HIGHER RECIPROCITY LAW, MODULAR FORMS OF WEIGHT 1 AND ELLIPTIC CURVES

MASAO KOIKE

§0. Introduction

In this paper, we study higher reciprocity law of irreducible polynomials f(x) over Q of degree 3, especially, its close connection with elliptic curves rational over Q and cusp forms of weight 1. These topics were already studied separately in a special example by Chowla-Cowles [1] and Hiramatsu [2]. Here we bring these objects into unity.

Let

- \mathscr{C}_0 = the set of number fields K over Q such that
 - (1) K is a Galois extension over Q with $Gal(K/Q) \cong S_3$, the symmetric group of degree 3,
 - (2) K contains an imaginary quadratic field k.

For any K in \mathscr{C}_0 , we can associate three other objects: (1) f(x): irreducible polynomials over Q of degree 3, (2) $F(\tau)$: cusp forms of weight 1, (3) E: elliptic curves rational over Q; let

- \mathscr{C}_1 = the set of all irreducible polynomials f(x) over Q of degree 3 whose splitting field K_f over Q belongs to \mathscr{C}_0 .
- \mathscr{C}_2 = the set of all normalized cusp forms $F(\tau)$ of weight 1 on $\Gamma_0(N)$ whose Mellin transform is L-function with an ideal character χ of degree 3 of imaginary quadratic field k and the abelian extension K_F over k which corresponds to the kernel of χ belongs to \mathscr{C}_0 .
- \mathscr{C}_3 = the set of all elliptic curves E rational over Q such that the field E_2 generated by coordinates of 2-division points on E belongs to \mathscr{C}_0 .

Received March 17, 1984.

110 MASAO KOIKE

Therefore we can define maps φ_i : $\mathscr{C}_i \to \mathscr{C}_0$ (i = 1, 2, 3) as follows;

$$\varphi_1(f)=K_f, \quad \varphi_2(F)=K_F, \quad \varphi_3(E)=E_2$$
.

For any K in \mathscr{C}_0 , let $f(x) \in \varphi_1^{-1}(K)$, $F(\tau) \in \varphi_2^{-1}(K)$ and $E \in \varphi_3^{-1}(K)$. Then our theorems give

- (I) the relation between the higher reciprocity law of f(x) and Fourier coefficients of $F(\tau)$, which is called the arithmetic congruence relation.
- (II) the relation between the higher reciprocity law of f(x) and L-function of E.
- (III) congruences modulo 2 between $F(\tau)$ and L-function of E.

These results are a generalization of an example given in [1] and [2].

The author would like to express his hearty thanks to Prof. Hiramatsu for giving him a lecture on this subject and invaluable conversation.

§1. Proof of (I)

Hereafter we fix K in \mathscr{C}_0 . Let $f(x) = ax^3 + bx^2 + cx + d$ be an element in $\varphi_1^{-1}(K)$. Let M be the product of all primes which appear in a, b, c and d.

For any prime p, $p \nmid M$, put $f_p(x) = f(x) \mod p$. Then $f_p(x)$ is a polynomial over F_p , the finite field with p elements, of degree 3. We define $\mathrm{Spl}\{f(x)\}$ to be the set of primes such that the polynomial $f_p(x)$ factors into a product of distinct linear polynomials over F_p . By the higher reciprocity law for f(x), we mean a rule to determine the set $\mathrm{Spl}\{f(x)\}$ up to finite set of primes.

Let $F(\tau) = \sum_{n=1}^{\infty} a(n)e[n\tau]$, $e[\tau] = \exp(2\pi\sqrt{-1}\tau)$, be a normalized cusp form of weight 1 in $\varphi_2^{-1}(K)$. Let χ be the non-trivial ideal character of k corresponding to the abelian extension K over k. Let -D and f denote the discriminant of k and the conductor of χ . Then

$$L(s, \chi) = \sum_{n=1}^{\infty} a(n) n^{-s}$$

and $F(\tau)$ is a cusp form of weight 1 on $\Gamma_0(DN\mathfrak{f})$ with the character (-D/*) where $N\mathfrak{f}$ denotes the norm of \mathfrak{f} on k over Q. Let ρ denote the complex conjugation. From the assumption, it follows that $\chi(\mathfrak{a})^{\rho} = \chi(\mathfrak{a}^{\rho})$ for any integral ideal \mathfrak{a} of k.

Theorem 1 (arithmetic congruence relation). Let p be any prime such that $p \nmid M \cdot D \cdot N f$. Then we have

$$\sharp \{\alpha \in F_p | f_p(\alpha) = 0\} = a(p)^2 - \left(\frac{-D}{p}\right).$$

Proof. The proof is similar to that of Theorem 2 in [2]. Let p be a prime as above. It is easily seen that

$$a(p) = 0 \iff (-D/p) = -1,$$
 \iff the splitting field of $f_p(x)$ over F_p is a quadratic extension over F_p ,
 $\iff f_p(x)$ has exactly 1 linear factor over F_p .

Now we assume that (-D/p) = 1. Then p decomposes into a product of two prime ideals p and p' where p' is the conjugate of p. It is clear that

$$a(p)=2\Longleftrightarrow \chi(\mathfrak{p})=1,$$
 $\Longleftrightarrow \mathfrak{p}$ splits completely in K ,
 $\Longleftrightarrow f_{p}(x)$ has exactly 3 distinct linear factors over F_{p} .

And also it is clear that

$$a(p) = -1 \iff \mathfrak{X}(\mathfrak{p}) = \omega$$
, a non-trivial cube root of unity, $\iff \mathfrak{p}$ remains prime in K . \iff the splitting field of $f_p(x)$ over F_p is a cubic extension over F_p , $\iff f_p(x)$ has no linear factor over F_p .

Summarizing these results, we obtain a proof of Theorem 1. Q.E.D.

Corollary 1. Sp1 $\{f(x)\}\$ coincides with the set

$$\{p: prime \mid p \nmid M \cdot D \cdot N \}, a(p) = 2\}$$

up to finite set of primes.

§2. Proof of (II)

Let E be an elliptic curve rational over Q in $\varphi_s^{-1}(K)$, which is defined by $y^2 = f(x)$ where f(x) is a polynomial of degree 3 over Q; $f(x) = ax^3 + bx^2 + cx + d$, $a, b, c, d \in Q$. Let N denote the conductor of E over Q. Let E_2 denote the field generated by the coordinates of 2-division points on E

112 MASAO KOIKE

over Q. Then E_2 coincides with the splitting field of f(x) over Q. Let p be an odd prime such that $p \nmid N$, and let \tilde{E}_p denote the reduction modulo p of E which is an elliptic curve over F_p . Let $N_p = N_p(E)$ denote the number of F_p -rational points of \tilde{E}_p . Further we assume that p is prime to MDN^{\dagger} as in Section 1, and put $f_p(x) = f(x) \mod p$. Then we can prove

LEMMA 1. With the notation as above, we have

$$(*) N_p - 1 \equiv \sharp \{\alpha \in F_p | f_p(\alpha) = 0\} \pmod{2}.$$

Proof. The proof was given in a special case in [1], but for the completeness of the paper, we give here the proof in detail. It is known that the number of solutions of $y^2 \equiv f(x) \pmod{p}$ in F_p^2 is equal to $N_p - 1$. We notice that the right hand side of (*) is odd if and only if $f_p(x)$ has at least one linear factor over F_p . And, it is clear that $f_p(x)$ has a linear factor if and only if the number of solutions of $y^2 \equiv f(x) \pmod{p}$ is odd. Q.E.D.

THEOREM 2. With the notation as above, we have the following equivalences:

- (1) $f_p(x)$ has exactly one linear factor over F_p if and only if $N_p 1$ is odd and (-D/p) = -1.
- (2) $f_p(x)$ is irreducible over F_p if and only if $N_p 1$ is even and (-D/p) = 1.
- (3) $f_p(x)$ has three distinct linear factors over F_p if and only if $N_p 1$ is odd and (-D/p) = 1.

Proof. (2) is obvious from Lemma 1. (1) is already proved in the proof of Theorem 1. Hence (3) is also proved. Q.E.D.

Remark 1. The Galois group of E_2 over Q is isomorphic to S_3 if and only if E has no Q-rational points of order 2 and the discriminant of E is not square.

Remark 2. We should remark that, in the proofs of Lemma 1 and Theorem 2, we need not use the condition that $K_f (= E_2)$ contains an imaginary quadratic field. This condition is needed only for assuring the existence of cusp forms of weight 1.

Remark 3. Let E, E' be in $\varphi_3^{-1}(K)$. Let N and N' denote the conductors of E and E'. Let p be any odd prime such that $p \nmid NN'$. Then Lemma 1 shows that, for almost all p,

$$N_{p}(E) \equiv N_{p}(E') \pmod{2}$$
.

§3. Proof of (III)

Let E be in $\varphi_3^{-1}(K)$ and $F(\tau) = \sum_{n=1}^{\infty} a(n)e[n\tau]$ in $\varphi_2^{-1}(K)$. We use same notation as in Section 1 and Section 2. Combining Theorem 1 and Theorem 2, we obtain

Theorem 3. Let p be any odd prime such that $p \nmid NMDN$. Then we have

$$N_p(E) \equiv a(p) \pmod{2}$$
.

For elliptic curves rational over Q, there is a famous Taniyama-Weil conjecture. If we assume this conjecture, for the elliptic curve E in Section 2, there exists the normalized cusp form $G(\tau) = \sum_{n=1}^{\infty} c(n)e[n\tau]$ of weight 2 on $\Gamma_0(N)$ such that

$$N_p(E) = 1 + p - c(p)$$
, for any prime $p, p \nmid N$.

Hence, we get

COROLLARY. With the above assumption, we get the congruence mod 2 between $F(\tau)$ and $G(\tau)$:

$$c(p) \equiv a(p) \pmod{2}$$

for any odd prime p, such that $p \nmid NMDN_{\uparrow}$.

Remark. In a special example treated in [1], this type of congruences mod 2 means that

$$\eta(au)^2\eta(11 au)^2\equiv\eta(2 au)\eta(22 au)\pmod{2}$$
 ,

which follows easily from the fact, $(1-x)^2 \equiv 1-x^2 \pmod{2}$.

§4.

Let $F(\tau) = \sum_{n=1}^{\infty} a(n)e[n\tau]$ be an element in \mathscr{C}_2 . We assume that there exists a cusp form $H(\tau) = \sum_{n=1}^{\infty} b(n)e[n\tau]$ of weight 2 satisfying

- (1) $H(\tau)$ is a normalized primitive cusp form,
- (2) $b(n) \in \mathbb{Z}$ for all $n \geq 1$,
- (3) For almost all primes p, $a(p) \equiv b(p) \pmod{2}$.

By the assumptions (1) and (2), there exists an elliptic curve E defined over Q associated with $H(\tau)$ as in Section 3.

114

THEOREM 4. Under the above assumption, we have

$$K_F = E_2$$
.

Namely, E belongs to \mathscr{C}_3 and $\varphi_3(E) = \varphi_1(F)$.

Proof. We denote the defining equation of E by $y^2 = g(x)$ where g(x) is a polynomial over Q of degree 3. For any good prime p for E, let N_p denote the number of F_p -rational points of the reduction mod p of E. Then the assumption (3) shows that

 $N_p \equiv a(p) \pmod 2$, for almost all odd, good primes.

Put $T_1 = \{p \colon \text{good prime} \mid a(p) = 2\}$, $T_2 = \{p \colon \text{good prime} \mid a(p) = 0\}$, and $T_3 = \{p \colon \text{good prime} \mid a(p) = -1\}$. Applying Tchebotarev density theorem to K_F , we know that the densities of T_1 , T_2 and T_3 are 1/6, 1/2 and 1/3 respectively. The above congruence shows that $T_3 = \{p \colon \text{prime} \mid N_p \text{ is odd}\}$ up to finite set of primes.

If g(x) is reducible over Q, N_p is even for any good prime; this contradicts the above result. Hence g(x) is irreducible over Q. We assume that the splitting field K_g of g(x) is abelian over Q. Then the densities of sets of primes $U_1 = \{p : \text{prime} | g_p(x) \text{ is a product of linear factors over } F_p\}$ and $U_2 = \{p : \text{prime} | g_p(x) \text{ is irreducible over } F_p\}$ are 1/3 and 2/3 respectively; this contradicts the above result. Hence $[K_g : Q] = 6$. Let k' denote the quadratic field contained in K_g . We assume that $k \neq k'$, Let (k/p) denote the Kronecker symbol. Then (k/p) = -1 induces a(p) = 0, hence N_p is even. Also (k'/p) = -1 induces that N_p is even. Since $k \neq k'$, the density of the set of primes $\{p : \text{prime} | (k/p) = -1 \text{ or } (k'/p) = -1 \}$ is 3/4; this contradicts the above result. Hence $K_g \supset k$. Since K_f/k and K_g/k are abelian extensions and the decomposition rule of primes of k in K_f and K_g coincides to each other, we get $K_f = K_g$.

REFERENCES

- [1] S. Chowla and M. Cowles, On the coefficients c_n in the expansion $x \prod_{n=1}^{\infty} (1-x^n)^2$ $(1-x^{11n})^2 = \sum_{n=1}^{\infty} c_n x^n$, J. reine angew. Math., 292 (1977), 115-116.
- [2] T. Hiramatsu, Higher reciprocity law and modular forms of weight one, Comm. Math. Univ. St. Paul, 31 (1982), 75-85.
- [3] T. Hiramatsu and Y. Mimura, The modular equation and modular forms of weight one, preprint.
- [4] T. Hiramatsu, N. Ishii and Y. Mimura, On indefinite modular forms of weight one, preprint.

[5] C. Moreno, The higher reciprocity law: an example, J. Number Theory, 12 (1980), 57-70.

Department of Mathematics Nagoya University Chikusa-ku, Nagoya 464 Japan