J. Shinoda Nagoya Math. J. Vol. 99 (1985), 1-10

COUNTABLE J_a^s -ADMISSIBLE ORDINALS

JUICHI SHINODA

§0. Introduction

In [3], Platek constructs a hierarchy of jumps J_a^s indexed by elements a of a set \mathcal{O}^s of ordinal notations. He asserts that a real $X \subseteq \omega$ is recursive in the superjump S if and only if it is recursive in some J_a^s . Unfortunately, his assertion is not correct as is shown in [1]. In [1], it also has been shown that an ordinal $> \omega$ is J_a^s -admissible if it is $|a|_s$ -recursively inaccessible, where $|a|_s$ is the ordinal denoted by a.

Let A be an arbitrary set. We say that an oridinal α is A-admissible if the structure $\langle L_{\alpha}[A], \in, A \cap L_{\alpha}[A] \rangle$, which we will denote by $L_{\alpha}[A]$ for simplicity, is admissible, a model of the Kripke-Platek set theory KP, where $L_{\alpha}[A]$ is the sets constructible relative to A in fewer than α steps. We use ω_1^A or $\omega_1(A)$ to denote the first A-admissible ordinal $> \omega$, and use $\omega_1(A_1, \dots, A_n)$ for $\omega_1(\langle A_1, \dots, A_n \rangle)$.

The purpose of this paper is to prove the following theorem.

THEOREM 1. Suppose $a \in \mathcal{O}^s$ and $\alpha > \omega$ is a countable $|a|_s$ -recursively inaccessible ordinal. Then, there exists a real $X \subseteq \omega$ such that $\alpha = \omega_1(J_a^s, X)$.

In the case $|a|_s = 0$, $J_a^s = {}^2E$, the Kleene object of type 2, and $\omega_1({}^2E, X) = \omega_1^x$ for all reals $X \subseteq \omega$. α is an admissible oridnal if and only if it is 0-recursively inaccessible. Therefore, Theorem 1 is an extension of the following theorem of Sacks.

THEOREM 2 (Sacks [4]). If $\alpha > \omega$ is a countable admissible ordinal, then there exists a real X such that $\alpha = \omega_1^X$.

Sacks also showed that the real X mentioned in Theorem 2 can be taken to have the minimality property:

 $\omega_1^Y < \alpha$ for every Y of lower hyperdegree than X.

Received July 8, 1983.

Likewise, we can show that for every countable $|a|_s$ -recursively inaccessible $\alpha > \omega$ there is a real X such that:

$$\alpha = \omega_{1}(J_{a}^{s}, X);$$

and

 $\omega_{1}(J_{a}^{s},Y) < lpha$ for every Y of lower J_{a}^{s} -degree than X.¹⁾

Theorem 1 will be proved by the forcing with J_a^s -pointed perfect trees. Let $\alpha > \omega$ be a countable $|a|_s$ -recursively inaccessible ordinal and X be a generic real with respect to this forcing relation. Then $L_a[X]$ is admissible and $\alpha \leq \omega_1(J_a^s, X)$. To see $\omega_1(J_a^s, X) \leq \alpha$, we must show that X preserves sufficiently many admissible ordinals below α to make α to be $\langle J_a^s, X \rangle$ -admissible.

§ 1. $|a|_{s}$ -recursively inaccessible ordinals

A normal type 2 object is a total function F from ω^{ω} to ω such that the Kleene object ²E of type 2:

$${}^{2}E(f) = egin{cases} 0 & ext{ if } (\exists n)f(n) = 0\,, \ 1 & ext{ otherwise,} \end{cases}$$

is recursive in F. The superjump S(F) of F is a type 2 object defined by:

$$S(F)(\langle n,f
angle) = egin{cases} 0 & ext{ if } \{n\}^F(f) ext{ is defined ,} \ 1 & ext{ otherwise .} \end{cases}$$

Platek [3] defines a hierarchy J_a^s of type 2 objects along with a set \mathcal{O}^s of ordinal notations, starting from ${}^{2}E$ and iterating the superjump operation transfinitely.

An ordinal α is 0-recursively inaccessible if it is admissible. α is $(\sigma+1)$ -recursively inaccessible if it is σ -recursively inaccessible and a limit of σ -recursively inaccessible ordinals. For limit λ , α is said to be λ -recursively inaccessible if it is σ -recursively inaccessible for all $\sigma < \lambda$. Let X be an arbitrary set. σ -recursively-in-X inaccessible ordinals are defined in the same way starting from X-admissible ordinals. By $RI(\sigma, X)$, we denote the class of all σ -recursively-in-X inaccessible ordinals. In the case $X = \emptyset$, $RI(\sigma, \emptyset)$ is the class of all σ -recursively inaccessible ordinals.

The following lemma, due to Aczel and Hinman, gives a characterization of $\omega_1(J_a^s, X)$ for $X \subseteq \omega$.

¹⁾ For J_a^s -degrees, the reader may refer to [5].

LEMMA 3 (Aczel and Hinman [1]). Suppose $a \in \mathcal{O}^s$ and $\sigma = |a|_s$, the ordinal denoted by a. Then $\sigma < \omega_1(J_a^s)$, and for any ordinal $\alpha > \omega$ and $X \subseteq \omega$:

$$\alpha \in RI(\sigma, X) \rightarrow \alpha$$
 is $\langle J_a^s, X \rangle$ -admissible,

and $\omega_1(J_a^s, X)$ is the least ordinal in $RI(\sigma, X)$.

Let λ_0 be the least ordinal λ such that λ is λ -recursively inaccessible. Lemma 3 shows that $|\mathcal{O}^S| = \sup \{ |\alpha|_S : \alpha \in \mathcal{O}^S \} \leq \lambda_0$. In [1], it has been shown that $|\mathcal{O}^S| = \lambda_0$.

Let $\alpha > \omega$ be a countable admissible ordinal. Using the unbounded Levy forcing over L_{α} , we can add to L_{α} a generic function $K: (\alpha - \omega) \times \omega$ $\rightarrow \alpha$ such that if $\omega \leq \beta < \alpha$ then the function $\lambda n K(\beta, n)$ is a bijection from ω onto β . Therefore, in $L_{\alpha}[K]$ all sets are countable. It has been shown in [4] that $\langle L_{\alpha}[K], \in, K \rangle$ is an admissible structure in which Σ_1 -DC (Σ_1 -Dependent Choice) holds.

Suppose $a \in 0^s$. For any $X, Y \subseteq \omega, X \leq_{J_a^s} Y$ means X is recursive in $\langle J_a^s, Y \rangle$, which is equivalent to that $X \in L_{\rho}[J_a^s, Y]$, where $\rho = \omega_1(J_a^s, Y)$. X and Y have the same J_a^s -degree, $X \equiv_{J_a^s} Y$, if $X \leq_{J_a^s} Y$ and $Y \leq_{J_a^s} X$. $X <_{J_a^s} Y$ if $X \leq_{J_a^s} Y$ but $X \equiv_{J_a^s} Y$.

LEMMA 4. Suppose $\alpha > \omega$ is a countable $|a|_s$ -recursively inaccessible ordinal and K is a generic function with respect to the unbounded Levy forcing over L_a . Then for any X, $Y \subseteq \omega$:

 $X \leq {}_{J^S_a} Y \quad ext{and} \quad Y \in \, L_{lpha}[K] \longrightarrow X \in \, L_{lpha}[K] \, .$

Proof. The unbounded Levy forcing preserves admissible ordinals. That is, if $\beta < \alpha$ is an admissible ordinal then β is K-admissible. This is because for admissible $\beta, K \upharpoonright (\beta - \omega) \times \omega$ is generic with respect to the unbounded Levy forcing over L_{β} . Therefore, if $Y \in L_{a}[K]$ then α is $|a|_{s}$ -recursively-in-Y inaccessible, so $L_{\rho}[Y] \subseteq L_{\alpha}[K]$, where $\rho = \omega_{1}(J_{\alpha}^{s}, Y)$. Thus we have the lemma.

§ 2. J_a^s -pointed perfect trees

Let a be an element of \mathcal{O}^s such that $|a|_s > 0$. We put $J = J_a^s$ for simplicity.

A perfect tree is a set P of finite sequences of 0's and 1's such that:

$$(1) p \in P \text{ and } q \subseteq p \longrightarrow q \in P;$$

and

(2) $(\forall p \in P)(\exists q, r \in P) (q \text{ and } r \text{ are incompatible extensions of } p),$

where $q \subseteq p$ denotes that p is an extension of q. For a perfect tree P, [P] denotes the set of all infinite paths through P:

$$[P] = \{ f \in 2^{\omega} \colon (\forall n) \overline{f}(n) \in P \}.$$

We say that P is J-pointed if:

$$(3) \qquad (\forall f \in [P])(\omega_{i}(J,P) \leq \omega_{i}(J,f) \text{ and } P \in L_{\omega_{i}(J,P)}[f]).$$

Note that if P is J-pointed then it is \leq_J -pointed in the sense of Sacks [4:2.1], but not vice versa.

LEMMA 5. Suppose P is J-pointed. If $X \subseteq \omega$ and $P \leq_J X$, then there exists a J-pointed $Q \subseteq P$ such that $Q \equiv_J X$.

Proof. In [4:2.3], Sacks constructed a perfect subtree Q of P such that:

(4)
$$Q$$
 is recursive in P and f for every $f \in [Q]$;

and

$$(5) Q \equiv_J X.$$

To see Q is J-pointed in our sense, fix $f \in [Q]$. Since P is J-pointed and $f \in [P]$, by (3), we have:

$$(6) P \in L_{\omega,(J,P)}[f]$$

Clearly:

$$(7) f \in L_{\omega,(J,P)}[f].$$

From (4), (6) and (7), we obtain:

$$(8) Q \in L_{\omega_1(J,P)}[f].$$

From (5) and the assumption $P \leq_J X$, we see:

(9)
$$\omega_{i}(J, P) \leq \omega_{i}(J, Q)$$

From (8) and (9), we obtain $Q \in L_{\omega_1(J,Q)}[f]$.

For any ordinal δ , $\{\delta\}^{f}$ denotes the δ -th element of L[f] in the canonical

wellordering on L[f]. A perfect tree P is said to be uniformly J-pointed if there exists an ordinal δ such that:

(10)
$$(\forall f \in [P]) (P = \{\delta\}^f \text{ and } \delta < \omega_1(J, f))$$

Obviously, uniformly J-pointed perfect trees are J-pointed. Let $\alpha > \omega$ be a countable $|a|_s$ -recursively inaccessible ordinal and K a generic function over L_{α} in the sense of the unbounded Levy forcing. Observe that if P is uniformly J-pointed and $P \in L_{\alpha}[K]$ then there exists a $\delta < \alpha$ which satisfies (10) since the leftmost path f_P through P is recursive in P and so $\omega_1(J, f_P) \leq \omega_1(J, P) < \alpha$.

Let M be a countable admissible set and P be a perfect tree in M. Then P becomes a partially ordered set as usual. The forcing with P as the set of conditions is called the local Cohen forcing over M and denoted by $\|\frac{P}{M}$, or simply by $\|\frac{P}{M}$. If $f \in [P]$ is generic with respect to $\|\frac{P}{M}$, then M[f] is an admissible set, and so is $L_{\mu}[f]$, where $\mu = M \cap On$.

LEMMA 6. For any $\xi < \alpha$ and any J-pointed perfect tree P in $L_{\alpha}[K]$, there exists a uniformly J-pointed perfect tree $Q \subseteq P$ such that $\xi < \omega_1(J, Q)$ and $Q \in L_{\alpha}[K]$.

Proof. Since ξ is countable in $L_{\alpha}[K]$, there is a real $X \in L_{\alpha}[K]$ such that ξ is recursive in X. By Lemma 5, there is a J-pointed perfect subtree P_1 of P such that $P_1 \equiv {}_J X$. Then we see $\xi < \omega_1(J, P_1)$, and $P_1 \in L_{\alpha}[K]$ by Lemma 4. Thus, we may assume $\xi < \omega_1(J, P)$ from the beginning. Put $M = L_{\omega_1(J, P)}[P]$. Consider the local Cohen forcing relation $\|\frac{P}{M}$ over M. Since P is J-pointed, we have:

(11)
$$(\forall f \in [P])\omega_1(J, P) \leq \omega_1(J, f);$$

and

(12)
$$(\forall f \in [P]) (\exists \gamma < \omega_1(J, P)) \{\gamma\}^f = P.$$

By (12), there exists a $p_0 \in P$ and $\gamma < \omega_1(J, P)$ such that:

$$(13) p_0 \parallel_{\overline{M}}^{P} \{\check{\gamma}\}^{\mathscr{I}} = \dot{P},$$

where \mathscr{T} is the canonical name which denotes the generic reals. As in [4:2.10], we can construct a perfect tree $Q \subseteq P$ such that:

$$(14) Q \in L_{\omega_1(J,P)}[P];$$

and

(15)
$$(\forall f \in [Q]) \{ \mathcal{I} \}^f = P.$$

From (14), we can find a $\delta < \omega_1(J, P)$ such that $\{\delta\}^p = Q$. So, by (15), there is an $\varepsilon < \omega_1(J, P)$ such that:

(16)
$$(\forall f \in [Q]) \{\varepsilon\}^f = Q.$$

Let f_q be the leftmost branch of Q. Then, by (11):

(17)
$$\omega_{i}(J, P) \leq \omega_{i}(J, f_{Q}) \leq \omega_{i}(J, Q).$$

Hence, from (16), we see that Q is uniformly J-pointed. By (17), we also see $\xi < \omega_1(J, Q)$. Since $P \in L_{\alpha}[K]$, we have $\omega_1(J, P) \leq \alpha$, and so $Q \in L_{\omega_1(J, P)}[P] \subseteq L_{\alpha}[K]$.

Let \mathscr{L} be a first-order language. A Π_1^1 formula in \mathscr{L} is a secondorder formula of the form:

$$(\forall S_1) \cdots (\forall S_m) \psi$$

where S_1, \dots, S_m are predicate variables and ψ is a first-order formula in the expanded language $\mathscr{L} \cup \{S_1, \dots, S_m\}$.

LEMMA 7. Suppose A is a countable admissible set such that $\omega \in A$ and $\mathscr{L} \in A$ is a first-order language. Let $\theta(x_1, \dots, x_n)$ be a Π_1^1 formula in \mathscr{L} . Then there exists a Σ_1 formula $\Phi(x_1, \dots, x_n, y)$ such that for any structure $\mathscr{M} = \langle M, \dots \rangle \in A$ for \mathscr{L} and any $a_1, \dots, a_n \in M$:

$$A \mid = \varPhi(a_{\scriptscriptstyle 1}, \, \cdots, \, a_{\scriptscriptstyle n}, \, \mathscr{M}) \, { \longleftrightarrow } \, \mathscr{M} \mid = heta(a_{\scriptscriptstyle 1}, \, \cdots, \, a_{\scriptscriptstyle n}) \, .$$

Proof. This is well-known. See, e.g., Barwise [2: IV. 3.1]. \Box

Using this lemma, we obtain the following lemma.

LEMMA 8. The set of all uniformly J-pointed perfect trees in $L_{\alpha}[K]$ is Σ_1 over $L_{\alpha}[K]$.

Proof. Put $\sigma = |a|_s$, (recall that $J = J_a^s$). Let P be a perfect tree in $L_a[K]$ and $\delta < \alpha$. Let $\beta(P, \delta, \sigma)$ denote the least admissible ordinal $\beta < \alpha$ such that max $(\delta, \sigma, \omega) < \beta$ and $P \in L_{\beta}[K]$. The function β is Σ_1 over $L_a[K]$. We can easily find a Π_1^1 formula θ in the language of set theory such that for any perfect tree $P \in L_a[K]$:

 $P \text{ is uniformly } J\text{-pointed} \longleftrightarrow (\exists \delta < \alpha) L_{\beta(P, \delta, \sigma)}[K] \mid = \theta(P, \delta, \sigma) \,.$

Thus the lemma follows from Lemma 7.

6

§ 3. Forcing with uniform J_a^{s} -pointed perfect trees

Suppose $|a|_s > 0$ and put $J = J_a^s$. Let $\alpha > \omega$ be a countable $|a|_s$ -recursively inaccessible ordinal and K a generic function with respect to the unbounded Levy forcing over L_a , which we fix throughout this section.

Let $\mathscr{L}(\alpha, \mathscr{T})$ be a ramified language containing names for all members of $L_{\alpha}[f]$. $\mathscr{L}(\alpha, \mathscr{T})$ includes: a numeral \overline{n} for each $n \in \omega$, unranked variables x, y, z, \cdots ; ranked variables $x^{\beta}, y^{\beta}, z^{\beta}, \cdots$ for each $\beta < \alpha$; and abstraction operator $\widehat{}$. It is intended that \mathscr{T} denotes $\{n \in \omega : f(n) = 1\}$, that x ranges over $L_{\alpha}[f]$, that x^{β} ranges over $L_{\beta}[f]$, and that $\hat{x}^{\beta}\phi(x^{\beta})$ denotes the set:

$$\{x \in L_{\beta}[f] \colon L_{\beta}[f] \mid = \phi(x)\}$$
 .

 $C(\beta)$ is the set of names for elements of $L_{\beta}[f]$ and $C = \bigcup_{\beta < \alpha} C(\beta)$.

Let \mathscr{P} denote the set of all uniformly *J*-pointed perfect trees in $L_{\alpha}[K]$. P, Q, R, \cdots denote the members of \mathscr{P} . For a ranked sentence ϕ of $\mathscr{L}(\alpha, \mathscr{T})$ and $P \in \mathscr{P}$, let $\rho(P, \phi)$ be the least admissible ordinal $\rho < \alpha$ such that $P \in L_{\rho}[K]$ and rank $(\phi) < \rho$. The function ρ is Σ_{1} over $L_{\alpha}[K]$. The forcing relation $P \parallel - \phi$, where ϕ is a sentence of $\mathscr{L}(\alpha, \mathscr{T})$, is defined inductively:

(1) ϕ is ranked. $P \parallel -\phi$ iff $(\forall f \in [P])L_{\rho(P,\phi)}[f] \mid = \phi;$

(2)
$$\phi \lor \psi$$
 is not ranked. $P \parallel -\phi \lor \psi$ iff $P \parallel -\phi$ or $P \parallel -\psi$;

- (3) $(\exists x^{\beta})\phi(x^{\beta})$ is not ranked. $P \parallel (\exists x^{\beta})\phi(x^{\beta})$ if $P \parallel -\phi(c)$ for some $c \in C(\beta)$;
- (4) $P \parallel (\exists x)\phi(x)$ iff $P \parallel -\phi(c)$ for some $c \in C$;
- (5) ϕ is not ranked. $P \parallel \neg \phi$ iff $(\forall Q \subseteq P) \urcorner (Q \parallel \neg \phi)$.

Using Lemmas 7 and 8, it is easy to see that the forcing relation $P \parallel - \phi$, restricted Σ_1 sentences ϕ , is Σ_1 over $L_{\alpha}[K]$.

LEMMA 9. For each P and ϕ , there exists a $Q \subseteq P$ such that $Q \parallel - \phi$ or $Q \parallel - \neg \phi$.

Proof. In view of (5), we may assume that ϕ is ranked. By Lemma 6, we may also assume that $\phi \in L_{\delta}[P]$ for some *P*-admissible δ such that $\delta < \omega_1(J, P)$. Then, in $L_{\delta}[P]$, all sets are countable. Thus, in $L_{\delta}[P]$, we can enumerate all ranked sentences of rank $\leq \operatorname{rank}(\phi)$:

$$\phi = \phi_{\scriptscriptstyle 0}, \, \phi_{\scriptscriptstyle 1}, \, \cdots, \, \phi_{\scriptscriptstyle n}, \, \cdots \qquad (n \, \in \, \omega) \, .$$

JUICHI SHINODA

Let $\parallel \stackrel{P}{\longrightarrow}$ be the local Cohen forcing relation over $L_{\delta}[P]$. In $L_{\delta}[P]$, we can construct a family $\langle q_s : s \in \text{Seq}(2) \rangle$ of elements of P such that:

(6)
$$q_s \parallel \stackrel{P}{\longrightarrow} \phi_n$$
 or $q_s \parallel \stackrel{P}{\longrightarrow} \neg \phi_n$, where $n = \ell h(s)$;

and

(7) $q_{\widehat{s}(0)}$ and $q_{\widehat{s}(1)}$ are incompatible extensions of q_s ,

where Seq(2) is the set of all finite sequences of 0's and 1's. Let $Q = \{q \in P: (\exists s)q \subseteq q_s\}$. Then by (7) Q is a perfect subtree of P. By (6), it is easy to see that $Q \parallel - \phi$ or $Q \parallel - \neg \phi$. Since $Q \in L_{\delta}[P], Q = \{\gamma\}^{p}$ for some $\gamma < \delta$. Therefore Q is uniformly J-pointed because P is.

A real $f \in 2^{\circ}$ is said to be generic if for every dense subset \mathscr{D} of \mathscr{P} which is definable over $L_{\mathfrak{a}}[K]$ there is a $P \in \mathscr{D}$ such that $f \in [P]$. For every $P \in \mathscr{P}$, there is a generic f such that $f \in [P]$. From Lemma 9, it follows that for every generic f and sentence ϕ :

$$L_{\alpha}[f] \models \phi \quad \text{iff} \quad (\exists P)(f \in [P] \text{ and } P \parallel -\phi).$$

LEMMA 10. If f is generic, then $L_{\alpha}[f]$ is admissible.

Proof. We need to show that $L_{\alpha}[f]$ satisfies the \varDelta_0 -Collection. Let $\phi(x, y)$ be a formula of $\mathscr{L}(\alpha, \mathscr{T})$ with no unranked quantifiers. We claim that if $P \parallel - (\forall n) (\exists y) \phi(n, y)$ then there exists a $Q \subseteq P$ and a $\beta < \alpha$ such that $Q \parallel - (\forall n) (\exists y^{\beta}) \phi(n, y^{\beta})$. The proof of this claim is almost the same as that of [4:3.12] with some notational changes. So, we omit the proof here. From the claim, it follows that $L_{\alpha}[f]$ satisfies the \varDelta_0 -Collection. \Box

Proof of Theorem 1. Let $\alpha > \omega$ be a countable $|a|_s$ -recursively inaccessible ordinal and K be as before. Put $\sigma = |a|_s$ and $J = J_a^s$. In the case $\sigma = 0$, Theorem 1 is exactly Theorem 2, which has already been established by Sacks [4]. So we may assume $\sigma > 0$. Let $f_0 \in 2^{\omega}$ be a generic real over $L_a[K]$ with respect to the forcing with uniform J-pointed perfect trees. By Lemma 6, for each $\xi < \alpha$, the set $\{P \in \mathscr{P} : \xi < \omega_1(J, P)\}$ is dense in \mathscr{P} . It is obviously definable over $L_a[K]$. Therefore there is a $P \in \mathscr{P}$ such that $f_0 \in [P]$ and $\xi < \omega_1(J, P)$. Since P is J-pointed, we have:

$$\xi < \omega_{\scriptscriptstyle 1}(J,P) \leqq \omega_{\scriptscriptstyle 1}(J,f_{\scriptscriptstyle 0})$$
 .

Thus, we have $\alpha \leq \omega_1(J, f_0)$. To see $\alpha = \omega_1(J, f_0)$, we must show that $\alpha \in RI(\sigma, f_0)$. At first we consider the case where $\sigma = \tau + 1$ for some τ . It

is sufficient to prove that α is a limit of ordinals in $RI(\tau, f_0)$, since then by induction on τ we can show that $\alpha \in RI(\tau, f_0)$, (note that $\alpha \in RI(0, f_0)$ by Lemma 10). Suppose $\xi < \alpha$. We shall show that the following set \mathscr{D}_{ξ} is dense in \mathscr{P} :

$$\mathscr{D}_{\xi} = \{ P \in \mathscr{P} \colon (\exists \delta < \alpha) \, (\xi < \delta \text{ and } (\forall f \in [P]) \delta \in RI(\tau, f)) \}$$

Assume this can be done. Using Lemma 7, it is easy to see that \mathscr{D}_{ξ} is Σ_1 over $L_{\alpha}[K]$. Therefore, for every $\xi < \alpha$, there exists a $\delta < \alpha$ such that $\xi < \delta$ and $\delta \in RI(\tau, f_0)$

To show that \mathscr{D}_{ξ} is dense in \mathscr{P} , take an arbitrary $P \in \mathscr{P}$. By Lemma 6, we may assume $\xi < \omega_1(J, P)$. Take a $\delta \in RI(\tau, P)$ so that $\xi < \delta < \omega_1(J, P)$. Such a δ exists because $\omega_1(J, P)$ is a limit of ordinals in $RI(\tau, P)$. Consider the local Cohen forcing relation $\| \stackrel{P}{\longrightarrow} \text{ over } L_{\delta}[P]$. Let δ^+ be the next P-admissible ordinal of δ , Then, $L_{\delta}[P]$ is countable in $L_{\delta^+}[P]$. So we can enumerate inside $L_{\delta^+}[P]$ all sentences of the appropriate forcing language:

$$\phi_0, \phi_1, \cdots, \phi_n, \cdots \quad (n \in \omega).$$

As in the proof of Lemma 9, we can construct a perfect subtree $Q \in L_{\delta^+}[P]$ of P such that:

 $(\forall f \in [Q])f$ is generic with respect to $\parallel^{\underline{P}}$.

Q is uniformly J-pointed since $Q \in L_{\delta^+}[P]$, $\delta^+ < \omega_1(J, P)$ and P is uniformly J-pointed. To show that $\delta \in RI(\tau, f)$ for all $f \in [Q]$, take $f \in [Q]$. Let $\beta \leq \delta$ be an arbitrary P-admissible ordinal $> \omega$, and $\|\frac{P}{\beta}$ be the local Cohen forcing relation over $L_{\beta}[P]$. It is easy to see that f is generic with respect to $\|\frac{P}{\beta}$, and so β is f-admissible. From this, by induction on τ , we see that $\delta \in RI(\tau, f)$.

Now we consider the case where σ is a limit ordinal. The proof is carried out in the same way. For any $\xi < \alpha$ and any $\tau < \sigma$, let $\mathscr{D}_{\xi\tau}$ be the set:

$$\{P \in \mathscr{P} \colon (\exists \delta < lpha) (\xi < \delta \text{ and } (\forall f \in [P]) \delta \in RI(\tau, f))\}.$$

Then $\mathscr{D}_{\varepsilon\tau}$ is dense in \mathscr{P} and definable over $L_{\alpha}[K]$. Therefore, we have that $\alpha = \omega_1(J, f_0)$ for any generic f_0 with respect to \parallel —.

References

 P. Aczel and P. G. Hinman, Recursion in the superjump, in: Generalized Recursion Theory, edited by J. E. Fenstad and P. G. Hinman (North-Holland, Amsterdam, 1974), 3-41.

JUICHI SHINODA

- [2] J. Barwise, Admissible Sets and Structures, Springer, Berlin, 1975.
- [3] R. Platek, A countable hierarchy for the superjump, in: Logic Colloquium '69, edited by R. O. Gandy and C. E. M. Yates (North-Holland, Amsterdam, 1971), 257-271.
- [4] G. E. Sacks, Countable admissible ordinals and hyperdegrees, Adv. in Math., 19 (1976), 213-262.
- [5] J. Shinoda, On the upper semi-lattice of J_{z}^{s} -degrees, Nagoya Math. J., 80 (1980), 75-106.

Department of Mathematics College of General Education Nagoya University Chikusa-ku, Nagoya 464, Japan