* and {φ* o . .. o ̂ * o

zί;([L ]̂)} by {[L*r]}. Let π i ) r : X ,̂r -> X i ι r be a relatively minimal model and

let Er be the double curve of Xr. Then we have that

= [Lf,r] - [Lft1] ,

[L?,r] + [LS,r] and

( i = l , 2 , fe=l,2, - . . , 8 ) ,

v/here Hίr is the total transform of the line in XUr = F 2 which passes

through πίίr(Llr) and πUr(DUr) (at least when 7Γ;)r(Z4ir) ^ ^<ιr(LJ$r); otherwise

take the tangent line of πt,r(Er) at πUr(Llr) = ^,r(L?ir)). Let w* (resp. ̂ J)

be the point ErΠLlr (resp. E'Π'Lf). Then by the equations ψ*([/Lϊ] -

['Lϊ+1]) = [Lf,r] - [Lϊ,;1] and the assumption (iv) in (2.14), there is an iso-

morphism

ψ0: Er >E'
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such that ψ 0(Mf) = 'u\ (k = 1, . . . , 9). Moreover, fron ψ*([X?] + [X9

2]) =

[L9

hr] + [Lid, we obtained

(Here we consider Er (resp. Z£') a group with the identity element u\ (resp.

'wi)). So we get ψo(ι4) = 'i& By the equations ψ*(['L*] - ['L*+1]) = [L*r]

- [i*,;1], we conclude that φo(uξ) = ru\ (i = 1, 2, Λ = 1, 2, , 9).

Let w< (resp. fu%) denote the third point at which Hir intersects Er

(resp. 'Hi intersects E'). Then the linear system \ut + u\ + u\\ (resp. l 7 ^ +

'u\ + 'ul\) gives an embedding Er-+P2 = XUr (resp. E' -> P2 = X{), £ - 1, 2.

By the above equation w.r.t. ψ*, it follows that

ψ0* | ' M l + 'u\ + ^ ί | = \Ui + u\ + MJI (i = 1, 2) .

Hence ψ0 can extend to an isomorphism ψ t : XUr -• XJ (i = 1, 2). Obviously

φί induces an isomorphism ψ^: XUr -+ X^ (i = 1, 2). Moreover ψ:= ψiUψ2

X l r U X2,r -> Xi U X2 is an isomorphism and by construction, ψ* = ^* o . . . o

^f © φ* agrees with an isomorphism induced from ψ.

Proof of Theorem (2.15). Let [(r, ω)] € Ω be given. Let E be a smooth

elliptic curve with the period {1, τ) and ωE a holomorphic 1-form on E

such that

ωE = τ , U£ =

for a suitable basis {or, β} of fli(J5; Z). We regard a basis of L as a coordi-

nate system of Lc and write

ω = [(tl9t2, . . . , O ] e L * / Z 2 x 1 9 ,

where (^, ί2>

 # , 1̂9) 6 L$. Now we consider the following equations in the

points zμJ, μ = 1, 2, 7 = 0,1, , 9, on E: modulo Z + Zr,

( i ) ΣS

(ii) ^ = ί,
J 22,9

( ϋ i ) Σ 5 = i I l t 0 ω ^ = ^ , I 1>l ωE = ί< + 4 ( i = 1, . ., 7)

( i v ) Σ 5 = i ωE = t12, ωE = ί<+12 ( i = 1, . . . , 7 ) .
JZ2.0 »/Z2,ί

These equations are correspond to the expression (2.6) of the basis of °L.

By Jacobi's inversion theorem, we can solve these equations as follows:
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First we take a point zhϋ — poeE, arbitrarily. Applying Jacobi theorem

on the equation (iii), we can find pl9 -,p8eE such that {zlti = pύ i —

1, , 8} satisfies the equation (iii). Next from the equation (i), we can

find a point p9eE such that {zhί = pt\ i — 1, , 8, 9} satisfies the first of

the equation (i). Similarly from the equation (ii), there is a point qde E

such that

ωE = ί3 mod Z + Zτ .

Moreover, by the relations

( 2 M + + 31|9) - (z2>1 + + z2fβ)

and

= 3(3^,0 - ziΛ - zit2 - zuz) + 2(ziyl - zu2) + 4(^,2 - s M )

we can write that

ω^ = a linear combination of {ίlf t29 , ί19} .

Again, applying Jacobi theorem on this equation and the equation (iv),

we can find q09 q19 , q8e E such that {z2J = g ;; 0 ^ j ^ 9} is a solution

of the equation (iv) and the second of the equation (i). Consequently we

obtain the solution {zlti = pi9 z2J — q^ 0 <̂  ί, j ^ 9} of the equations (i)-

(iv).

Let Xi be a copy of P2 (ί — 1, 2). Now we consider the embeddings

|3po|: E-^X1 = P\ \3qo\: E^X2 = P\ Let Xί (resp. X2) be the surface

obtained from X! (resp. X2) by taking successive blowing ups at pl9 , p9

(resp. qu , g9). Let Ex (resp. E2) be the proper transform of E by the

above blowing ups. We denote the induced isomorphism from Ex to E2

by φ. Then the surface X obtained from Xλ and X2 by patching through

Ex and E2 under the isomorphism φ is the required one.

Lastly we prove the following proposition which has been used in

the reformulation of theorems (2.14), (2.15) (see (2.16)).

For a 6 ΔX9 we can define ωx(a) by regarding a as an element in °L(X).

We can also define ωx(a) for a e Rx, since a is represented by an element
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(3.4) PROPOSITION. If ae Rx, then ae Rx if and only if ωx(a) == 0 in

Proof. Let δ(e Δn

x) be a nodal class. Then, by definition and (2.9),

(iii), ωx(δ) - 0 in J{E). If ae Rx, then a = OmodZ Δ\ and so ωx(a) = 0

in J(E). Conversely, if a e Rx such that ωx(a) = 0 in J(E), then α: = w(β)

for some βeAx,we Wx. Write w = w" o wf with u;'(Cz) c Cj and u;" e W>.

According to (3.2), there is a sequence

of modifications of type I such that φ* o . . o φ* o H/(/3) = [L] + f [I/] for

some exceptional curves L, 1/ on Xr (r ^ 0), where f = — 1 (resp. ξ = 1)

if and only if L and Lr lie on the same component of Xr (resp. on the

distinct component). Let Er be the double curve of Xr. Since w" o M;'(]8)

= w'(β)modZ-Jn

x, ωx(w'(β)) = ωx(w" o w'(β)) = ω^α) = 0 in J(E). Hence,

by (2.9), (iii), ωXr([L] + f[Lr]) = 0 in J(Er). This implies LΓ\Er = L'Γ)Er

by Abele's theorem. It follows that either L contains 1/ or L does not

lie on the component of Xr on which L' lies. Hence [L] + ξ[U] e RXr. By

definition, each φt preserves the nodal classes and so w'(β) e Rn

x. Con-

sequently a = w" o u 'dS) € i?J.
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