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§0. Introduction

In [3], Platek constructs a hierarchy of jumps J5 indexed by elements
a of a set 0° of ordinal notations. He asserts that a real X C o is recur-
sive in the superjump S if and only if it is recursive in some J5.
Unfortunately, his assertion is not correct as is shown in [1]. In [1], it
also has been shown that an ordinal > o is JS-admissible if it is |a|s-
recursively inaccessible, where |a|s; is the ordinal denoted by a.

Let A be an arbitrary set. We say that an oridinal « is A-admissible
if the structure <L,[A], €, A N L,[A]>, which we will denote by L,[A] for
simplicity, is admissible, a model of the Kripke-Platek set theory KP,
where L,[A] is the sets constructible relative to A in fewer than « steps.
We use o or w,(A) to denote the first A-admissible ordinal > w, and use
(4, -+, A,) for o,(CAy, -+, AD).

The purpose of this paper is to prove the following theorem.

THEOREM 1. Suppose a € 05 and a > o is a countable |a|s-recursively
inaccessible ordinal. Then, there exists a real X C w such that a = o,(J35, X).

In the case |a|; = 0, J5 = °E, the Kleene object of type 2, and w,(E, X)
= of for all reals X C w. « is an admissible oridnal if and only if it is
O-recursively inaccessible. Therefore, Theorem 1 is an extension of the
following theorem of Sacks.

THEOREM 2 (Sacks [4]). If a« > w is a countable admissible ordinal,
then there exists a real X such that a« = of.

Sacks also showed that the real X mentioned in Theorem 2 can be
taken to have the minimality property:

of < a for every Y of lower hyperdegree than X.
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Likewise, we can show that for every countable |a|s-recursively inaccessible
a > o there is a real X such that:

a = w7, X);
and
o (J3,Y) <a for every Y of lower J5-degree than X

Theorem 1 will be proved by the forcing with J7-pointed perfect trees.
Let « > o be a countable |a|s-recursively inaccessible ordinal and X be
a generic real with respect to this forcing relation. Then L,[X] is admis-
gible and o < w(J5, X). To see o(JS, X) < o, we must show that X
preserves sufficiently many admissible ordinals below « to make « to be
{J¥, X)-admissible.

§1. |a|s-recursively inaccessible ordinals

A normal type 2 object is a total function F from o® to o such that
the Kleene object *E of type 2:

0 if @n)f(n) =0,

1 otherwise,

B(f) = {

is recursive in F. The superjump S(F) of F is a type 2 object defined by:

0 if {n}7(f) is defined,
1 otherwise .

S(F) ((n, ) = {

Platek [3] defines a hierarchy J of type 2 objects along with a set
0% of ordinal notations, starting from 2E and iterating the superjump
operation transfinitely.

An ordinal « is O-recursively inaccessible if it is admissible. « is
(o-+1)-recursively inaccessible if it is ¢-recursively inaccessible and a limit
of g-recursively inaccessible ordinals. For limit 2, « is said to be A-recur-
sively inaccessible if it is o-recursively inaccessible for all ¢ < 1. Let X
be an arbitrary set. o-recursively-in-X inaccessible ordinals are defined in
the same way starting from X-admissible ordinals. By RI(s, X), we denote
the class of all g-recursively-in-X inaccessible ordinals. In the case X=0,
RI(o, @) is the class of all o-recursively inaccessible ordinals.

The following lemma, due to Aczel and Hinman, gives a character-
ization of w,(J5, X) for X C o.

1) For Ji-degrees, the reader may refer to [5].
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Lemma 3 (Aczel and Hinman [1]). Suppose a € 05 and ¢ = |als, the

ordinal denoted by a. Then ¢ < w(JS), and for any ordinal « > o and
X< ow:

a € Rl(o, X) > a is {JJ, X)-admissible,
and w,(J5, X) is the least ordinal in RI(s, X).

Let 4, be the least ordinal 1 such that 2 is A-recursively inaccessible.
Lemma 3 shows that |0%| = sup {|a|s: a€ @5} < 4. In [1], it has been shown
that |0] = 4.

Let « > o be a countable admissible ordinal. Using the unbounded
Levy forcing over L,, we can add to L, a generic function K: (¢ —w) X @
— a such that if @ < g < a then the function AnK(B, n) is a bijection from
o onto B. Therefore, in L,[K] all sets are countable. It has been shown
in [4] that <(L,[K], ¢, K) is an admissible structure in which ,-DC
(2,-Dependent Choice) holds.

Suppose a€05. For any X, Y C 0w, X <,5Y means X is recursive in
{J5, Y, which is equivalent to that X e L,[J3, Y], where p = o(J5, Y). X

and Y have the same J5-degree, X = ,sY,if X < ,sYand Y < ,sX. X < ;57
if X< J‘EY but X = JﬁY.

LEMMmA 4. Suppose a > w is a countable |a|s-recursively inaccessible
ordinal and K is a generic function with respect to the unbounded Levy
forcing over L,. Then for any X, Y C w:

X<,sY and Y e LJ[K]—> X e LJK].

Proof. The unbounded Levy forcing preserves admissible ordinals.
That is, if § < a is an admissible ordinal then g is K-admissible. This is
because for admissible B, K[ (8 — ») X o is generic with respect to the
unbounded Levy forcing over L,. Therefore, if Y ¢ L,[K] then « is |a|s-
recursively-in-Y inaccessible, so L,[Y] < L,[K], where p = w,(J;, Y). Thus
we have the lemma. O

§2. Ji-pointed perfect trees

Let a be an element of @5 such that |a|s > 0. We put J = J5 for
simplicity.

A perfect tree is a set P of finite sequences of 0’s and 1’s such that:

(1) peP and gSp—>qe P;
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and

(2) (Vp € P)(3q, r € P)(q and r are incompatible extensions of p),

where g C p denotes that p is an extension of q. For a perfect tree P, [P]
denotes the set of all infinite paths through P:

[P] = {fe2: (Vn)f(n) € P}.
We say that P is J-pointed if:
(3) (vVf e [PD(o, P) £ 0(J,f) and P e L,y »lfD.

Note that if P is J-pointed then it is < ,-pointed in the sense of Sacks
[4:2.1], but not vice versa.

LemMA 5. Suppose P is J-pointed. If X C w and P <,X, then there
exists a J-pointed @ < P such that @ =,X.

Proof. In [4:2.3], Sacks constructed a perfect subtree @ of P such
that:

(4) Q is recursive in P and f for every fe[Q];
and
(5) Q=,X.

To see @ is J-pointed in our sense, fix f ¢ [@]. Since P is J-pointed and
f e [P], by (8), we have:

(6) P e Lal(J,P)[f] .

Clearly:

(7) fe L,un»lfl.

From (4), (6) and (7), we obtain:

(8) Q ¢ L, »lfl.

From (5) and the assumption P <,X, we see:

(9) o(J, P) < o(J, Q).

From (8) and (9), we obtain @ € L, ; o[f]. |

For any ordinal 4, {6}’ denotes the d-th element’of L[f] in the canonical
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wellordering on L[f]. A perfect tree P is said to be uniformly J-pointed
if there exists an ordinal ¢ such that:

(10) Vi e [PD(P={6) and o <au(J,f)).

Obviously, uniformly J-pointed perfect trees are J-pointed. Let a« > o be
a countable |a|s-recursively inaccessible ordinal and K a generic function
over L, in the sense of the unbounded Levy forcing. Observe that if P
is uniformly J-pointed and P ¢ L,[K] then there exists a 6 <« which
satisfies (10) since the leftmost path f, through P is recursive in P and
s0 o, fr) < w(J, P) < a.

Let M be a countable admissible set and P be a perfect tree in M.
Then P becomes a partially ordered set as usual. The forcing with P as
the set of conditions is called the local Cohen forcing over M and denoted
by H—;—, or simply by |[-Z. If f €[P] is generic with respect to ||[-Z, then
MIf] is an admissible set, and so is L,[f], where y = M N On.

LEmMmA 6. For any &€ < « and any J-pointed perfect tree P in L,[K],
there exists a uniformly J-pointed perfect tree @ < P such that & < o,(J, @)
and @ ¢ L.JK].

Proof. Since ¢ is countable in L, [K], there is a real X e L,[K] such
that & is recursive in X. By Lemma 5, there is a J-pointed perfect sub-
tree P, of P such that P, =,X. Then we see & < o,(J, P), and P, ¢ L,[K]
by Lemma 4. Thus, we may assume & < w,(J, P) from the beginning. Put
M =L, »[P]. Consider the local Cohen forcing relation [+ over M.
Since P is J-pointed, we have:

1y (Vf e [Phod, P) < o(J, ) ;

and

(12) (Vf e [PY@Er < o(J, P) {1y = P.

By (12), there exists a p, € P and 7 < w,(J, P) such that:
(13) Pl {77 =P,

where 9 is the canonical name which denotes the generic reals. As in
[4:2.10], we can construct a perfect tree @ < P such that:

(14) Qe L, nlPl;

and
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(15) (vfel@D{rY =P.

From (14), we can find a ¢ < w,(J, P) such that {§}* = @. So, by (15),
there is an ¢ < w(J, P) such that:

(16) (Vfel@D{) = Q.
Let f, be the leftmost branch of @. Then, by (11):
(17) a)l(J7 P) é wl(J’ fQ) § wl(Jr Q) .

Hence, from (16), we see that @ is uniformly J-pointed. By (17), we also
see & < w(J, Q). Since P e¢ L,J[K], we have w(J,P) <« and so @ ¢
L, . »[P] S L[K]. O

Let % be a first-order language. A II! formula in % is a second-
order formula of the form:

(VS - - (VS v,

where S,, - -, S, are predicate variables and + is a first-order formula in
the expanded language % U {S, - -, S,}.

LEMMA 7. Suppose A is a countable admissible set such that w € A and
&% e A is a first-order language. Let 6(x,, ---, x,) be a II} formula in £.
Then there exists a 2, formula @(x, ---, x,, y) such that for any structure
M=LM, ---> e A for ¥ and any a,, ---,a, € M:
A|:@(a17 cety Ay, ‘/%)(—')‘///F:a(al’ ° "’an)~
Proof. This is well-known. See, e.g., Barwise [2:IV. 3.1]. O

Using this lemma, we obtain the following lemma.

LEmma 8. The set of all uniformly J-pointed perfect trees in L,[K] is
2, over L,[K].

Proof. Put ¢ = |a|s, (recall that J = Jf). Let P be a perfect tree in
L[K] and 6 < a. Let B(P, 0, 0) denote the least admissible ordinal g < a
such that max(d,s,0) < p and P e L,[K]. The function B is 3, over
LJK]. We can easily find a II; formula 6 in the language of set theory
such that for any perfect tree P ¢ L,[K]:

P is uniformly J-pointed <—> (36 < a)L;5,,[K] |= 6(P, 3, 0) .

Thus the lemma follows from Lemma 7. [}
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§3. Forcing with uniform JS-pointed perfect trees

Suppose |als >0 and put J =J5. Let o« > w be a countable |a|s
recursively inaccessible ordinal and K a generic function with respect to
the unbounded Levy forcing over L, which we fix throughout this section.

Let Z(«a, 97) be a ramified language containing names for all members
of L,[f]. “%(a, ) includes: a numeral 7 for each n € w, unranked vari-
ables x, y, 2, - - -; ranked variables «, y*, 2%, - .- for each B < «; and ab-
straction operator ~. It is intended that I denotes {n € w: f(n) = 1}, that
x ranges over L,[f], that x* ranges over L,[f], and that %°3(xf) denotes
the set:

{x e Lylf]: Llf1 |= ¢(x)} .

C(p) is the set of names for elements of L,[f] and C = U,., C(p).

Let # denote the set of all uniformly J-pointed perfect trees in L [K].
P, Q, R, - - - denote the members of #. For a ranked sentence ¢ of #(«, )
and P ¢ 2, let p(P, §) be the least admissible ordinal p < « such that
P e L,[K] and rank (¢) < p. The function p is 3, over L,[K]. The forcing
relation P ||— ¢, where ¢ is a sentence of Z(«, 77), is defined inductively:

(1) ¢ is ranked. P|—g¢ iff (Vf € [PDL,r,5)[f] |=¢;
(2) ¢ \V ¥ is not ranked. Pl|—¢ \V « iff P|l— ¢ or P|— ;

(3) (3x)p(x?) is not ranked. P |— Axf)p(xf) if P||—g(c) for some
ce CP);

(4) P|— @x)¢(x) iff P|— ¢(c) for some ¢ ¢ C;
(5) ¢ is not ranked. P|— ¢ iff (VQ < P) 1(Q [|—¢)-

Using Lemmas 7 and 8, it is easy to see that the forcing relation
P|— ¢, restricted 3, sentences ¢, is 2, over L, [K].

Lemma 9. For each P and ¢, there exists a @ < P such that Q|—¢
or Q|— 4.

Proof. In view of (5), we may assume that ¢ is ranked. By Lemma
6, we may also assume that ¢ € L,[P] for some P-admissible § such that
d < w(J, P). Then, in L;[P], all sets are countable. Thus, in L;[P], we
can enumerate all ranked sentences of rank < rank (¢):

¢:¢0)¢l)"')¢ny"' (ne(t)).
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Let |= be the local Cohen forcing relation over L;{P]. In L;[P], we can
construct a family {(g,: s € Seq(2)) of elements of P such that:

(6) ’ qs ”_P‘ ¢n or g; ”L —I ¢n> Where n = ﬁh(S);
and
(7) g0, and gg,, are incompatible extensions of gq,,

where Seq(2) is the set of all finite sequences of 0’s and 1's. Let @ =
{g € P: (3s)q < q,}. Then by (7) @ is a perfect subtree of P. By (6), it
is easy to see that @ |—¢ or @|— 1¢4. Since @ e L;[P], @ = {r}* for some
7 < 8. Therefore @ is uniformly J-pointed because P is. 0

A real f € 2° is said to be generic if for every dense subset 2 of &
which is definable over L,[K] there is a P € 2 such that f ¢ [P]. For
every P ¢ &, there is a generic f such that f ¢ [P]. From Lemma 9, it
follows that for every generic f and sentence ¢:

Llfll=¢ iff @P)(f e [P] and P|—¢).
LEmmA 10. If f is generic, then L,[f] is admissible.

Proof. We need to show that L,[f] satisfies the 4,-Collection. Let
#(x,y) be a formula of #(«, 7) with no unranked quantifiers. We claim
that if P ||—(Yn)3y)¢(n, y) then there exists a @ S P and a g <a such
that Q |—(Vn) @y*)é(n, ¥¥). The proof of this claim is almost the same as
that of [4:8.12] with some notational changes. So, we omit the proof
here. From the claim, it follows that L,[f] satisfies the 4,-Collection. []

Proof of Theorem 1. Let @ > o be a countable |a|s-recursively in-
accessible ordinal and K be as before. Put ¢ =|a|s and J = J;. In the
case ¢ = 0, Theorem 1 is exactly Theorem 2, which has already been
established by Sacks [4]. So we may assume ¢ > 0. Let f, € 2° be a
generic real over L,[K] with respect to the forcing with uniform J-pointed
perfect trees. By Lemma 6, for each & < a, the set {P ¢ Z: &€ < o(J, P)}
is dense in #. It is obviously definable over L,[K]. Therefore there is a
P ¢ & such that f, € [P] and ¢ < w(J, P). Since P is J-pointed, we have:

§ <o, P) £ o, f).

Thus, we have a < w(d, f)). To see o = w,(J, f,), we must show that « €
RI(g, f,). At first we consider the case where ¢ = 7+ 1 for some 7. It



ORDINALS 9

is sufficient to prove that « is a limit of ordinals in RI(z,f,), since then
by induction on z we can show that « € RI(z, f,), (note that « ¢ RI(0, f,)
by Lemma 10). Suppose & < a. We shall show that the following set 2,
is dense in #:

D, ={Pe P 3<a) (<5 and (Vf e [P e RI(, ).

Assume this can be done. Using Lemma 7, it is easy to see that 2, is
2, over L,JK]. Therefore, for every ¢ < «, there exists a 6 << « such that
&< dand d € RI(z,f)

To show that 2, is dense in &, take an arbitrary P ¢ &. By Lemma
6, we may assume & < o,(J, P). Take a § € RI(z, P) so that &£ <d§ <w,(J, P).
Such a § exists because w,(J, P) is a limit of ordinals in RI(z, P). Consider
the local Cohen forcing relation | £ over L;[P]. Let 6* be the next P-
admissible ordinal of §, Then, L;[P] is countable in L,,[P]. So we can
enumerate inside L;.[P] all sentences of the appropriate forcing language:

¢0’¢h""¢m"‘ (ne(l)).

As in the proof of Lemma 9, we can construct a perfect subtree @ € L;.[P]
of P such that:

(Vf e [@]f is generic with respect to ||£ .

@ is uniformly J-pointed since @ € L;.[P], §* < w(J, P) and P is uniformly
J-pointed. To show that § € RI(r,f) for all f ¢ [@], take f e [@]. Let
B<46 be an arbitrary P-admissible ordinal >, and |5 be the local
Cohen forcing relation over L,[P]. It is easy to see that f is generic
with respect to |Iﬁi, and so B is f-admissible. From this, by induction on
7, we see that é ¢ RI(z, f).

Now we consider the case where ¢ is a limit ordinal. The proof is

carried out in the same way. For any & < « and any r < g, let 2., be
the set:

(Pe?:@30<a)e<d and (Vf e [P])d € RI(z,[))}.

Then 2., is dense in & and definable over L,[K]. Therefore, we have
that o = w/(J, f,) for any generic f, with respect to ||—. |
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