HIGHER RECIPROCITY LAW, MODULAR FORMS OF WEIGHT 1 AND ELLIPTIC CURVES

MASAO KOIKE

§0. Introduction

In this paper, we study higher reciprocity law of irreducible polynomials $f(x)$ over \boldsymbol{Q} of degree 3 , especially, its close connection with elliptic curves rational over \boldsymbol{Q} and cusp forms of weight 1 . These topics were already studied separately in a special example by Chowla-Cowles [1] and Hiramatsu [2]. Here we bring these objects into unity.

Let
$\mathscr{C}_{0}=$ the set of number fields K over \boldsymbol{Q} such that
(1) K is a Galois extension over \boldsymbol{Q} with $\operatorname{Gal}(K / \boldsymbol{Q}) \cong S_{3}$, the symmetric group of degree 3 ,
(2) K contains an imaginary quadratic field k.

For any K in \mathscr{C}_{0}, we can associate three other objects: (1) $f(x)$: irreducible polynomials over \boldsymbol{Q} of degree 3, (2) $F(\tau)$: cusp forms of weight 1 , (3) E : elliptic curves rational over \boldsymbol{Q};
let
$\mathscr{C}_{1}=$ the set of all irreducible polynomials $f(x)$ over \boldsymbol{Q} of degree 3 whose splitting field K_{f} over \boldsymbol{Q} belongs to \mathscr{C}_{0}.
$\mathscr{C}_{2}=$ the set of all normalized cusp forms $F(\tau)$ of weight 1 on $\Gamma_{0}(N)$ whose Mellin transform is L-function with an ideal character χ of degree 3 of imaginary quadratic field k and the abelian extension K_{F} over k which corresponds to the kernel of γ belongs to \mathscr{C}_{0}.
$\mathscr{C}_{3}=$ the set of all elliptic curves E rational over \boldsymbol{Q} such that the field E_{2} generated by coordinates of 2-division points on E belongs to \mathscr{C}_{0}.

Therefore we can define maps $\varphi_{i}: \mathscr{C}_{i} \rightarrow \mathscr{C}_{0}(i=1,2,3)$ as follows;

$$
\varphi_{1}(f)=K_{f}, \quad \varphi_{2}(F)=K_{F}, \quad \varphi_{3}(E)=E_{2}
$$

For any K in \mathscr{C}_{0}, let $f(x) \in \varphi_{1}^{-1}(K), F(\tau) \in \varphi_{2}^{-1}(K)$ and $E \in \varphi_{3}^{-1}(K)$. Then our theorems give
(I) the relation between the higher reciprocity law of $f(x)$ and Fourier coefficients of $F(\tau)$, which is called the arithmetic congruence relation.
(II) the relation between the higher reciprocity law of $f(x)$ and L-function of E.
(III) congruences modulo 2 between $F(\tau)$ and L-function of E.

These results are a generalization of an example given in [1] and [2].
The author would like to express his hearty thanks to Prof. Hiramatsu for giving him a lecture on this subject and invaluable conversation.

§ 1. Proof of (I)

Hereafter we fix K in \mathscr{C}_{0}. Let $f(x)=a x^{3}+b x^{2}+c x+d$ be an element in $\varphi_{1}^{-1}(K)$. Let M be the product of all primes which appear in a, b, c and d.

For any prime $p, p \nmid M$, put $f_{p}(x)=f(x) \bmod p$. Then $f_{p}(x)$ is a polynomial over \boldsymbol{F}_{p}, the finite field with p elements, of degree 3 . We define $\operatorname{Spl}\{f(x)\}$ to be the set of primes such that the polynomial $f_{p}(x)$ factors into a product of distinct linear polynomials over \boldsymbol{F}_{p}. By the higher reciprocity law for $f(x)$, we mean a rule to determine the set $\operatorname{Spl}\{f(x)\}$ up to finite set of primes.

Let $F(\tau)=\sum_{n=1}^{\infty} a(n) e[n \tau], e[\tau]=\exp (2 \pi \sqrt{-1} \tau)$, be a normalized cusp form of weight 1 in $\varphi_{2}^{-1}(K)$. Let χ be the non-trivial ideal character of k corresponding to the abelian extension K over k. Let $-D$ and f denote the discriminant of k and the conductor of χ. Then

$$
L(s, \chi)=\sum_{n=1}^{\infty} a(n) n^{-s}
$$

and $F(\tau)$ is a cusp form of weight 1 on $\Gamma_{0}(D N f)$ with the character ($-D / *$) where $N \mp$ denotes the norm of \mathfrak{f} on k over \boldsymbol{Q}. Let ρ denote the complex conjugation. From the assumption, it follows that $\chi(\mathfrak{a})^{\rho}=\chi\left(\mathfrak{a}^{\rho}\right)$ for any integral ideal \mathfrak{a} of k.

Theorem 1 (arithmetic congruence relation). Let p be any prime such that $p \nmid M \cdot D \cdot N \nmid$. Then we have

$$
\#\left\{\alpha \in F_{p} \mid f_{p}(\alpha)=0\right\}=a(p)^{2}-\left(\frac{-D}{p}\right) .
$$

Proof. The proof is similar to that of Theorem 2 in [2]. Let p be a prime as above. It is easily seen that

```
\(a(p)=0 \Longleftrightarrow(-D / p)=-1\),
    \(\Longleftrightarrow\) the splitting field of \(f_{p}(x)\) over \(F_{p}\) is a quadratic ex-
    tension over \(\boldsymbol{F}_{p}\),
    \(\Longleftrightarrow f_{p}(x)\) has exactly 1 linear factor over \(F_{p}\).
```

Now we assume that $(-D / p)=1$. Then p decomposes into a product of two prime ideals \mathfrak{p} and \mathfrak{p}^{\prime} where \mathfrak{p}^{\prime} is the conjugate of \mathfrak{p}. It is clear that

$$
\begin{aligned}
a(p)=2 & \Longleftrightarrow \chi(\mathfrak{p})=1, \\
& \Longleftrightarrow \mathfrak{p} \text { splits completely in } K, \\
& \Longleftrightarrow f_{p}(x) \text { has exactly } 3 \text { distinct linear factors over } \boldsymbol{F}_{p} .
\end{aligned}
$$

And also it is clear that

$$
\begin{aligned}
a(p)=-1 & \Longleftrightarrow \chi(p)=\omega, \text { a non-trivial cube root of unity, } \\
& \Longleftrightarrow p \text { remains prime in } K . \\
& \Longleftrightarrow \text { the splitting field of } f_{p}(x) \text { over } F_{p} \text { is a cubic exten- } \\
& \Longleftrightarrow \text { sion over } F_{p}, \\
& \Longleftrightarrow f_{p}(x) \text { has no linear factor over } F_{p} .
\end{aligned}
$$

Summarizing these results, we obtain a proof of Theorem 1.
Q.E.D.

Corollary 1. $\operatorname{Sp} 1\{f(x)\}$ coincides with the set

$$
\{p: \text { prime } \mid p \nmid M \cdot D \cdot N \mathfrak{f}, a(p)=2\}
$$

up to finite set of primes.
Proof. This is obvious from Theorem 1.
Q.E.D.

§ 2. Proof of (II)

Let E be an elliptic curve rational over \boldsymbol{Q} in $\varphi_{3}^{-1}(K)$, which is defined by $y^{2}=f(x)$ where $f(x)$ is a polynomial of degree 3 over $\boldsymbol{Q} ; f(x)=a x^{3}+$ $b x^{2}+c x+d, a, b, c, d \in \boldsymbol{Q}$. Let N denote the conductor of E over \boldsymbol{Q}. Let E_{2} denote the field generated by the coordinates of 2-division points on E
over \boldsymbol{Q}. Then E_{2} coincides with the splitting field of $f(x)$ over \boldsymbol{Q}. Let p be an odd prime such that $p \nmid N$, and let \tilde{E}_{p} denote the reduction modulo p of E which is an elliptic curve over \boldsymbol{F}_{p}. Let $N_{p}=N_{p}(E)$ denote the number of \boldsymbol{F}_{p}-rational points of \tilde{E}_{p}. Further we assume that p is prime to $M D N \mp$ as in Section 1, and put $f_{p}(x)=f(x) \bmod p$. Then we can prove

Lemma 1. With the notation as above, we have (*)

$$
N_{p}-1 \equiv \#\left\{\alpha \in F_{p} \mid f_{p}(\alpha)=0\right\} \quad(\bmod 2)
$$

Proof. The proof was given in a special case in [1], but for the completeness of the paper, we give here the proof in detail. It is known that the number of solutions of $y^{2} \equiv f(x)(\bmod p)$ in F_{p}^{2} is equal to $N_{p}-1$. We notice that the right hand side of $(*)$ is odd if and only if $f_{p}(x)$ has at least one linear factor over \boldsymbol{F}_{p}. And, it is clear that $f_{p}(x)$ has a linear factor if and only if the number of solutions of $y^{2} \equiv f(x)(\bmod p)$ is odd.
Q.E.D.

Theorem 2. With the notation as above, we have the following equivalences:
(1) $f_{p}(x)$ has exactly one linear factor over \boldsymbol{F}_{p} if and only if $N_{p}-1$ is odd and $(-D / p)=-1$.
(2) $f_{p}(x)$ is irreducible over F_{p} if and only if $N_{p}-1$ is even and $(-D / p)=1$.
(3) $f_{p}(x)$ has three distinct linear factors over \boldsymbol{F}_{p} if and only if $N_{p}-1$ is odd and $(-D / p)=1$.
Proof. (2) is obvious from Lemma 1. (1) is already proved in the proof of Theorem 1. Hence (3) is also proved.
Q.E.D.

Remark 1. The Galois group of E_{2} over \boldsymbol{Q} is isomorphic to S_{3} if and only if E has no \boldsymbol{Q}-rational points of order 2 and the discriminant of E is not square.

Remark 2. We should remark that, in the proofs of Lemma 1 and Theorem 2, we need not use the condition that $K_{f}\left(=E_{2}\right)$ contains an imaginary quadratic field. This condition is needed only for assuring the existence of cusp forms of weight 1.

Remark 3. Let E, E^{\prime} be in $\varphi_{3}^{-1}(K)$. Let N and N^{\prime} denote the conductors of E and E^{\prime}. Let p be any odd prime such that $p \nmid N N^{\prime}$. Then Lemma 1 shows that, for almost all p,

$$
N_{p}(E) \equiv N_{p}\left(E^{\prime}\right) \quad(\bmod 2) .
$$

§ 3. Proof of (III)

Let E be in $\varphi_{3}^{-1}(K)$ and $F(\tau)=\sum_{n=1}^{\infty} a(n) e[n \tau]$ in $\varphi_{2}^{-1}(K)$. We use same notation as in Section 1 and Section 2. Combining Theorem 1 and Theorem 2, we obtain

Theorem 3. Let p be any odd prime such that $p \nmid N M D N \mp$., Then we have

$$
N_{p}(E) \equiv a(p) \quad(\bmod 2)
$$

For elliptic curves rational over \boldsymbol{Q}, there is a famous Taniyama-Weil conjecture. If we assume this conjecture, for the elliptic curve E in Section 2, there exists the normalized cusp form $G(\tau)=\sum_{n=1}^{\infty} c(n) e[n \tau]$ of weight 2 on $\Gamma_{0}(N)$ such that

$$
N_{p}(E)=1+p-c(p), \quad \text { for any prime } p, p \nmid N .
$$

Hence, we get
Corollary. With the above assumption, we get the congruence $\bmod 2$ between $F(\tau)$ and $G(\tau)$:

$$
c(p) \equiv a(p) \quad(\bmod 2)
$$

for any odd prime p, such that $p \nmid N M D N \mp$.
Remark. In a special example treated in [1], this type of congruences $\bmod 2$ means that

$$
\eta(\tau)^{2} \eta(11 \tau)^{2} \equiv \eta(2 \tau) \eta(22 \tau) \quad(\bmod 2),
$$

which follows easily from the fact, $(1-x)^{2} \equiv 1-x^{2}(\bmod 2)$.

§4.

Let $F(\tau)=\sum_{n=1}^{\infty} a(n) e[n \tau]$ be an element in \mathscr{C}_{2}. We assume that there exists a cusp form $H(\tau)=\sum_{n=1}^{\infty} b(n) e[n \tau]$ of weight 2 satisfying
(1) $H(\tau)$ is a normalized primitive cusp form,
(2) $b(n) \in Z$ for all $n \geqq 1$,
(3) For almost all primes $p, a(p) \equiv b(p)(\bmod 2)$.

By the assumptions (1) and (2), there exists an elliptic curve E defined over \boldsymbol{Q} associated with $H(\tau)$ as in Section 3.

Theorem 4. Under the above assumption, we have

$$
K_{F}=E_{2} .
$$

Namely, E belongs to \mathscr{C}_{3} and $\varphi_{3}(E)=\varphi_{1}(F)$.
Proof. We denote the defining equation of E by $y^{2}=g(x)$ where $g(x)$ is a polynomial over \boldsymbol{Q} of degree 3. For any good prime p for E, let N_{p} denote the number of \boldsymbol{F}_{p}-rational points of the reduction $\bmod p$ of E. Then the assumption (3) shows that

$$
N_{p} \equiv a(p)(\bmod 2), \quad \text { for almost all odd, good primes }
$$

Put $T_{1}=\{p$: good prime $\mid \alpha(p)=2\}, \quad T_{2}=\{p$: good $\operatorname{prime} \mid a(p)=0\}$, and $T_{3}=\{p$: good prime $\mid a(p)=-1\}$. Applying Tchebotarev density theorem to K_{F}, we know that the densities of T_{1}, T_{2} and T_{3} are $1 / 6,1 / 2$ and $1 / 3$ respectively. The above congruence shows that $T_{3}=\left\{p\right.$: prime $\mid N_{p}$ is odd $\}$ up to finite set of primes.

If $g(x)$ is reducible over \boldsymbol{Q}, N_{p} is even for any good prime; this contradicts the above result. Hence $g(x)$ is irreducible over \boldsymbol{Q}. We assume that the splitting field K_{g} of $g(x)$ is abelian over \boldsymbol{Q}. Then the densities of sets of primes $U_{1}=\left\{p\right.$: prime $\mid g_{p}(x)$ is a product of linear factors over $\left.\boldsymbol{F}_{p}\right\}$ and $U_{2}=\left\{p\right.$: prime $\mid g_{p}(x)$ is irreducible over $\left.\boldsymbol{F}_{p}\right\}$ are $1 / 3$ and $2 / 3$ respectively; this contradicts the above result. Hence $\left[K_{g}: \boldsymbol{Q}\right]=6$. Let k^{\prime} denote the quadratic field contained in K_{g}. We assume that $k \neq k^{\prime}$, Let (k / p) denote the Kronecker symbol. Then $(k / p)=-1$ induces $a(p)=0$, hence N_{p} is even. Also $\left(k^{\prime} / p\right)=-1$ induces that N_{p} is even. Since $k \neq k^{\prime}$, the density of the set of primes $\left\{p\right.$: prime $\mid(k / p)=-1$ or $\left.\left(k^{\prime} / p\right)=-1\right\}$ is $3 / 4$; this contradicts the above result. Hence $K_{g} \supset k$. Since K_{f} / k and K_{g} / k are abelian extensions and the decomposition rule of primes of k in K_{f} and K_{g} coincides to each other, we get $K_{f}=K_{g}$.
Q.E.D.

References

[1] S. Chowla and M. Cowles, On the coefficients c_{n} in the expansion $x \prod_{n=1}^{\infty}\left(1-x^{n}\right)^{2}$ $\left(1-x^{11 n}\right)^{2}=\sum_{1}^{\infty} c_{n} x^{n}$, J. reine angew. Math., 292 (1977), 115-116.
[2] T. Hiramatsu, Higher reciprocity law and modular forms of weight one, Comm. Math. Univ. St. Paul, 31 (1982), 75-85.
[3] T. Hiramatsu and Y. Mimura, The modular equation and modular forms of weight one, preprint.
[4] T. Hiramatsu, N. Ishii and Y. Mimura, On indefinite modular forms of weight one, preprint.
[5] C. Moreno, The higher reciprocity law: an example, J. Number Theory, 12 (1980), 57-70.

Department of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464
Japan

