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COUNTABLE /^-ADMISSIBLE ORDINALS

JUICHI SHINODA

§ 0 Introduction

In [3], Platek constructs a hierarchy of jumps J* indexed by elements

a of a set Θs of ordinal notations. He asserts that a real X <Ξ ω is recur-

sive in the superjump S if and only if it is recursive in some Jj* .

Unfortunately, his assertion is not correct as is shown in [1]. In [1], it

also has been shown that an ordinal > ω is J%-admissible if it is \a\s-

recursively inaccessible, where \a\s is the ordinal denoted by α.

Let A be an arbitrary set. We say that an oridinal a is A-admissible

if the structure <Lα[A], e , A Π La[A]), which we will denote by La[A] for

simplicity, is admissible, a model of the Kripke-Platek set theory KP,

where La[A] is the sets constructible relative to A in fewer than a steps.

We use ωf or ωx{A) to denote the first A-admissible ordinal > ω, and use

ωx{Au , An) for ωx{{Au , A n ».

The purpose of this paper is to prove the following theorem.

THEOREM 1. Suppose a e Θs and a > ω is a countable \a\s-recursiυely

inaccessible ordinal. Then, there exists a real Xciω such that a = ω1(J^f X).

In the case |α | 5 = 0, J«f = 2E, the Kleene object of type 2, and ω^E, X)

= ωf for all reals X c: ω. α is an admissible oridnal if and only if it is

0-recursively inaccessible. Therefore, Theorem 1 is an extension of the

following theorem of Sacks.

THEOREM 2 (Sacks [4]). 1/ a > ω is a countable admissible ordinal,

then there exists a real X such that a — ωf.

Sacks also showed that the real X mentioned in Theorem 2 can be

taken to have the minimality property:

ωf < a for every Y of lower hyperdegree than X.
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Likewise, we can show that for every countable \a^-recursively inaccessible

a > ω there is a real X such that:

a = ωtfϊ, X)

and

ωι(Ja9Y) < a for every Y of lower J£-degree than X.1}

Theorem 1 will be proved by the forcing with Jf-pointed perfect trees.

Let a > ω be a countable \a^-recursively inaccessible ordinal and X be

a generic real with respect to this forcing relation. Then La[X] is admis-

sible and a <ί ω^J^, X). To see ω^Ja, X) ^ α, we must show that X

preserves sufficiently many admissible ordinals below a to make a to be

<Jf, X>-admissible.

§ 1. lαls-reeursively inaccessible ordinals

A normal type 2 object is a total function F from ωω to ω such that

the Kleene object 2E of type 2:

ί
\l otherwise,

is recursive in F. The superjump S(F) oΐ F is a type 2 object defined by:

(Ό if {rc}F(/) is defined ,(1 otherwise.

Platek [3] defines a hierarchy c/<f of type 2 objects along with a set

$ 5 of ordinal notations, starting from 2E and iterating the superjump

operation transfinitely.

An ordinal a is O-recursively inaccessible if it is admissible, a is

((7+l)-recursively inaccessible if it is <x-recursively inaccessible and a limit

of σ-recursively inaccessible ordinals. For limit λ, a is said to be ^-recur-

sively inaccessible if it is σ-recursively inaccessible for all σ < λ. Let X

be an arbitrary set. σ-recursively-in-X inaccessible ordinals are defined in

the same way starting from X-admissible ordinals. By RI(σ, X), we denote

the class of all σ-recursively-in-X inaccessible ordinals. In the case X=0,

RI(σ, 0) is the class of all σ-recursively inaccessible ordinals.

The following lemma, due to Aczel and Hinman, gives a character-

ization of o))(Ja, X) for X c: α>.

1) For Jα-degrees, the reader may refer to [5],
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LEMMA 3 (Aczel and Hinman [1]). Suppose a e 0s and σ = \a\s, the

ordinal denoted by a. Then σ < ωx(J^), and for any ordinal a > ω and

a e RI(σ, X) -> a is (J%, X)-admissible,

and ω^Ja, X) is the least ordinal in RI(σ, X).

Let λ0 be the least ordinal λ such that λ is ^-recursively inaccessible.

Lemma 3 shows that \ΘS\ = sup {\a\s: ae Θs} ̂  λQ. In [1], it has been shown

that \(PS\ = 4

Let a > ω be a countable admissible ordinal. Using the unbounded

Levy forcing over Laf we can add to La a generic function K: (a — ω)Xω

-> α such that if ω <Ξ, β < a then the function λnK(β, ή) is a bijection from

ω onto /3. Therefore, in La[K] all sets are countable. It has been shown

in [4] that (La[K], e , K) is an admissible structure in which 2>DC

(^-Dependent Choice) holds.

Suppose α e θ s . For any X, Y<Ξω, X<jsY means X is recursive in

<js, Y>, which is equivalent to that X e Lp[Jξ, Y], where p = ωx(Ji, Y). X

and Y have the same Jf-degree, X = j*Y, if X < ΛY and Y < ^X. X < j$Y

if X< jsY but X^jsY.

LEMMA 4. Suppose a>ω is a countable \a\s-recursively inaccessible

ordinal and K is a generic function with respect to the unbounded Levy

forcing over La. Then for any X, Y c ω:

X < jsY and Y e La[K] > X e La[K].

Proof. The unbounded Levy forcing preserves admissible ordinals.

That is, if β < a is an admissible ordinal then β is inadmissible. This is

because for admissible β, K Γ (β — ω) X ω is generic with respect to the

unbounded Levy forcing over Lβ. Therefore, if Y e La[K] then a is |ά | s -

recursively-in-Y inaccessible, so LP[Y] c La[K], where p = ω^Jf, Y). Thus

we have the lemma. •

§2. Jξ-pointed perfect trees

Let a be an element of Θs such that \a\s > 0. We put J — Ji for

simplicity.

A perfect tree is a set P of finite sequences of 0's and Γs such that:

( 1 ) p e P and q ^ p > q e P
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and

( 2 ) (Vp e P) (3g, r e P) (q and r are incompatible extensions of p),

where q^Ξkp denotes that p is an extension of q. For a perfect tree P, [P]

denotes the set of all infinite paths through P:

[P] = {fe2r: (yή)J{ή) e P}.

We say that P is J-pointed if:

( 3) (Vfe [P])(^(J, P) £ ωι(J, f) and P e Lω

Note that if P is J-pointed then it is ^-pointed in the sense of Sacks

[4:2.1], but not vice versa.

LEMMA 5. Suppose P is J-pointed. If X c: ω and P < jX, then there

exists a J-pointed Q cz P such that Q = j X

Proof. In [4:2.3], Sacks constructed a perfect subtree Q of P such

that:

(4) Q is recursive in P and / for every fe [Q];

and

(5) Q=JX.

To see Q is J-pointed in our sense, fix / e [Q], Since P is J-pointed and

/ e [P], by (3), we have:

(6) P e L.ιiJtP}[f\.

Clearly:

(7) fe Lmι(JtP)[β.

From (4), (6) and (7), we obtain:

(8) Q e V , P ) [ / ] .

From (5) and the assumption P < jX, we see:

(9) ω^J, P) £ ωι(J, Q) .

From (8) and (9), we obtain Q e LωιiJtQ)[β. Π

For any ordinal δ, {δ}f denotes the 5-th element'of L[f] in the canonical
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wellordering on L[f], A perfect tree P is said to be uniformly J-pointed

if there exists an ordinal δ such that:

(10) (V/ e [P]) (P = {δγ and δ < ωx{J, /)).

Obviously, uniformly J-pointed perfect trees are J-pointed. Let a > ω be

a countable \a^-recursively inaccessible ordinal and K a generic function

over La in the sense of the unbounded Levy forcing. Observe that if P

is uniformly J-pointed and P € La[K] then there exists a δ < a which

satisfies (10) since the leftmost path fP through P is recursive in P and

so ωλ( J, fP) ^ ωx{ J, P) < a.

Let M be a countable admissible set and P be a perfect tree in M.

Then P becomes a partially ordered set as usual. The forcing with P as

the set of conditions is called the local Cohen forcing over M and denoted

by ||^-, or simply by ||—. If / e [P] is generic with respect to ||—, then

M[f] is an admissible set, and so is La[f], where μ — M Π On,

LEMMA 6. For any ξ < a and any J-pointed perfect tree P in La[K],

there exists a uniformly J-pointed perfect tree Q c: P such that ξ < ω^J, Q)

and Q e La[K].

Proof. Since ξ is countable in La[K], there is a real X e La[K] such

that ξ is recursive in X. By Lemma 5, there is a J-pointed perfect sub-

tree Pi of P such that Px ΞΞ JX. Then we see ξ < ω^J, P,), and P1 e La[K]

by Lemma 4. Thus, we may assume ξ < ω^J, P) from the beginning. Put

M = Lωi(j,p)[P]. Consider the local Cohen forcing relation ||-^ over M.

Since P is J-pointed, we have:

(11) (V/ e [P])ωi(J, P) <: «.,(«/, /)

and

(12) (v/ e [P]) o r < ω,(j, P)) {rγ = P .

By (12), there exists a p0 e P and Γ < ω^J, P) such that:

(13) PΛ^{fY = P,

where &~ is the canonical name which denotes the generic reals. As in

[4: 2.10], we can construct a perfect tree Q c P such that:

(14) Q e L.i(J,n[P]

and
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(15) (V/e [Q]){ry = P.

From (14), we can find a K ωι(J, P) such that [δ}p = Q. So, by (15),

there is an ε < ωt(J9 P) such that:

(16)

Let fQ be the leftmost branch of Q. Then, by (11):

(17) ωt(J9 P) £ ωt(J9 fQ) £ ωt(J9 Q) .

Hence, from (16), we see that Q is uniformly eΛpointed. By (17), we also

see ξ < ωx{J, Q). Since P e La[K], we have ωx{J, P) <̂  a, and so Q e

LmιiJtP)[F] c La[Kl Π

Let ^ b e a first-order language. A Π\ formula in if is a second-

order formula of the form:

(VS,) (VSJψ ,

where Sj, , Sm are predicate variables and ψ is a first-order formula in

the expanded language if U {S1? , Sm}.

LEMMA 7. Suppose A is a countable admissible set such that ω e A and

if e A is a first-order language. Let θ(xl9 - , xn) be a Π\ formula in if.

Then there exists a Σx formula Φ(xl9 , xn9 y) such that for any structure

Jί = (M, > e A for ^ and any al9 , an e M:

A\=Φ(al9 '",an,^)<~^^\=θ(aί, •• 9an).

Proof. This is well-known. See, e.g., Barwise [2: IV. 3.1]. D

Using this lemma, we obtain the following lemma.

LEMMA 8. The set of all uniformly J-pointed perfect trees in La[K] is

Σ, over La[K].

Proof. Put σ = \a\s, (recall that J = J^). Let P be a perfect tree in

La[K] and δ < a. Let β(P, δ9 σ) denote the least admissible ordinal β < a

such that max(δ,σ,ω) < β and P e Lβ[K]. The function β is Σx over

La[K]. We can easily find a Π{ formula θ in the language of set theory

such that for any perfect tree P e La[K]:

P is uniformly J-pointed <—> (Iδ < a)LβiPJtσ)[K] \= Θ(P, δ, σ).

Thus the lemma follows from Lemma 7. D
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§ 3. Forcing with uniform /^-pointed perfect trees

Suppose \a\s > 0 and put J ^ J J . Let a > ω be a countable |α | s -

recursively inaccessible ordinal and K a generic function with respect to

the unbounded Levy forcing over Lα, which we fix throughout this section.

Let j£?(ar, 3Γ} be a ramified language containing names for all members

of La[β. J?(a, y) includes: a numeral n for each n e ω, unranked vari-

ables x, y, z, ranked variables xβ, yβ, zβ, for each β < a; and ab-

straction operator Λ . It is intended that ^ denotes {ft e ω: f(ή) = 1}, that

x ranges over La[β, that xβ ranges over Lβ[f], and that xβφ(xβ) denotes

the set:

{x e Lβ[β: Lβ[f]\=φ(x)}.

C(β) is the set of names for elements of Lβ[β and C == U 5 < α C(j8).

Let ^ denote the set of all uniformly J-pointed perfect trees in La[K\.

P, Q, R, denote the members of έP. For a ranked sentence φ of J£?(αr, &")

and P e ^ , let ^(P, ^) be the least admissible ordinal p K a such that

P e LP[K] and rank(^) < p. The function ^ is Σt over Lβ[jS:]. The forcing

relation P\\—φ, where φ is a sentence of J£(a, &*), is defined inductively:

( 1 ) φ is ranked. P ||— φ iff (V/ e [P])L,(Ff#) [/] | = φ;

(2) ^ V ψ is not ranked. P | | — ^ V ψ iff P\\— φ or P\\—ψ;

( 3 ) ( 3 x 0 ^ 0 is not ranked. P\\—(lxβ)φ(xβ) if P | | — 0(c) for some

c e C(β);

( 4 ) P\\—(lx)φ(x) iff P | | — 0(c) for some c e C;

( 5) 0 is not ranked. P\\—~\φ iff (VQ S P) 1 (Q \\—φ).

Using Lemmas 7 and 8, it is easy to see that the forcing relation

P\\—φ, restricted Σx sentences φ, is Σx over La[K],

LEMMA 9. For each P and φ, there exists a Q c P such that Q\\—φ

or Q\\—lφ.

Proof. In view of (5), we may assume that φ is ranked. By Lemma

6, we may also assume that φ e Lδ[P] for some P-admissible d such that

δ < ωx{J, P). Then, in Lδ[P], all sets are countable. Thus, in Lδ[P], we

can enumerate all ranked sentences of rank ^ rank (φ):

Φ = Φojφu - - -,φn, '' (n e ω).
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Let ||— be the local Cohen forcing relation over Lδ[P], In Lδ[P], we can

construct a family (qs: s e Seq(2)> of elements of P such that:

( 6) g, II— φn or qs \\-Z- ~] φn, where n = £h(s);

and

( 7 ) <3%> and q~<v> are incompatible extensions of qs,

where Seq (2) is the set of all finite sequences of O's and Γs. Let Q =

{q e P : (3s)g c qs). Then by (7) Q is a perfect subtree of P. By (6), it

is easy to see that Q | | — φ or Q ||— ~] φ. Since Q e Lδ[P], Q = {ϊ}p for some

7 < δ. Therefore Q is uniformly J-pointed because P is. Π

A real / e 2ω is said to be generic if for every dense subset S of ^

which is definable over La[K] there is a P e f such that / e [P]. For

every P e ^ , there is a generic / such that / e [P]. From Lemma 9, it

follows that for every generic / and sentence φ:

L.[f] \=φ iff <βP)(f e [P] and P H - * ) .

LEMMA 10. If f is generic, then La[f] is admissible.

Proof. We need to show that La[f] satisfies the Jo- Collection. Let

φ(x, y) be a formula of S£(a, ZΓ) with no unranked quantifiers. We claim

that if JP ||—(Vή)(3y)φ(n, y) then there exists a Q c P and a β < a such

that Qll—(Vra) (3yβ)φ(n, yβ). The proof of this claim is almost the same as

that of [4: 3.12] with some notational changes. So, we omit the proof

here. From the claim, it follows that La[f] satisfies the J0-Collection. •

Proof of Theorem 1. Let a > ω be a countable |α|5-recursively in-

accessible ordinal and K be as before. Put σ = \a\s and J = «7f. In the

case σ = 0, Theorem 1 is exactly Theorem 2, which has already been

established by Sacks [4]. So we may assume σ > 0. Let f0 e 2ω be a

generic real over La[K] with respect to the forcing with uniform J-pointed

perfect trees. By Lemma 6, for each ξ < a, the set {P e 9: ξ < ω^J, P)}

is dense in ^ . It is obviously definable over La[K]. Therefore there is a

P e & such that f0 e [P] and ξ < ωλ{J, P). Since P is J-pointed, we have:

Thus, we have α ^ ω^J, f0). To see α = ωλ{J, /0), we must show that α 6

i?J((7, /0). At first we consider the case where σ = τ + 1 for some τ. It
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is sufficient to prove that a is a limit of ordinals in RI(τ,f0), since then

by induction on τ we can show that a e i?/(τ, /0), (note that a e RI(0, fQ)

by Lemma 10). Suppose ξ < a. We shall show that the following set Θξ

is dense in βP\

@ζ = {P e 0>: (33 < α)(f < 3 and (V/ e [P])δ e i?I(τ, /))}.

Assume this can be done. Using Lemma 7, it is easy to see that 2#ξ is

Σx over La[K], Therefore, for every ξ < a, there exists a δ < a such that

£ < 3 and δ e RI(τ,f0)

To show that Θξ is dense in £P, take an arbitrary P e ^ , By Lemma

6, we may assume ξ < ω,{J, P). Take a δ e RI(τ, P) so that ξ < δ < ωx{J, P).

Such a δ exists because ωλ(J, P) is a limit of ordinals in RI(τ, P). Consider

the local Cohen forcing relation ||— over Lδ[P]. Let δ+ be the next P-

admissible ordinal of δ, Then, Lδ[P] is countable in Lδ+[P]. So we can

enumerate inside Lδ+[P] all sentences of the appropriate forcing language:

Φo> φi, - -9 φn, ''' (n e ω).

As in the proof of Lemma 9, we can construct a perfect subtree Q e Lδ+[P]

of P such that:

(V/ e [Q])f is generic with respect to ||— .

Q is uniformly J-pointed since Q e Lδ+[P], δ+ < ω^J, P) and P is uniformly

J-pointed. To show that δ e RI(τ,f) for all / 6 [Q], take / e [Q]. Let

β ^ δ be an arbitrary P-admissible ordinal > ω, and [|-y be the local

Cohen forcing relation over Lβ[P]. It is easy to see that / is generic

with respect to ||y-, and so β is /-admissible. From this, by induction on

T, we see that δ e RI(τ, /).

Now we consider the case where σ is a limit ordinal. The proof is

carried out in the same way. For any ξ < a and any τ < σ, let @ξτ be

the set:

{P e 9\" (33 < α)(f < 3 and (V/ e [P])<5 e RI(τJ))}.

Then ^ r is dense in ^ and definable over La[K], Therefore, we have

that a = ω^J, f0) for any generic f0 with respect to ||—. •
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